TBA@TBI WinterSeminar

... as advertised on the event website

Yann Ponty

+ Bertrand Marchand*, Sebastian Will, Sarah Berkemer and Laurent Bulteau

AMIBio Team CNRS & LIX, Institut Polytechnique de Paris

Automated Design of Dynamic Programming Algorithms Another step towards the elusive perfect algorithm for folding RNAs with tertiary motifs

Yann Ponty

+ Bertrand Marchand*, Sebastian Will, Sarah Berkemer and Laurent Bulteau

AMIBio Team CNRS & LIX, Institut Polytechnique de Paris

RNA structure(s)

RNA = Linear Polymer = Nucleotides sequence $w \in \{A, C, G, U\}^*$

UUAGGCGGCCACAGC GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA CC

Primary struct. <u>aka</u> sequence

Physics/chemistry paradigms in RNA structural bioinformatics

Given free-energy *E* at Boltzmann equilibrium $\mathbb{P}(S \mid w) \propto e^{-\Delta G(w,S)/RT}$

- Minimum Free-Energy (MFE): Functional structure = Most stable/probable
- Partition function: Equilibrium properties of Boltzmann ensemble
- Kinetics: Finite-time evolution of concentrations/probabilities

Why pseudoknots?

Pseudoknots are highly prevalent among non-coding RNAs:

- 48.5% RNA structures from PDB feature pseudoknots
- ► 565 RFAM families have pseudoknotted consensus structures

The CS/nerdy side of MFE prediction (with pseudoknots)

► Pseudoknot-free MFE solved in $O(n^3)$ time for finite energy models Current best: $O(n^{2.87})$ for BP-based models [Bringmann, Grandoni, Saha, & Williams 2016] Lower bounds: SETH $\rightarrow O(n^2)$, *k*-clique $\rightarrow O(n^{\omega})$, $\omega < 2.374$ [Abboud, Backurs & Williams 2015]

The CS/nerdy side of MFE prediction (with pseudoknots)

- ► Pseudoknot-free MFE solved in $O(n^3)$ time for finite energy models Current best: $O(n^{2.87})$ for BP-based models [Bringmann, Grandoni, Saha, & Williams 2016] Lower bounds: SETH $\rightarrow O(n^2)$, *k*-clique $\rightarrow O(n^{\omega})$, $\omega < 2.374$ [Abboud, Backurs & Williams 2015]
- ▶ With pseudoknots → NP-hard for any realistic energy model

[Lyngsø & Pedersen 2000; Akutsu & Uemura 2000; Sheikh, Backofen & Ponty 2012]

		Base-pairs	Stacking-Pairs	Nearest-Neighbor	
	Comp.	P [Nussinov 80]	P [leong 03]	P [Zuker 81]	
Non-crossing	Approx.	-	-	-	
	Comp.	???	NP-Hard [leong 03]	NP-Hard [leong 03]	
Planar	Approx.	2-approx. ≈[leong 03]	2-approx. [leong 03]	???	
	Comp.	P [Tabaska 98]	NP-Hard [Lyngsø 04] (any* ∆ model)	NP-Hard [Lyngsø 00, Akutsu 00]	
General	Approx.	-	ε -approx. $\in \mathcal{O}(n^{4^{1/\varepsilon}})$ [Lyngsø 04] 1/5 (any Δ model)	APX-Hard	

History of RNA folding with PK (+ Interactions)

space	time	restriction
$\alpha(\Lambda)$		
$O(n^{4})$	$O(n^6)$	"one-hole structures"
$O(n^4)$	$O(n^5)$	"2 interleaved helices"
$O(n^4)$	$O(n^6)$	genus ≤ 1
$O(n^4)$	$O(n^5)$	"3 groups of bands"
$O(n^3 + Z)$	$O(n^5)$	"CCJ-type + optims"
$O(n^2)$	$O(n^4)$	"simple recursive PK"
)($ \begin{array}{c} O(n^4) \\ \hline O(n^4) \\ \hline O(n^4) \\ \hline O(n^4) \\ \hline (n^3 + Z) \\ \hline O(n^2) \\ \end{array} $	$\begin{array}{c c} O(n^4) & O(n^6) \\ \hline O(n^4) & O(n^5) \\ \hline O(n^4) & O(n^6) \\ \hline O(n^4) & O(n^5) \\ \hline (n^3 + Z) & O(n^5) \\ \hline O(n^2) & O(n^4) \\ \end{array}$

- Manual design using Dynamic Programming (DP)
- Grammar-based frameworks [Giegerich & friends, Hoehner zu Siederdissen& Stadler]
- ► Topology-inspired (Genus → Fatgraphs) [Bon/Orland/Vernizzi, Reidys/Nebel/Stadler]

Our goal: To rationalize/automate the design of conjunctive DP schemes

Workflow

PK pattern(s) of interest (e.g. 3D models)

General algorithm for Fatgraph MFE folding problem Correct for any input sequence (+ C/C++ Code generation)

 $\begin{array}{c} \text{Complexity:} & O(n^{tw}) \, \text{or} \, O(n^{tw+1}) \, \text{for simple energy models} \\ & O(n^{tw+1}) \, \text{for full Turner model} \end{array}$

MFE folding w.r.t. shadow = Find embedding of motifs anchors into RNA:

- Consistency: Consecutive anchors should be assigned increasing positions
- ► Helices scoring: 4 extremities jointly seen, or (inner | outer)ward progression

Option 1: Brute force
$$\bigwedge$$

 $MFE := \min_{\mathbf{a} < \mathbf{b} < \mathbf{c} < \mathbf{d} < ... < \mathbf{l}} \Delta G(a, b, e, f) + \Delta G(c, d, i, j) + \Delta G(g, h, k, l)$
 $\rightarrow O(n^{12})$ time complexity \bigwedge

Option 2: Left to right strategy, starting from $(a, l) \rightarrow MFE := \min_{a < l} A(a, l)$

$$A(a, l) = \min_{a < \mathbf{b} < l} B(a, b, l)$$

Option 2: Left to right strategy, starting from $(a, l) \rightarrow MFE := \min_{a < l} A(a, l)$

$$A(a, l) = \min_{a < \mathbf{b} < l} B(a, b, l) \quad B(a, b, l) = \min_{b < \mathbf{c} < l} C(a, b, c, l)$$

Option 2: Left to right strategy, starting from $(a, l) \rightarrow MFE := \min_{a < l} A(a, l)$

$$\begin{array}{l} A(a, l) = \min_{\substack{a < \mathbf{b} < l}} B(a, b, l) & B(a, b, l) = \min_{\substack{b < \mathbf{c} < l}} C(a, b, c, l) & C(a, b, c, l) = \min_{\substack{c < \mathbf{d} < l}} D(a, b, c, d, l) \\ D(a, b, c, d, l) = \min_{\substack{d < \mathbf{e} < l}} E(a, b, c, d, e, l) \end{array}$$

Option 2: Left to right strategy, starting from $(a, l) \rightarrow MFE := \min_{a < l} A(a, l)$

$$A(a, l) = \min_{\substack{a < \mathbf{b} < l}} B(a, b, l) \quad B(a, b, l) = \min_{\substack{b < \mathbf{c} < l}} C(a, b, c, l) \quad C(a, b, c, l) = \min_{\substack{c < \mathbf{d} < l}} D(a, b, c, d, l)$$
$$D(a, b, c, d, l) = \min_{\substack{d < \mathbf{e} < l}} E(a, b, c, d, e, l) \quad E(a, b, c, d, e, l) = \min_{\substack{e < \mathbf{f} < l}} F(\mathbf{a}, \mathbf{b}, c, d, \mathbf{e}, f, l) + \Delta G(a, b, e, f)$$

Option 2: Left to right strategy, starting from $(a, l) \rightarrow MFE := \min_{a < l} A(a, l)$

$$\begin{array}{l} A(a,l) = \min_{\substack{a < \mathbf{b} < l}} B(a,b,l) & B(a,b,l) = \min_{\substack{b < \mathbf{c} < l}} C(a,b,c,l) & C(a,b,c,l) = \min_{\substack{c < \mathbf{d} < l}} D(a,b,c,d,l) \\ D(a,b,c,d,l) = \min_{\substack{d < \mathbf{e} < l}} E(a,b,c,d,e,l) & E(a,b,c,d,e,l) = \min_{\substack{e < \mathbf{f} < l}} F(\mathbf{a},\mathbf{b},c,d,\mathbf{e},f) + \Delta G(a,b,e,f) \\ F(c,d,f,l) = \min_{\substack{f < \mathbf{g} < l}} G(c,d,f,g,l) \end{array}$$

Option 2: Left to right strategy, starting from $(a, l) \rightarrow MFE := \min_{a < l} A(a, l)$

$$\begin{array}{l} A(a,l) = \min_{\substack{a < \mathbf{b} < l}} B(a,b,l) & B(a,b,l) = \min_{\substack{b < \mathbf{c} < l}} C(a,b,c,l) & C(a,b,c,l) = \min_{\substack{c < \mathbf{d} < l}} D(a,b,c,d,l) \\ D(a,b,c,d,l) = \min_{\substack{d < \mathbf{e} < l}} E(a,b,c,d,e,l) & E(a,b,c,d,e,l) = \min_{\substack{e < \mathbf{f} < l}} F(\mathbf{e},\mathbf{b},c,d,\mathbf{e},c,d,\mathbf{e},l) + \Delta G(a,b,e,f) \\ F(c,d,f,l) = \min_{\substack{f < \mathbf{g} < l}} G(c,d,f,g,l) & G(c,d,f,g,l) = \min_{\substack{g < \mathbf{h} < l}} H(c,d,f,g,h,l) \end{array}$$

Option 2: Left to right strategy, starting from $(a, l) \rightarrow MFE := \min_{a < l} A(a, l)$

$$\begin{array}{l} A(a,l) = \min_{\substack{a < \mathbf{b} < l}} B(a,b,l) & B(a,b,l) = \min_{\substack{b < \mathbf{c} < l}} C(a,b,c,l) & C(a,b,c,l) = \min_{\substack{c < \mathbf{d} < l}} D(a,b,c,d,l) \\ D(a,b,c,d,l) = \min_{\substack{d < \mathbf{e} < l}} E(a,b,c,d,e,l) & E(a,b,c,d,e,l) = \min_{\substack{e < \mathbf{f} < l}} F(\overline{\mathbf{a}}, \overline{\mathbf{b}}, c, d, \overline{\mathbf{e}}, f, l) + \Delta G(a,b,e,f) \\ F(c,d,f,l) = \min_{\substack{f < \mathbf{g} < l}} G(c,d,f,g,l) & G(c,d,f,g,l) = \min_{\substack{g < \mathbf{h} < l}} H(c,d,f,g,h,l) \\ H(c,d,f,g,h,l) = \min_{\substack{h < i < l}} I(c,d,f,g,h,i,l) \end{array}$$

Option 2: Left to right strategy, starting from $(a, l) \rightarrow MFE := \min_{a < l} A(a, l)$

$$\begin{array}{l} A(a,l) = \min_{\substack{a < \mathbf{b} < l}} B(a,b,l) & B(a,b,l) = \min_{\substack{b < \mathbf{c} < l}} C(a,b,c,l) & C(a,b,c,l) = \min_{\substack{c < \mathbf{d} < l}} D(a,b,c,d,l) \\ D(a,b,c,d,l) = \min_{\substack{d < \mathbf{e} < l}} E(a,b,c,d,e,l) & E(a,b,c,d,e,l) = \min_{\substack{e < \mathbf{f} < l}} F(\mathbf{a},\mathbf{b},c,d,\mathbf{e},f,l) + \Delta G(a,b,e,f) \\ F(c,d,f,l) = \min_{\substack{f < \mathbf{g} < l}} G(c,d,f,g,l) & G(c,d,f,g,l) = \min_{\substack{e < \mathbf{f} < l}} H(c,d,f,g,h,l) \\ H(c,d,f,g,h,l) = \min_{\substack{h < \mathbf{i} < l}} I(c,d,f,g,h,i,l) & I(c,d,f,g,h,i,l) = \min_{\substack{i < \mathbf{j} < l}} J(\mathbf{e},\mathbf{d},f,g,h,i,l) + \Delta G(c,d,i,j) \end{array}$$

Option 2: Left to right strategy, starting from $(a, I) \rightarrow MFE := \min_{a < I} A(a, I)$

Add anchors from left to right, forget unnecessary anchors:

$$\begin{aligned} A(a, l) &= \min_{\substack{a < \mathbf{b} < l}} B(a, b, l) \quad B(a, b, l) = \min_{\substack{b < \mathbf{c} < l}} C(a, b, c, l) \quad C(a, b, c, l) = \min_{\substack{c < \mathbf{d} < l}} D(a, b, c, d, l) \\ D(a, b, c, d, l) &= \min_{\substack{d < \mathbf{e} < l}} E(a, b, c, d, e, l) \quad E(a, b, c, d, e, l) = \min_{\substack{e < \mathbf{f} < l}} F(\mathbf{a}, \mathbf{b}, c, d, \mathbf{e}, f, l) + \Delta G(a, b, e, f) \\ F(c, d, f, l) &= \min_{\substack{f < \mathbf{g} < l}} G(c, d, f, g, l) \quad G(c, d, f, g, l) = \min_{\substack{g < \mathbf{h} < l}} H(c, d, f, g, h, l) \\ H(c, d, f, g, h, l) &= \min_{\substack{h < \mathbf{i} < l}} I(c, d, f, g, h, i, l) \quad I(c, d, f, g, h, i, l) = \min_{\substack{i < j < l}} J(\mathbf{e}, \mathbf{d}, f, g, h, \mathbf{i}, j, l) + \Delta G(c, d, i, j) \\ J(f, g, h, j, l) &= \min_{\substack{j < \mathbf{k} < l}} \Delta G(g, h, k, l) \end{aligned}$$

 $\rightarrow O(n^8)$ time complexity (meh!), can we do better?

Treewidth and tree decomposition(s)

Option 1: Brute force $MFE := \min_{\mathbf{a} < \mathbf{b} < ... < \mathbf{I}} \Delta G(a, b, e, f) + ... \rightarrow \mathbf{a b c d e f g h i j k I}$ Option 2: Left to right

$$MFE := \min_{a < l} A(a, l)$$

$$A(a, l) = \min_{a < b < l} B(a, b, l)$$

$$B(a, b, l) = \min_{b < c < l} C(a, b, c, l)$$

$$\vdots$$

$$f, g, h, i, l) = \min_{i < j < l} J(f, g, h, j, l) + \Delta G(c, d, i, j)$$

$$J(f, g, h, j, l) = \min_{i < k < l} \Delta G(g, h, k, l)$$

l(c, d,

Treewidth and tree decomposition

Kissing hairpins: Alternative decomposition

Treewidth and tree decomposition

 \Rightarrow Optimal* DP schemes for MFE from OPT tree dec.??

Towards general (unbounded) structures

Property: Presence of bags for (4 anchors) helices could be ensured by cliques...

Helices can be generated/scored inwards/outwards, saving O(n) time/space \Rightarrow Instantiating shadow enables tree dec. to benefit from speedup

Problem: How to find generalizable tree decomposition/prevent shortcut?

Five base pairs (BPs) is all you need

Definitions:

- Structure space $S_{\mathcal{F}}$ of fatgraph \mathcal{F} : (infinite) set of structures factoring into \mathcal{F} ;
- Minimal expansion $C_{\mathcal{F}}$ of \mathcal{F} : Structure with each helix expanded into 5 BPs.

Theorem: Contracting 5+ ladders to 5 base pairs preserves treewidth

Bound is tight as reduction to 4 may reduce treewidth

Corollary: $C_{\mathcal{F}}$ has treewidth larger or equal to any structure in $\mathcal{S}_{\mathcal{F}}$

Intuition: Exploit tree dec. of $C_{\mathcal{F}}$ to make general statements about folding over $\mathcal{S}_{\mathcal{F}}$

Theorem: Tree Decomposition of minimal expansion can be transformed into a TD (same width) partitioning helices into diagonals and cliques

- Cliques = bags featuring 4 helix anchors
- Diagonals = triangulated helices, amenable to inward/outward helix extension
- Transitionals = other bags, faithfully/boringly propagating anchor values

+ Generic DP rules for diagonals and cliques helices contribute energies under BP, Stacking or Turner models

Corollary: MFE folding over the structure space factoring into a given fatgraph \mathcal{F} can be solved in complexity $O(n^{tw+1})$

Putting everything together

PK pattern(s) of interest (e.g. 3D models)

General algorithm for Fatgraph MFE folding problem Correct for any input sequence (+ C/C++ Code generation)

 $\begin{array}{c} \text{Complexity:} & O(n^{tw}) \, \text{or} \, O(n^{tw+1}) \, \text{for simple energy models} \\ & O(n^{tw+1}) \, \text{for full Turner model} \end{array}$

Example

Some results

		Complexities		
Туре	Fatgraph	Treewidth	Full Turner	All others
H-type	([)]	4	$O(n^5)$	<i>O</i> (<i>n</i> ⁴)
Kissing hairpins	([)(])	4	$O(n^5)$	0 (n ⁴)
"L" [Reidys et al, 2011]	([{)]}	5	$O(n^6)$	$O(n^6)$
"M" [Reidys et al, 2011]	([{)(]})	5	$O(n^6)$	$O(n^6)$
4-clique	([{<)]}>	5	$O(n^6)$	0 (n ⁶)
5-clique	([{ <a)]}>a</a)]}>	5	$O(n^6)$	$O(n^6)$
5-chain	({[)(][)}]	6	$O(n^7)$	0 (n ⁷)

Extensions

- Embedding PKs/fatgraphs occurrences in 2D centric search spaces
 Simply add a ghost edge, and voila: DP scheme now ready for inclusion within RNAfold closed structure table
- Computing partition function/thermodynamic quantities Generated recursions already unambiguous so (min, +) → (∑, ×) gives Z Multiple fatgraphs → Disjoint search spaces Inside/outside (BP probabilities) obtainable with (a little) more sweat
- Recursive pseudoknots: Consecutive anchors seen together

 \rightarrow Possibility to insert other 2D/PK structures in *unpaired* regions If non-recursive & affine energy model for PK unpaired regions, merge consecutive anchors (Gotoh trick) for reduced treewidth

RNA-RNA interactions have fatgraphs too!

Musings

Optimality of complexities?

For which search space? Lower bounds are hard...

► Polluting conformation spaces! Konformationsraumverschmutzung??? Monkeys & Typewriters → Adding PK motif implies exponential growth of Z Geometry: Terminal PKs are OK, recursive PKs are dangerous

Tree decomposition vs Parsing (fight!)

Acknowledgments

Sarah Berkemer

Bertrand Marchand

Laurent Bulteau

+ Ronny (!!) and all members of PaRNAssus ANR/FWF project