Multirooted networks: What and why?

Guillaume Scholz

Bled 2024

Phylogenetic tree (\sim 1850)

Phylogenetic tree (\sim 1850)

Phylogenetic tree (${\sim}1850$)

Phylogenetic tree (${\sim}1850$)

イロト イロト イヨト イヨト ノロト

Phylogenetic network (early 90s)

WHEAT GENOME

Ancient hybridizations among the ancestral genomes of bread wheat

Thomas Marcussen,¹* Simen R. Sandve,¹*† Lise Heier,² Manuel Spannagl,³ Matthias Pfeifer,⁵ The International Wheat Genome Sequencing Consortium,‡ Kjetill S. Jakobsen,⁴ Brande B. H. Wulff,⁵ Burkhard Steuernagel,⁵ Klaus F. X. Mayer,³ Odd-Arne Olsen⁴

Phylogenetic network (early 90s)

FIG. 4. A graphical representation of the split-decomposable part of the evolutionary distances between Rickettailates and other substoria draws to sale data from Table 4 of Weiskarg et al. (1991). Tatos myobias rev. (*N Excention loci*): (*B Robapendomona* palauteir; (*O Robaperillam rubrum*; (*D) Anaplasma marginale*; (*B) Etrickia ratici*; (*P Rickettisa provazekii*; (*O Rickettis rickettis*); (*R Robalines quintam*; (*D) Bodilla solutici*; (*M) Anaplasma marginale*; (*B) Etrickia ratici*; (*P Rickettisa provazekii*; (*O Rickettis rickettis*); (*R Robalines quintam*; (*D) Bodilla solutici*; (*M) Anaplasma marginale*; (*B) Etrickia ratici*; (*P Rickettis provazekii*; (*M Rickettis rickettis*); (*R Robalines quintam*; (*D) Bodilla solutici*; (*M Rickettis matericians*). Experimentation of the split of the spl

Split Decomposition: A New and Useful Approach to Phylogenetic Analysis of Distance Data

HANS-JÜRGEN BANDELT* AND ANDREAS W. M. DRESST

*Mathematisches Seminar, Universität Hamburg, D-2000 Hamburg 13, Federal Republic of Germany; and †Fakultät für Mathematik, Universität Bielefeld, D-4800 Bielefeld 1, Federal Republic of Germany

Phylogenetic network (early 90s)

Fig. 3. A reticulated tree, or net, which might more appropriately represent life's history. Martin (16), in a review covering many of the same topics as this one, has presented some striking colored representations of such patterns.

REVIEW

Phylogenetic Classification and the Universal Tree

W. Ford Doolittle

Networks: expanding evolutionary thinking

Eric Bapteste¹, Leo van Iersel², Axel Janke³, Scot Kelchner⁴, Steven Kelk⁵, James O. McInerney⁶, David A. Morrison⁷, Luay Nakhleh⁸, Mike Steel⁹, Leen Stougie^{2,10}, and James Whitfield¹¹

¹Université Pierre et Marie Curie, Paris, France

²Centrum Wiskunde and Informatica, Amsterdam, The Netherlands

³Goethe University, Frankfurt am Main, Germany

⁴Idaho State University, Pocatello ID, USA

⁵Maastricht University, Maastricht, The Netherlands

⁶National University of Ireland, Maynooth, Ireland

⁷Sveriges Lantbruksuniversitet, Uppsala, Sweden

⁸Rice University, Houston TX, USA

⁹University of Canterbury, Christchurch, New Zealand

¹⁰Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

11 University of Illinois, Urbana IL, USA

Networks allow the investigation of evolutionary relationships that do not fit a tree model. They are becoming a leading tool for describing the evolutionary relationships between organisms, given the comparative complexities among genomes.

Multi-rooted fusion graph (2015)

Figure 5. Two-rooted fusion graph. This two-rooted graph was constructed using the two phylogenetic trees from Figure 4. The trees were mid-point rooted and merged using Adobe Illustrator. The two roots are marked I and II. The grey dot, labelled "Fusion node" indicates the approximate location of the fusion event. The coloured squares display the domain architecture of the genes.

Computation ISSN 2079-3197 ww.mdpi.com/journal/computation

Article

Evolution by Pervasive Gene Fusion in Antibiotic Resistance and Antibiotic Synthesizing Genes

Orla Coleman⁺, Ruth Hogan⁺, Nicole McGoldrick⁺, Niamh Rudden⁺ and James O. McInerney^{*}

Introgression

Introgression

Introgression

(日本)(日本)(日本)(日本)(日本)(日本)(日本)

イロト (日本 (日本)) 「 (日本)) (の)

-Recombinations between members of different gene families

-Recombinations between members of different gene families

-Introgression between members of distinct lineages

-Recombinations between members of different gene families

-Introgression between members of distinct lineages

They are useful when the common history of several families of taxa is unknown and/or irrelevant.

-Recombinations between members of different gene families

-Introgression between members of distinct lineages

They are useful when the common history of several families of taxa is unknown and/or irrelevant.

That's a good start!

Literature

- GS, A.-A. Popescu, M. I. Taylor, V. Moulton and K. T. Huber. OSF-BUILDER: A new tool for reconstructing and representing phylogenetic histories involving introgression, *Systematic Biology* (2019) 68(5):717-729.
- K. T. Huber, V. Moulton and GS. Forest-based networks. *Bulletin of Mathematical Biology* (2022) 84: 119.
- K. T. Huber, V. Moulton and GS. Shared ancestry graphs and symbolic arboreal maps. (submitted to *SIAM Journal on Discrete Mathematics*).
- K. T. Huber, L. van Iersel, V. Moulton and GS. Is this network proper forest-based? (submitted to *Information Processing Letters*).
- GS. Representing distance-hereditary graphs with multi-rooted trees. (submitted to *Graphs and Combinatorics*).

-Deciding whether a given multi-rooted network is forest-based is NP-hard.

-Deciding whether a given multi-rooted network is forest-based is NP-hard.

even if the network has only two roots

-Deciding whether a given multi-rooted network is forest-based is NP-hard.

even if the network has only two roots

even when restricting to forests in which the number of trees coincides with the number of roots of the network

《曰》 《圖》 《法》 《法》 [注]

Any undirected graph G is the shared-ancestry graph of some multirooted network.

Any undirected graph G is the shared-ancestry graph of some multirooted network.

If G is the shared-ancestry graph of some arboreal network N, then N has minimal number of roots and hybrid vertices.

Any undirected graph G is the shared-ancestry graph of some multirooted network.

If G is the shared-ancestry graph of some arboreal network N, then N has minimal number of roots and hybrid vertices.

G is the shared-ancestry graph of some arboreal network N if and only if G is Ptolemaic.

Any undirected graph G is the shared-ancestry graph of some multirooted network.

If G is the shared-ancestry graph of some arboreal network N, then N has minimal number of roots and hybrid vertices.

G is the shared-ancestry graph of some arboreal network N if and only if G is Ptolemaic.

In that case, such a network N can be built in polynomial time.

《曰》 《聞》 《法》 《法》 [注]

Ptolemaic graphs

G is Ptolemaic if the inequality:

 $d(u,v)d(x,y) + d(u,x)d(v,y) \ge d(u,y)d(v,x)$

holds for all vertices x, y, u, v.

Ptolemaic graphs

G is Ptolemaic if the inequality:

 $d(u,v)d(x,y) + d(u,x)d(v,y) \ge d(u,y)d(v,x)$

holds for all vertices x, y, u, v.

G is Ptolemaic if it does not contain:

イロト イロト イヨト イヨト ノロト

Summary

Applications

Multirooted networks provide an alternative to phylogenetic networks to represent complex evolutionary events (recombination, introgression, ...)

Summary

Applications

Multirooted networks provide an alternative to phylogenetic networks to represent complex evolutionary events (recombination, introgression, ...)

Theory

Multirooted networks offer a new and exciting playground to mathematicians, with connections to graph theory, combinatorics, algorithmics, ...

イロト イタト イヨト イヨト ヨー のへで

Actually...

Buffon, 1755

Actually...

Duchesne, 1766

We now have a Graph Theory Seminar Series in Leipzig!

