Guillaume Scholz

—
<
(%)
a4
Ll
>
Z
S5

Bled 2024









7T



7T



(8]

AABBDD

WHEAT GENOME

Ancient hybridizations among the
ancestral genomes of bread wheat

Thomas Marcussen,* Simen R. Sandve,'*} Lise Heier,” Manuel Spannagl,®
Matthias Pfeifer,” The International Wheat Genome Sequencing Consortium,f
Kjetill S. Jakobsen,* Brande B. H. Wulff,” Burkhard Steuernagel,”

Klaus F. X. Mayer,” Odd-Arne Olsen*
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FIG. 4. A. A graphical i part of the i distances between Ricketisiales and other
eubscteria drawn to ecale (data from 'l‘abll 4 ninllburl el al (1991)). Tezon symbols are: (A) Escherichia coli; (B) Rhodopseudomonas
palustris; (C) rubrum, i (E) Ehrlichia rullﬂl, (F) Rickettsia prowazehis; (G) Rickettsia ricketsi
H (D) Baci aph, i the inA, butrﬂhllledn!

given the same iemh Bold lines Mime links wrmpﬂwns to the splits with laton dex larger than 10 (per 1000 sites]. Taxon
symbols are as in A.

Split Decomposition: A New and Useful Approach to Phylogenetic
Analysis of Distance Data
Hans-JURGEN BANDELT* AND ANDREAs W. M. Dresst

*Mathematisches Seminar, Universitat Hamburg, D-2000 Hamburg 13, Federal Republic of Germany; and tFakultat fir Mathematik,
Universitéit Bielefeld, D-4800 Bielefeld 1, Federal Republic of Germany



Fig. 3. A reticulated tree,
or net, which might more
appropriately represent life’s
history. Martin (76), in a
review covering many of
the same topics as this
one, has presented some
striking colored represen-
tations of such patterns.
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Phylogenetic Classification and the
Universal Tree

W. Ford Doolittle



Networks: expanding evolutionary thinking
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Networks allow the of y rela-
tionships that do not fit a tree madel. They are becoming
a leading tool for describing the evolutionary relation-
ships between organisms, given the comparative com-
plexities among genomes.
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Figure 5. Two-rooted fusion graph. This two-rooted graph was constructed using the two
phylogenetic trees from Figure 4. The trees were mid-point rooted and merged using Adobe
Tlustrator. The two roots are marked I and II. The grey dot. labelled “Fusion node” indicates
the approximate location of the fusion event. The coloured squares display the domain com p u ta tio n

architecture of the genes. ISSN 2079-3197
ww.mdpi.com/journal/computation
Article

Evolution by Pervasive Gene Fusion in Antibiotic Resistance
and Antibiotic Synthesizing Genes

Orla Coleman *, Ruth Hogan *, Nicole McGoldrick ¥, Niamh Rudden * and James O. McInerney *
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Multiple-rooted networks can be used to represent:
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They are useful when the common history of several
families of taxa is unknown and/or irrelevant.



Multiple-rooted networks can be used to represent:

-Recombinations between members of different gene families
-Introgression between members of distinct lineages

They are useful when the common history of several

families of taxa is unknown and/or irrelevant.

That's a good start!
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-Deciding whether a given multi-rooted network
is forest-based is NP-hard.
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-Deciding whether a given multi-rooted network
is forest-based is NP-hard.

even if the network has only two roots

even when restricting to forests in which
the number of trees coincides with
the number of roots of the network
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Arboreal networks

Any undirected graph G is the shared-ancestry
graph of some multirooted network.

If G is the shared-ancestry graph of
some arboreal network N, then N has
minimal number of roots and hybrid vertices.

G is the shared-ancestry graph of
some arboreal network N if and only
if G is Ptolemaic.

In that case, such a network N
can be built in polynomial time.



G is Ptolemaic if the inequality:
d(u,v)d(x,y) + d(u,x)d(v,y) = d(u,y)d(v,x)

holds for all vertices x, y, u, v.



G is Ptolemaic if the inequality:

d(u, v)d(x,y) + d(u,x)d(v,y) > d(u,y)d(v,x)

holds for all vertices x, y, u, v.

G is Ptolemaic if it does not contain:

as induced subgraphs.
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Applications
Multirooted networks provide an alternative
to phylogenetic networks to represent
complex evolutionary events
(recombination, introgression, ...)



Summary

Applications
Multirooted networks provide an alternative
to phylogenetic networks to represent
complex evolutionary events
(recombination, introgression, ...)

Theory
Multirooted networks offer a new and
exciting playground to mathematicians,
with connections to graph theory,
combinatorics, algorithmics, ...



Buffon, 1755
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We now have a Graph Theory Seminar Series in Leipzig!
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