Designing Exoribonuclease resistant Riboswitches

Leonhard Sidl

39th Winterseminar Bled

Supervisor: Prof. Ivo Hofacker Dr. Michael Wolfinger

Introduction

• Exoribonuclease (XRN1) degrades RNA from 5' end

Introduction

- Exoribonuclease (XRN1) degrades RNA from 5' end
- Flaviviruses protect their 3' UTR using xrRNA

Introduction

- Exoribonuclease (XRN1) degrades RNA from 5' end
- Flaviviruses protect their 3' UTR using xrRNA
- Essential for pathogenesis of the virus
- Must be replicatable from the 3`end

Subgenomic flavivirus RNA (sfRNA)

Project Goals

- Design synthetic xrRNA
- Final goal: Design a riboswitch with a synthetic xrRNA

First Task: Characterization

- Need to understand what we want to design
- Which features are important for function?
- Two classes of xrRNA with different structures
- We know more about the first class
- Very little experimental data on the second class

MacFadden, A. et al. (2018)

Class I

- Two important pseudoknots
- Two basetriples
- Functions via a ringlike Structure which sterically blocks the XRN1
- Can be unfolded from the 3' end

Class II – What we began with

- Sequences (1-100) from 14 different spezies that contain xrRNA
- The assumtion, that the mechanism is somewhat similar to Class I

Class II – Proposed Structure

Class II – 3D Structure

Outlook – Design

- Encode known Information as Constraints in Infrared
- Start with designing simple xrRNA

Yao, Hua-Ting, et al (2023)

Outlook – Design

- Encode known Information as Constraints in Infrared
- Start with designing simple xrRNA
- Design functional Riboswitches
- Continiuous experimental evaluation

Yao, Hua-Ting, et al (2023)

Thank you for your attention

Backup

Class II – Proposed Structure

Class II – Reasons we belive in PK2

- 1. Possible in nearly every single sequence. Shows covariance
- 2. Consistent with the experimental SHAPE-Reactivity

Class II – Evolutionary Pressure

- Models that calculate a consensus tree assign each base position a change rate
- Can be interpreted as evolutioary pressure
- Consistent with both pseudoknots
- Threeway junction has low rate

Class II: Nr of Sequences

[sidl(@coridan tbfv_stk]\$	WC	-l	*.st
7	ALKV_xrRNA1.stk			
7	DTV_xrRNA1.stk			
7	DTV_xrRNA2.stk			
7	GGV_xrRNA1.stk			
7	GGV_xrRNA2.stk			
9	KFDV_xrRNA1.stk			
8	KSIV_xrRNA1.stk			
8	KSIV_xrRNA2.stk			
7	LGTV_xrRNA1.stk			
7	LGTV_xrRNA2.stk			
22	LIV_xrRNA1.stk			
21	LIV_xrRNA2.stk			
8	MPFV_xrRNA1.stk			
7	NEGV_xrRNA1.stk			
7	NEGV_xrRNA2.stk			
16	OHFV_xrRNA1.stk			
13	OHFV_xrRNA2.stk			
28	POWV_xrRNA1.stk			
52	POWV_xrRNA2.stk			
7	SGEV_xrRNA1.stk			
7	SGEV_xrRNA2.stk			
70	TBEV_xrRNA1.stk			
102	TBEV_xrRNA2.stk			
7	TYUV_xrRNA1.stk			
10	XiFV_xrRNA1.stk			
451	total	_		
[sidl@coridan tbfv_stk]\$				

Riboswitch Ligand

• Thephyllin

