Free energy calculation of modified nucleotides by molecular dynamics simulations

Thomas Spicher

TBI Vienna University of Vienna

39th Winterseminar Bled February 13, 2024

- Secondary structures can be decomposed into loops formed by adjacent pairs
- A free energy contribution is assigned to each loop

$$E(\mathcal{S}) \approx \sum_{l \in \mathcal{S}} E(l)$$

Virtually no energy parameters for modified bases (I, $\Psi,$ m6A, D, 7DA, and P)^1

¹Varenyk, Y., Spicher, T., Hofacker, I.L, Lorenz, R., "Modified RNAs and predictions with the ViennaRNA Package", Bioinformatics, Nov. 2023

Thermodynamic cycle from Transformato²

 $^{^{2}}$ Karwounopoulos et al. "Relative binding free energy calculations with transformato: A molecular dynamics engine-independent tool." Frontiers in Molecular Biosciences 9 (2022)

Thermodynamic cycle from Transformato²

• Construction of an alchemical path

$$\Delta \Delta G_{unmod \to mod} = \Delta G_{mod} - \Delta G_{unmod}$$
$$= \Delta G_{DSu \to m} - \Delta G_{SSu \to Sm}$$

 $^{^{2}}$ Karwounopoulos et al. "Relative binding free energy calculations with transformato: A molecular dynamics engine-independent tool." Frontiers in Molecular Biosciences 9 (2022)

Thermodynamic cycle from Transformato²

- Construction of an alchemical path
- Maximum common substructure

$$\Delta \Delta G_{unmod \to mod} = \Delta G_{mod} - \Delta G_{unmod}$$
$$= \Delta G_{DSu \to m} - \Delta G_{SSu \to Sm}$$

 $^{^{2}}$ Karwounopoulos et al. "Relative binding free energy calculations with transformato: A molecular dynamics engine-independent tool." Frontiers in Molecular Biosciences 9 (2022)

GC - GU

	MD	Lit	diff
GC <mark>U</mark> GC CGGCG	2.72	2.20	0.52
GCUAC CGGUG	3.10	2.30	0.80
GA <mark>U</mark> CC CUGGG	2.02	2.60	-0.58
GG <mark>U</mark> GC CCGCG	1.73	1.90	-0.17
GC <mark>U</mark> CC CGGGG	3.53	3.00	0.53
GG <mark>U</mark> AC CCGUG	2.20	2.00	0.20
GA <mark>U</mark> CC CUGGG	1.64	2.60	-0.96
GG <mark>U</mark> CC CCGGG	2.64	2.70	-0.06
GA <mark>U</mark> GC CUGCG	0.78	1.80	-1.02
GG <mark>U</mark> CC CCGGG	2.79	2.70	0.09

 $\begin{array}{l} \mathsf{RMSE} = 0.70 \\ \mathsf{std} \ \mathsf{MD} = 0.24 \\ \mathsf{std} \ \mathsf{Lit} = 0.14 \end{array}$

Modifications

Energy predictions GC - IC

	MD	Lit	diff
GCC <mark>I</mark> CGC CGGCGCG	2.41	2.05	0.36
GCG <mark>I</mark> CGC CGCCGCG	2.44	2.19	0.25
GCG <mark>I</mark> GGC CGCCCCG	2.71	1.75	0.96
GCU <mark>I</mark> UGC CGACACG	2.43	2.32	0.11
GCG <mark>I</mark> AGC CGCCUCG	2.39	1.90	0.49
GCU <mark>I</mark> CGC CGACGCG	2.32	2.65	-0.33
GCU <mark>I</mark> GGC CGACCCG	2.63	2.21	0.42
GCA <mark>I</mark> CGC CGUCGCG	1.84	2.04	-0.20
GCA <mark>I</mark> GGC CGUCCCG	2.08	1.60	0.48
GCA <mark>I</mark> UGC CGUCACG	1.68	1.71	-0.03
GCC <mark>I</mark> AGC CGGCUCG	2.29	1.76	0.53
GCG <mark>I</mark> UGC CGCCACG	1.97	1.86	0.11
GCCIUGC CGGCACG	2.43	1.72	0.71

 $\begin{array}{l} \mathsf{RMSE} = 0.47 \\ \mathsf{std} \ \mathsf{MD} = 0.23 \\ \mathsf{std} \ \mathsf{Lit} = 0.55 \end{array}$

Energy predictions GU - IU

	MD	Lit	diff
GCCIAGC CGGUUCG	0.94	2.36	-1.42
GCCICGC CGGUGCG	1.27	2.10	-0.83
GCUIGGC CGAUCCG	1.33	2.25	-0.92
GCUICGC CGAUGCG	1.34	2.84	-1.50
GCGIGGC CGCUCCG	1.57	1.04	0.53
GCCIUGC CGGUACG	0.95	1.53	-0.58
GCUIUGC CGAUACG	1.18	2.27	-1.09
GCGIAGC CGCUUCG	1.65	1.89	-0.24
GCGICGC CGCUGCG	1.60	1.63	-0.03
GCGIUGC CGCUACG	1.42	1.06	0.36
GCAIAGC CGUUUCG	1.55	1.92	-0.37
GCAIUGC CGUUACG	1.33	1.09	0.24
GCAIGGC CGUUCCG	0.98	1.07	-0.09

 $\begin{array}{l} \mathsf{RMSE} = 0.85\\ \mathsf{std} \ \mathsf{MD} = 0.23\\ \mathsf{std} \ \mathsf{Lit} = 0.56 \end{array}$

Energy parameters Inosine

 $\begin{aligned} \mathsf{RMSE} &= 0.48\\ \mathsf{IC} \; \mathsf{RMSE} &= 0.37\\ \mathsf{IU} \; \mathsf{RMSE} &= 0.58 \end{aligned}$

Common Core U to Ψ

Ongoing Work

- Implementation for the Amber forcefield instead of Charmm
- Analysis of the common core
 - Base pair distances
 - Energy differences between the two CC states
- Construction of the common core

Conclusion and Outlooks

- Promising results with Inosine
- \bullet New NN parameters predicted for $I \bullet C$ and $I \bullet U$ next to $G \bullet U$
- Pipeline for NN parameters with modifications
- Not only stacking base pairs, but also larger loops

Acknowledgments

Ivo Hofacker Ronny Lorenz Yuliia Varenyk Stefan Boresch Johannes Karwounopoulos

The whole TBI team

Thank you for your attention

Base pair distances GC - GU

	MD	Lit	diff
GA <mark>U</mark> GC CUGCG	0.78	1.80	-1.02
GG <mark>U</mark> CC CCGGG	2.79	2.70	0.09

