Atom-Atom Maps and Electron Pushing Diagrams

Peter F. Stadler

Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics,

Leipzig University

The Santa Fe Institute (external faculty)

Max Planck Institute for Mathematics in the Sciences, Leipzig Institute for Theoretical Chemistry, Univ. of Vienna (external faculty) Center for non-coding RNA in Technology and Health, Copenhagen, DK Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, COL

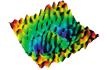
joint work with Christoph Flamm & Stefan Müller

Bled, Feb 12-17 2024

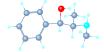
Chemical Networks

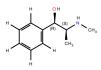
1/13

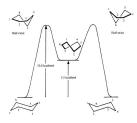
Chemical Reactions



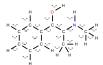
$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$


 $A + 2B \rightarrow C + 2D$


Levels of Abstraction in Chemistry



Potential energy surface

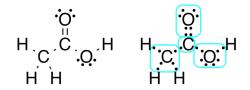


Reaction coordinate

 $L \leftarrow K \rightarrow R$

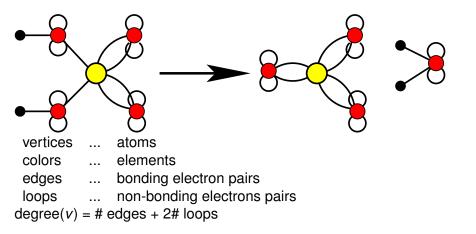
Peter F. Stadler

Chemical Networks

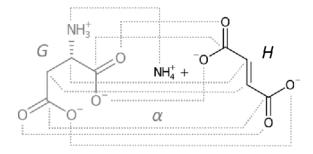

Bled, Feb 12-17 2024 3/13

- Not every directed hypergraph is a "chemical" reaction network
- Necessary conditions:
 - every reaction preserves mass \iff there is strictly positive reaction invariant mS=o
 - no directed cycles of forward reactions, i.e., Sv=o implies $\textbf{v}\not > \textbf{o}$
- in this case there is a representation of the reactants as Lewis structures

Different compounds can have the same atomic composition,


... different Isomers have the same sum formula but different structural formulas.

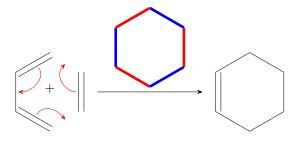
Lewis formulas: represent atoms and all outer-shell electrons



 \implies labeled multigraphs

Reactions a Lewis structures

Mechanistic Level: Atom-Atom Maps


The atom-atom map of a reaction is the bijection between educt and product graph that preserves atom types.

In Lewis formulas, the vertex degree is defined by the atom types.

 \implies Atom-atom maps preserve vertex degrees

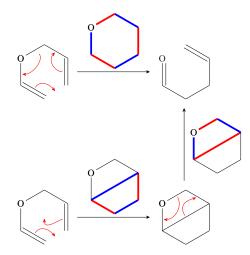
ITS graphs

obtained by gluing together product and educt graph along the atom-atom map (and marking changes in bond orders)

In the simplest case: EPD corresponds to a cycle with alternating increase and decrease of the bond order Difference graph: restriction of ITS graph to edges with changing bond orders.

For a vertex x let $d_+(x)$ and $d_-(x)$ be the number of bonds whose order increases and descreases, respectively.

Lemma

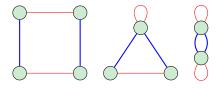

The difference graph of every atom-atom map satisfies $d_+(x) = d_-(x)$ at each vertex *x*.

Theorem

Every difference graph of an atom-atom map is the edge-disjoint union of closed alternating walks.

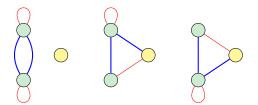
The proof parallels the proof of the famous Euler bridge theorem. Every alternating closed walk can be interpreted as a cyclic electron punishing diagram

Subdivision of long electron pushing cycles



Claisen rearrangement of vinyl-allyl ethers. The 6-cyclic imaginary transition state can be decomposed into two 4-cyclic imaginary transition states.

Peter F. Stadler


Chemical Networks

Subdivision of long electron pushing cycles

Lemma

Every alternating closed walk can be decomposed into a sequence of alternating closed walks of length 4.

The unrealistic 4-walk can be explained by two steps with a catalyst.

Peter F. Stadler

Chemical Networks

11/13

Theorem

Every atom-atom-map can be explained by a sequence of short electron punishing diagrams. Moreover, each step may be restricted to an elementary reaction comprising no more than 2 educts and products.

The existence of a "chemically reasonable" reaction mechanism therefore does not impose additional restrictions on the realizability of chemical reactions networks. Is this still true when electron pushing requires some sort of a charge gradient?