MATOMC Unlocking network scalability in communities The coarse graining concept in metabolic modeling

Rupert Tscheliessnig, Branko Ristivojcevic, Xtof Flamm, 12. February 2024

Mathematical Modelling for Microbial Community Induced Metabolic Diseases

Treatment-related interventions that change the structure and composition of gut bacteria among individuals.

Combining metabolic modeling techniques with experimental cultivation of microbiomes of different complexity, to design stable microbial communities for therapeutic use. 2

First approach

For systematic coarse graining (lump the networks)

MICOM , a customizable metabolic model of the human gut

microbiome. <u>COMETS</u> on stoichiometric modeling of individual

microbial species, and on a discrete approximation of convection

diffusion equations (Cobrapy).

Complement <u>ecmtool</u> by the Python Community metabolic Modelling

package, **PyCoMo** and benchmark against memory-efficient

enumeration of elementary conversion modes.

Why ECMs

But identifying ECMs is network dependent

Identification of the main routes in metabolic modeling of microbial community interactions. The **current golden standard** ist the computation of **ECMs**. Cells have orders of magnitude fewer ECMs than flux routes (EFMs)

The number of elementary conversion modes in the e_coli_core model37 reduces from 100,274 EFMs to 689 ECMs.

Clement, Tom J., Erik B. Baalhuis, Bas Teusink, Frank J. Bruggeman, Robert Planqué, and Daan H. De Groot. "Unlocking Elementary Conversion Modes: Ecmtool Unveils All Capabilities of Metabolic Networks." *Patterns* 2, no. 1 (January 2021): 100177. <u>https://doi.org/10.1016/j.patter.2020.100177</u>.

Identifying Elementary Conversion Modes (ECM) Formally, it is a Fourier-Motzkin elimination method

To eliminate a metabolite, we can rewrite the constraints in terms of the metabolite. (10+5y-4z)

$$S_{i,j} \cdot v_j \leq 0 \begin{cases} 2x - 5y + 4z \leq 10 \\ 3x - 6y + 3z \leq 9 \\ -x + 5y - 2z \leq -7 \\ -3x + 2y + 6z \leq 12 \end{cases} \begin{cases} x \leq \frac{10 + 5y - 4z}{2} \\ x \leq \frac{9 + 6y - 3z}{3} \\ x \geq 7 + 5y - 2z \\ x \geq \frac{-12 + 2y + 6z}{3} \end{cases} \begin{cases} 7 + 5y - 2z \leq \frac{10 + 5y - 4z}{2} \\ 7 + 5y - 2z \leq \frac{9 + 6y - 3z}{3} \\ \frac{-12 + 2y + 6z}{3} \leq \frac{10 + 5y - 4z}{2} \\ \frac{-12 + 2y + 6z}{3} \leq \frac{9 + 6y - 3z}{3} \end{cases}$$

How to decide which metabolite should be taken out as the algorithm produces many unnecessary constraints (constraints that are implied by complement). Constraints can be minimised using FBA.

The annotation problem

8 communities and their missing annotations.

Good and bad

Anaerostipes_caccae_DSM_14662 Anaerostipes_caccae_DSM_14662_NBmod Bifidobacterium_longum_NCC2705 Blautia_producta_DSM_2950 Clostridium_butyricum_DSM_10702 Clostridium_ramosum_VPI_0427_DSM_1402 Lactobacillus_plantarum_subsp_plantarum_ATCC_14917

From 6 species max. 5 metabolites are not *annotated*, only. However approx. 300 metabolites are annotated by a single reference, poorly Bacteroides_thetaiotaomicron_VPI_5482 Escherichia_coli_str_K_12_substr_MG1655 Escherichia coli str K 12 substr MG1655*

From 2 species 236 metabolites missing, but only 40 of these are not seed or sink metabolites

Solving the annotation issue, web crawling

The annotation of "2,3-dihydroxybenzoate"

{9, {{"23dhb[c]", "2,3-dihydroxybenzoate"},

{"bigg.metabolite" -> "23dhb", "chebi" -> "CHEBI:18026", "hmdb" ->
"HMDB0000397", "inchi" -> "InChI=1S/C7H6O4/
c8-5-3-1-2-4(6(5)9)7(10)11/h1-3,8-9H,(H,10,11)/p-1",
"kegg.compound" -> "C00196", "metanetx.chemical" -> "MNXM455",
"pubchem.compound" -> "19", "sbo" -> {"SBO:0000247"},"seed.compound" ->
"cpd00168"}}

Annotations - structrecon

The metabolite: "2,3-dihydroxybenzoate"

Annotations - structrecon

The metabolite: "1-oh-midazolam-glucuronide"

In	put identifiers
۲	List of identifiers
	Automatically infer v Identifier type
	1-oh-midazolam- glucuronide
0	Upload list of identifiers
	Automatically infer v Identifier type
	Durchsuchen Keine Datei ausgewählt.
0	Upload SBML file
	Durchsuchen Keine Datei ausgewählt.
0	Upload JSON file
	Durchsuchen Keine Datei ausgewählt.
	Submit query Clear form

Result			1-oh-midazolam-glucuronide: compound details		
Return to input form	ownload output as zip Download response	e as JSON	Identifier graph		
Input mapping					
Click on a row in the list to	display the associated identifier graph and statis	tics.	INPUT		
Compound	Result	Conf.	1-oh-midazolam-glucuronide		
1-oh-midazolam- glucuronide	No structures found.		View in full screen Save as SVG		

Solving the annotation issue, web crawling

Combine Google PubChem for the annotation

"1-oh-midazolam-glucuronide" // useGooglePubChem[]

"midazolam-glucuronide", "Mdz-glucuronide"

Formula	C ₂₄ H ₂₁ ClFN ₃ O ₇
PubChemCompoundID	{PubChem compound 133640}
PubChemSynonyms	{ ₂₁ }
InChI	InChI=1S/C24H21CIFN3O7/c25-11-5-6-16-14(7-11)18(13-3-1-2-4-15(13)26)28-9-12-8-27-17(29(12)
CanonicalSMILES	O=C(0)C1OC(OCc2ncc3n2-c2ccc(Cl)cc2C(c2cccc2F)=NC3)C(0)C(0)C10

Annotations-structrecon

The metabolite: "1-oh-midazolam-glucuronide"

Result	
Return to input form	Download output as zip Download response as JSON
Input mapping	
Click on a row in the list to	display the associated identifier graph and statistics.
Compound	Result Conf.
	c25-11-5-6-16-14(7-11)18(13-3-1-2-4-15(13)26)28-9 -12-8-27-17(29(12)16)10-35-24-21(32)19(30)20(31) 22(36-24)23(33)34h1-8,19-22,24,30-32H,9-10H2, (H,33,34)
H _o	

Annotations — structrecon

The metabolite: "3-hydroxymorphinan o-glucuronide"

mm

Communities detection

Tagging the reactions

 $\left\{ \left\{ 2 \text{3dhmp} \stackrel{(c)[c]}{\longrightarrow} 3 \text{3mop}, 2 \text{6dap}_{\text{LL}} \stackrel{(c)[c]}{\longrightarrow} g \text{lu}_{\text{L}}, 2 \text{6dap}_{\text{LL}} \stackrel{(c)[c]}{\longrightarrow} \text{thdp}, 2 \text{abbut} \stackrel{(c)[c]}{\longrightarrow} 3 \text{3mop}, \text{tyr}_{\text{L}} \stackrel{(c)[c]}{\longrightarrow} \text{dad}_{\text{S}}, \text{tyr}_{\text{L}} \stackrel{(c)[c]}{\longrightarrow} \text{imgly}, \text{tyr}_{\text{L}} \stackrel{(c)[c]}{\longrightarrow} \text{met}_{\text{L}}, \text{tyr}_{\text{L}} \stackrel{(c)[c]}{\longrightarrow} \text{tyr}_{\text{L}}, \frac{(c)[c]}{\longrightarrow} \text{tyr}_{\text{L}}, \frac{(c)[c]}$

"[e]", "[c]", and "[p]" give the **compartmentalization** within biological systems or models, especially in the context of metabolic pathways:"[e]" extracellular space or environment, "[c]" cytosol or cytoplasmic compartment, and "[p]" periplasmic space

Identify clusters of metabolites (without hub metabolites) form clusters of reactions (lumping) identify exchange metabolites

Communities detection

Splitting the reactions, workflow by Hatzimanikatis [1]

Communities design

Splitting the reactions, workflow by Hatzimanikatis [1]

Carbohydrate metabolism:

Glycolysis/gluconeogenesis (Gg)

Pentose phosphate pathway (**PPP**)

<u>Central metabolism:</u> the titric acid cycle (**TCA**)

Anaplerotic cycles are all MP that replenish the supply of intermediates in TCA cycle, and are crucial for maintaining adequate levels of TCA cycle metabolites. Anaplerotic cycles ensure the continuous operation of the TCA.

Communities detection

Pentose phosphate pathway (PPP) for 3 species

Colors indicate different reactions communities, only!

Outlook

Integration fo the redHUMAN workflow by Hatzimanikatis [1]

Thermodynamic Curation: Estimating Gibbs free energy to define reaction directionality.

Subsystem Selection: Choosing relevant metabolic processes for the study.

Network Expansion: Connecting initial subsystems to form a core metabolic network.

Extracellular Medium Connection: Linking extracellular medium components to the network.

Biosynthetic Reaction Generation: Identifying pathways for biomass building blocks.

Data Integration and Consistency Checks: Integrating experimental data and verifying model consistency.

https://www.yworks.com/products/yed/download

https://fluxer.umbc.edu/

[1] https://doi.org/10.1038/s41467-020-16549-2

Take home message

Begin with simplicity, since complexity will **naturally** evolve on its own.

Acknowldegment

MATOMIC

Rupert Tscheliessnig, Branko Ristivojcevic, Xtof Flamm ... the Matomic @, & the TBI