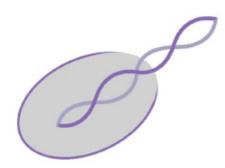
# Stoichiometric mechanisms for oscillations and multistability in reaction networks

Nicola Vassena







UNIVERSITÄT LEIPZIG

# 2<sup>1</sup>/<sub>2</sub> preventive apologies

#### • MOST OF THE ARGUMENTS ARE IMPRECISE

#### • MOST OF THE ARGUMENTS ARE INCOMPLETE

... the pictures are a bit random

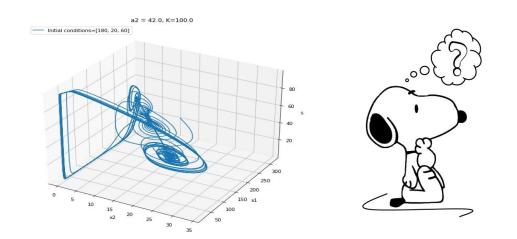


# Motivation:

#### FIND

# UNIVERSAL STOICHIOMETRIC PATTERNS FOR COMPLEX DYNAMICS

"UNIVERSAL" = VALID FOR ANY SIZE OF NETWORK "COMPLEX DYNAMICS" = Multistability, Superlinear growth, Oscillations



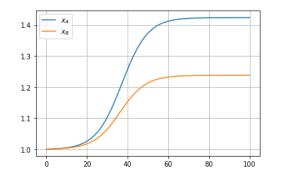


## MULTISTABILITY "=>" SUPERLINEAR GROWTH

Ingredient: unstable manifold thoerem

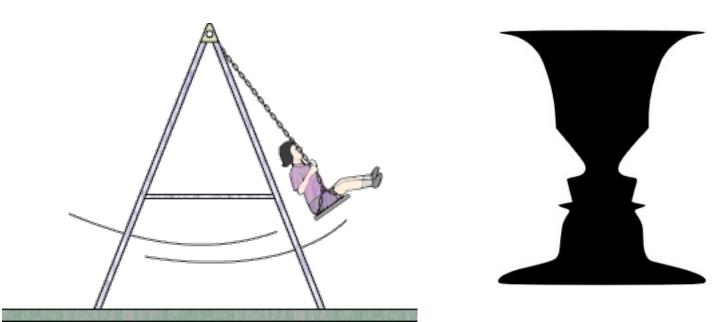
Multistability =>

unstable steady state connected to stable steady state => Superlinear divergence from unstable steady state with sublinear convergence to the stable steady state =>



# Two mechanisms

# RECEIPT 1:Oscillations and MultistabilityRECEIPT 2:Oscillations

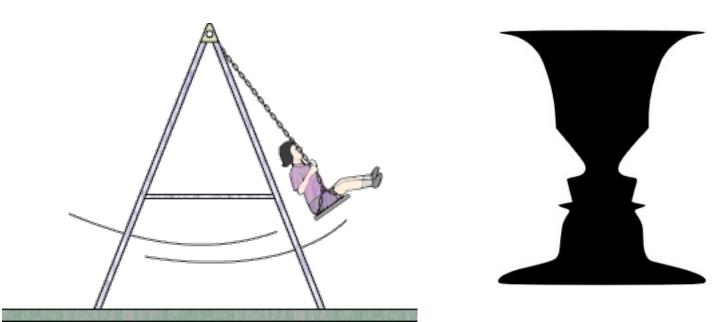


References (2023): 1. Symbolic Hunt ...

2. [With Peter] Unstable Cores ...

WARNING! Multistability vs Multistationarity Stable oscillations?

# RECEIPT 1:Oscillations and MultistabilityRECEIPT 2:Oscillations



References (2023):1. Symbolic Hunt ...

2. [With Peter] Unstable Cores ...

# **RECEIPT 1** for Oscillations and Multistability

#### START WITH A SQUARE STOICHIOMETRIC SUBMATRIX WITH NEGATIVE DIAGONAL AND DETERMINANT OF UNSTABLE SIGN

# $\begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$

"Determinant of unstable sign"=odd number of eigenvalues with positive real part (unstable core)(unstable positive feedback)(autocatalytic core) Eigenvalues: -1.66+0.56i, -1.66+0.56i, 0.32

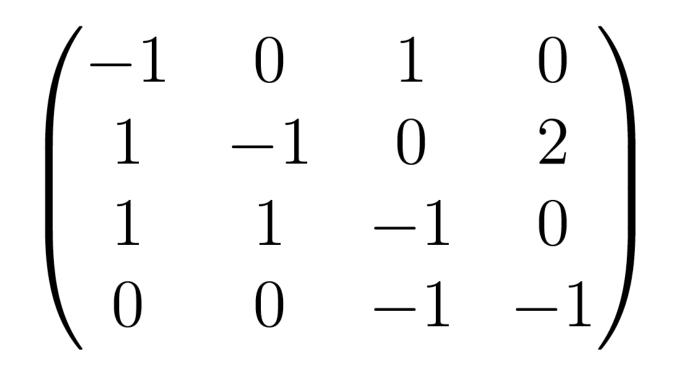
# Dichotomy

Is such unstable `positive-feedback' a principal submatrix of a Hurwitz-stable stoichiometric submatrix with negative diagonal?

## Yes. OSCILLATIONS

## No. MULTISTATIONARITY

# Dichotomy. Yes. OSCILLATIONS



Eigenvalues: -0.34+0.56i, -0.34-0.56i, -1, -2.32

# Dichotomy. No. Multistationarity.

$$\begin{pmatrix} -1 & 0 & 1 & 0 & 0 & \dots & 0 \\ 1 & -1 & 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & -1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & -1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & -1 & \dots & 0 \\ 0 & 0 & 0 & 0 & 0 & \dots & -1 \end{pmatrix}$$

# Dichotomy. No. Multistationarity.

"Papers" generalization:

Maximal unstable positive feedback

+

stable steady-state

<=>

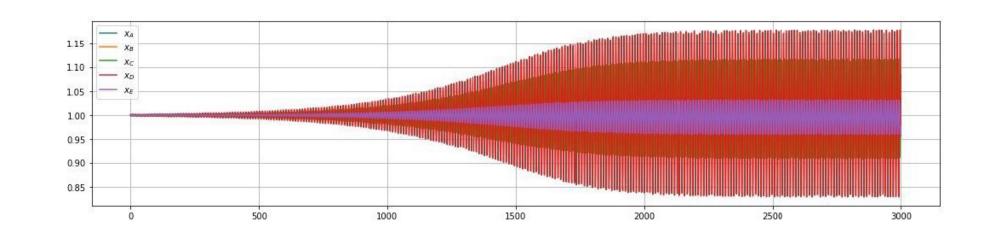
multistationarity

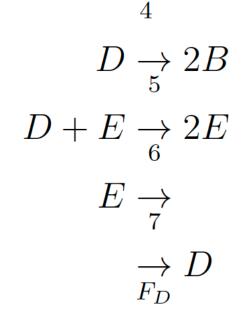
|                                                              | J                                                                                                                                             |                                    |                                         |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|--|--|
|                                                              | Contents lists available at SciVers                                                                                                           | e ScienceDirect                    | athematical<br>Biosciences              |  |  |
|                                                              | Mathematical Bios                                                                                                                             | ciences                            |                                         |  |  |
| ELSEVIER                                                     | journal homepage: www.elsevie                                                                                                                 | r.com/locate/mbs                   |                                         |  |  |
|                                                              |                                                                                                                                               |                                    |                                         |  |  |
| Concordant                                                   | chemical reaction networks                                                                                                                    |                                    |                                         |  |  |
| Guy Shinar <sup>a,1</sup> , Martin Feinberg <sup>b,*,2</sup> |                                                                                                                                               |                                    |                                         |  |  |
|                                                              | Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel<br>partment of Chemical & Biomolecular Engineering and Department of Mathe | matics, Ohio State University, 140 | W. 19th Avenue, Columbus, OH 43210, USA |  |  |
| SIAM Journal on Applied Dyna                                 | mical Systems → Vol. 15, Iss. 2 (2016) → 10.1137/15M1034441                                                                                   |                                    |                                         |  |  |
|                                                              |                                                                                                                                               |                                    |                                         |  |  |
| Some Results                                                 | on Injectivity and Multistationarit                                                                                                           | v in Chemical                      |                                         |  |  |
| Reaction Net                                                 |                                                                                                                                               | y in enemeat                       |                                         |  |  |
| Authors: Murad Banaji and                                    | Casian Pantea <u>AUTHORS INFO &amp; AFFILIATIONS</u>                                                                                          |                                    |                                         |  |  |
| SIAM J. APPLIED DYN<br>Vol. 22, No. 3, pp. 163               |                                                                                                                                               | c) 2023 Society for Industria      | al and Applied Mathematics              |  |  |
| · · · ·                                                      |                                                                                                                                               |                                    |                                         |  |  |
| Structura                                                    | l Conditions for Saddle-Node Bifurca<br>Networks <sup>*</sup>                                                                                 | ations in Chemic                   | cal Reaction                            |  |  |
|                                                              | Nicola Vassena <sup>†</sup>                                                                                                                   |                                    |                                         |  |  |

Example for receipt 1.
$$A \rightarrow B + C$$
 $B \rightarrow C$  $B \rightarrow C$  $C + D \rightarrow A$  $C + D \rightarrow A$  $C \rightarrow E$  $C \rightarrow E$  $D \rightarrow 2B$  $D + E \rightarrow 2E$  $E \rightarrow 7$  $C \rightarrow D$  $F_D$ REFERENCE: "Symbolic Hunt..."  
non autocatalytic version in "Unstable cores..." (with Peter)

#### Example for receipt 1: Oscillations $A \xrightarrow{1} B + C$ **CONTAINS:** $B \xrightarrow{2} C$ A -> B + C $C + D \xrightarrow{3} A$ B -> C $C+D \rightarrow A$ $C \xrightarrow[]{4} E$ D -> 2B $D \xrightarrow{5} 2B$ Stoichiometrically our $D + E \xrightarrow[6]{} 2E$ $\begin{pmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & -1 & -1 \end{pmatrix}$ $E \xrightarrow[7]{7}$ $\xrightarrow{F_D} D$

$$\begin{array}{ccc}
A \to B + C \\
1 & B \to C \\
2 & C \\
C + D \to A \\
C \to E
\end{array}
\left\{ \begin{array}{c}
\dot{x}_A = -r_1(x_A) + r_3(x_C, x_D) \\
\dot{x}_B = r_1(x_A) - r_2(x_B) + 2r_5(x_D) \\
\dot{x}_B = r_1(x_A) - r_2(x_B) + 2r_5(x_D) \\
\dot{x}_C = r_1(x_A) + r_2(x_B) - r_3(x_C, x_D) - r_4(x_C) \\
\dot{x}_D = -r_3(x_C, x_D) - r_5(x_D) - r_6(x_D, x_E) + F_D \\
\dot{x}_E = r_4(x_C) + r_6(x_D, x_E) - r_7(x_E)
\end{array}
\left. \begin{array}{c}
 x_1 \\
 r_2(x_B) \\
 r_3(x_C, x_D) \\
 r_5(x_D) \\
 r_5(x_D) \\
 r_7(x_E) \\
 F_D
\end{array} \right\} = \begin{pmatrix}
 2x_A \\
 8\frac{x_B}{1+x_B} \\
 8\frac{x_C x_D}{1+x_D} \\
 8\frac{x_C x_D}{1+x_D} \\
 2\frac{x_D}{1+x_D} \\
 x_E = r_4(x_C) + r_6(x_D, x_E) - r_7(x_E)
\end{array}\right. = \begin{pmatrix}
 2x_A \\
 8\frac{x_B}{1+x_B} \\
 8\frac{x_C x_D}{1+x_D} \\
 2\frac{x_D}{1+x_D} \\
 72\frac{x_D}{1+x_D} \\
 72\frac{x_D}{1+x_D} \\
 512\frac{x_D}{1+6x_D} \frac{x_E}{1+3x_E} \\
 72\frac{x_D}{1+11x_E} \\
 512\frac{x_D}{1+6x_D} \\
 512\frac{x_D}{1+11x_E} \\$$



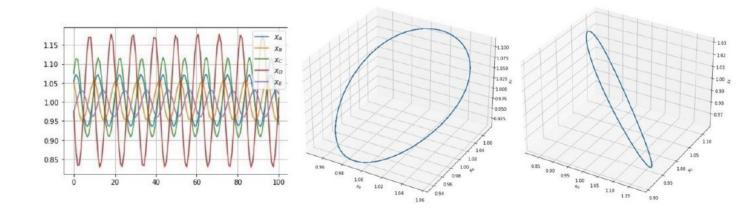


$$\begin{array}{ccc}
A \to B + C \\
1 & B + C \\
P \to C \\
2 & C \\
C + D \to A \\
C \to E
\end{array}
\left\{ \begin{array}{c}
\dot{x}_A = -r_1(x_A) + r_3(x_C, x_D) \\
\dot{x}_B = r_1(x_A) - r_2(x_B) + 2r_5(x_D) \\
\dot{x}_B = r_1(x_A) - r_2(x_B) + 2r_5(x_D) \\
\dot{x}_C = r_1(x_A) + r_2(x_B) - r_3(x_C, x_D) - r_4(x_C) \\
\dot{x}_D = -r_3(x_C, x_D) - r_5(x_D) - r_6(x_D, x_E) + F_D \\
\dot{x}_E = r_4(x_C) + r_6(x_D, x_E) - r_7(x_E)
\end{array}
\left. \begin{array}{c}
r_1(x_A) \\
r_2(x_B) \\
r_3(x_C, x_D) \\
r_4(x_C) \\
r_5(x_D) \\
r_6(x_D, x_E) \\
r_7(x_E) \\
F_D
\end{array} \right\} = \left( \begin{array}{c}
2x_A \\
8\frac{x_Ex_B}{1+x_B} \\
r_7(x_E) \\
F_D
\end{array} \right) = \left( \begin{array}{c}
8x_B \\
8\frac{x_Ex_B}{1+x_B} \\
8\frac{$$

 $\begin{array}{c} D \xrightarrow[]{5}{5} 2B \\ D + E \xrightarrow[]{6}{2} 2E \end{array}$ 

 $E \xrightarrow[7]{7}$ 

 $\xrightarrow{F_D} D$ 



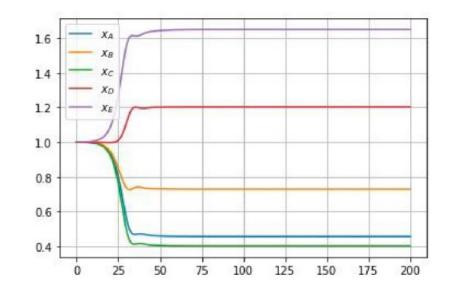
#### Example for receipt 1: Multistationarity $A \xrightarrow{1} B + C$ $B \xrightarrow{2} C$ **CONTAINS:** $C + D \xrightarrow{3} A$ $\det \begin{pmatrix} -1 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 2 & 0 \\ 1 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = 1$ $A \rightarrow B + C$ $C \xrightarrow{4} E$ B -> C C+ D -> A $D \xrightarrow{5} 2B$ D -> 2B E+2D -> 2E $D + E \xrightarrow[6]{} 2E$ Stoichiometrically maximal unstable positive feedback. $E \xrightarrow[7]{7}$

 $\rightarrow_{F_D} D$ 

# Example for receipt 1: Multistationarity

$$\begin{array}{c} A \xrightarrow{} H + C \\ 1 \\ B \xrightarrow{} C \\ 2 \\ C + D \xrightarrow{} 3 \\ C \xrightarrow{} 4 \end{array} \left\{ \begin{array}{c} \dot{x}_A = -r_1(x_A) + r_3(x_C, x_D) \\ \dot{x}_B = r_1(x_A) - r_2(x_B) + 2r_5(x_D) \\ \dot{x}_B = r_1(x_A) - r_2(x_B) + 2r_5(x_D) \\ \dot{x}_C = r_1(x_A) + r_2(x_B) - r_3(x_C, x_D) - r_4(x_C) \\ \dot{x}_D = -r_3(x_C, x_D) - r_5(x_D) - r_6(x_D, x_E) + F_D \\ \dot{x}_E = r_4(x_C) + r_6(x_D, x_E) - r_7(x_E) \end{array} \right. \\ \left. \begin{array}{c} \left( \begin{array}{c} r_1(x_A) \\ r_2(x_B) \\ r_3(x_C, x_D) \\ r_4(x_C) \\ r_5(x_D) \\ r_6(x_D, x_E) \\ r_7(x_E) \\ F_D \end{array} \right) = \left( \begin{array}{c} \left( \begin{array}{c} \frac{4 \frac{x_A}{1+x_A}}{1+x_B} \\ 16 \frac{x_B}{1+3x_B} \\ 8 \frac{x_C}{1+x_C} \frac{x_D}{1+x_D} \\ 8 \frac{x_C}{1+x_C} \frac{x_D}{1+x_D} \\ 8 \frac{x_C}{1+x_C} \frac{x_D}{1+x_D} \\ 8 \frac{x_C}{1+x_C} \frac{x_D}{1+x_D} \\ r_7(x_E) \\ r$$

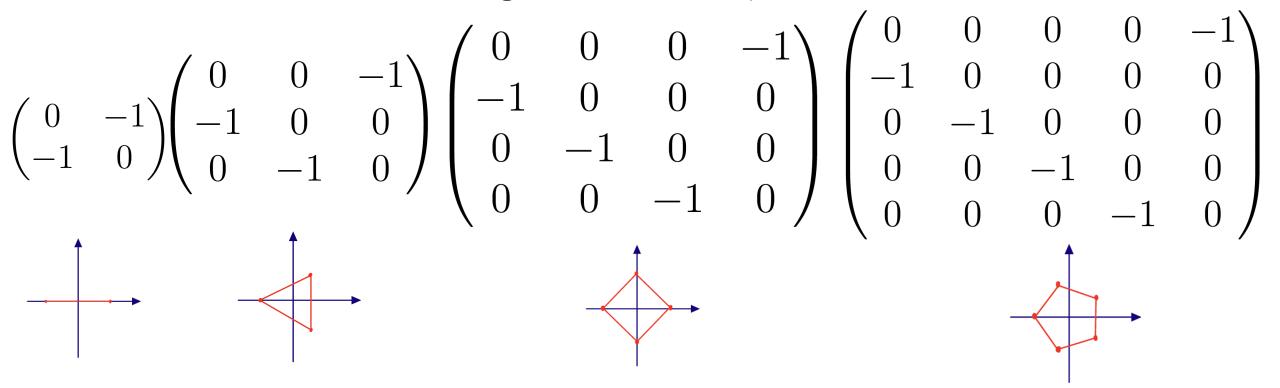
 $D \xrightarrow{5} 2B$  $D + E \xrightarrow{6} 2E$  $E \xrightarrow{7}$  $\xrightarrow{F_D} D$ 



# **RECEIPT 2 for Oscillations**

# **RECEIPT 2 for Oscillations**

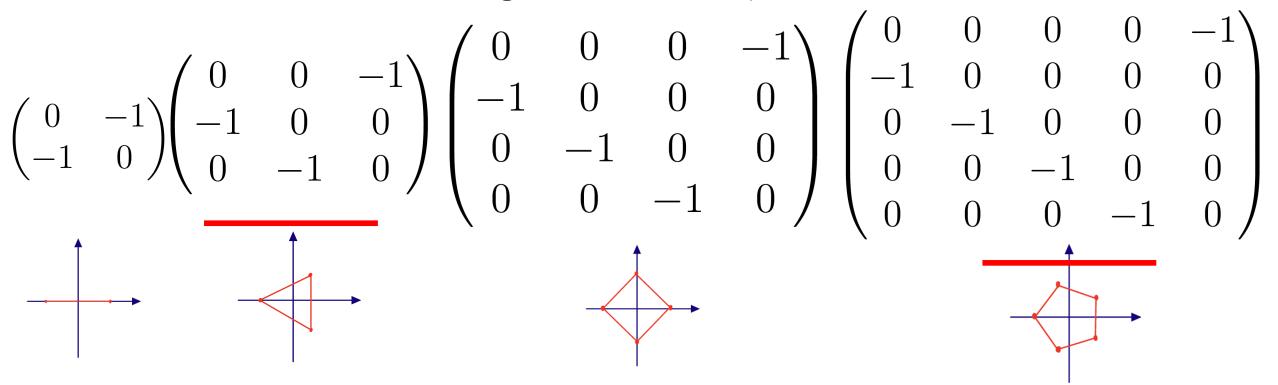
Negative-feedback cycles:



Look for even number of eigenvalues with positive real part (odd length!) Possible network with such cycles (perhaps with degradations) oscillate

# **RECEIPT 2 for Oscillations**

Negative-feedback cycles:



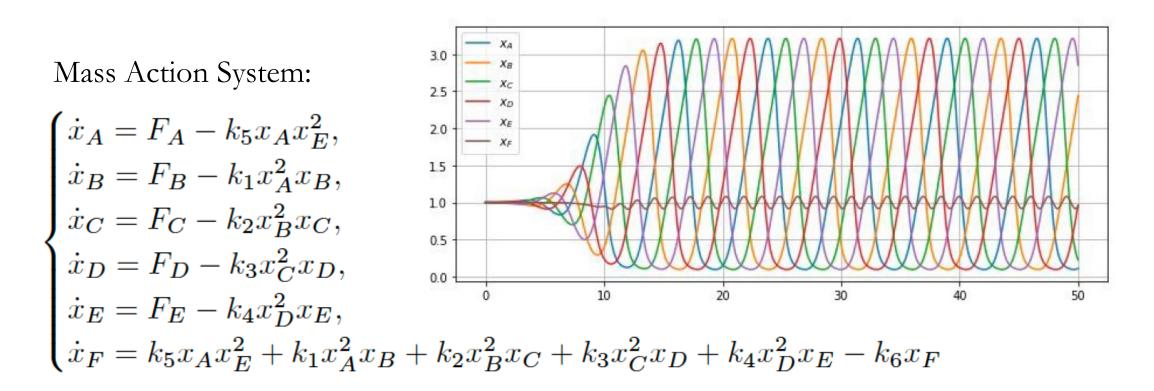
Look for even number of eigenvalues with positive real part (odd length!) Possible network with such cycles (perhaps with degradations) oscillate

 $2A+B \underset{\scriptscriptstyle 1}{\rightarrow} 2A+F$  $2B + C \xrightarrow{2} 2B + F$  $2C + D \xrightarrow{3} 2C + F$  $2D + E \xrightarrow[4]{} 2D + F$  $2E + A \xrightarrow{5} 2E + F$  $F \xrightarrow[6]{6}$ 

| $2A + B \xrightarrow{1} 2A + F$   | $\xrightarrow[F_A]{} A$         |
|-----------------------------------|---------------------------------|
| $2B + C \xrightarrow{2} 2B + F$   | $\xrightarrow[F_B]{} B$         |
| $2C + D \xrightarrow{3} 2C + F$   | $\xrightarrow{F_C} C$           |
| $2D + E \xrightarrow[4]{} 2D + F$ | $\underset{F_D}{\rightarrow} D$ |
| $2E + A \xrightarrow[5]{} 2E + F$ | $\xrightarrow[F_E]{} E$         |
| $F \xrightarrow[6]{6}$            |                                 |

| $2A + B \xrightarrow{1} 2A + F$   | $\xrightarrow[F_A]{} A$ | It contains negative feedback cycle:                                                                                                         |
|-----------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| $2B + C \xrightarrow{2} 2B + F$   | $\xrightarrow[F_B]{} B$ | $\begin{pmatrix} 0 & 0 & 0 & 0 & -1 \end{pmatrix}$                                                                                           |
| $2C + D \xrightarrow{3} 2C + F$   | $\xrightarrow[F_C]{} C$ | $ \begin{pmatrix} 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \end{pmatrix} $ |
| $2D + E \xrightarrow[4]{} 2D + F$ | $\xrightarrow[F_D]{} D$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                         |
| $2E + A \xrightarrow{5} 2E + F$   | $\xrightarrow[F_E]{} E$ | $\begin{pmatrix} 0 & 0 & 0 & -1 & 0 \end{pmatrix}$                                                                                           |
| $F \xrightarrow[6]{6}$            |                         |                                                                                                                                              |

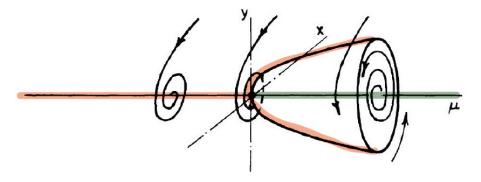
REFERENCE: "Unstable cores..." (with Peter)



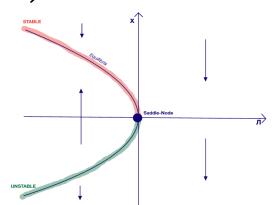
 $(k_1, k_2, k_3, k_4, k_5, k_6, F_A, F_B, F_C, F_D, F_E) = (1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1)$ 

# **Tool: Bifurcation theory**

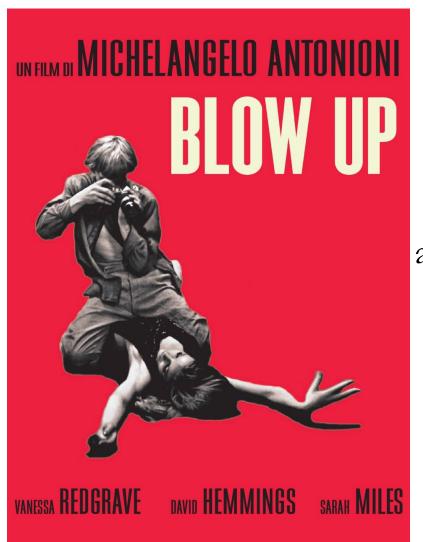
## Hopf bifurcation for Oscillations



Saddle-node (at present) bifurcation for Multistationarity



# How to make the small pattern dominant?



#### **TUNE PARAMETERS!**

Always possible with non-elementary kinetics as Michaelis-Menten/Hill/Generalized Mass Action ("parameter-rich": see Definition with Peter)

More difficult with mass action!

# GRAZIE PER L'ATTENZIONE!

