

TACSY Training Alliance for Computational systems

Synthesis Rebalancing Framework

chemistry

Tieu-Long Phan & Klaus Weinbauer

Date: 13.02.2024

Founded by the European Union

This project has received funding from the European Unions Horizon 2021 research and innovation programme under the Marie-Skłodowska-Curie grant agreement No 101072930

INTRODUCTION

RESULT-DISCUSSION

CONCLUSION

01

Introduction

Trends in Chemistry

Wang, G., Ang, H. T., Dubbaka, S. R., O'Neill, P., & Wu, J. (2023). Multistep automated synthesis of pharmaceuticals. Trends in Chemistry.

INTRODUCTION

METHOD

/ RE

RESULT-DISCUSSION

CONCLUSION

Insufficient data

Bad data = Bad model

(bad data can mess up how companies decide things)

Incorrect algorithm selection Incorrect hyperparameter tuning Incorrect model deployment Wrong evaluation metrics Poorly collected requirements

The effect of (bad) Data Quality on Model Accuracy in Supervised Machine Learning

Saquicela, V., Baculima, F., Orellana, G., Piedra, N., Orellana, M., & Espinoza, M. (2018, March). Similarity Detection among Academic Contents through Semantic Technologies and Text Mining. In IWSW (pp. 1-12).

CONCLUSION

Maximum-common-subgraph

RESULT-DISCUSSION

- 1. Bai, Y., Xu, D., Sun, Y., & Wang, W. (2021, July). Glsearch: Maximum common subgraph detection via learning to search. In International Conference on Machine Learning (pp. 588-598). PMLR.
- 2. Robert Schmidt, Florian Krull, Anna Lina Heinzke, and Matthias Rarey. Journal of Chemical Information and Modeling 2021 61 (1), 167-178 DOI: 10.1021/acs.jcim.0c00741

METHOD

INTRODUCTION

METHOD

RESULT-DISCUSSION

CONCLUSION

SynRBL: Synthesis Rebalancing Framework

SynRBL (Synthesis Rebalancing Framework) is a specialized toolkit designed for computational chemistry. Its primary focus is on rebalancing incomplete chemical reactions and providing rule-based methodologies for data standardization and analysis.

Zhang, C., Arun, A., & Lapkin, A. (2023). Completing and balancing database excerpted chemical reactions with a hybrid mechanistic-machine learning approach.

RESULT-DISCUSSION

CONCLUSION

02

METHOD

METHOD

METHOD

RESULT-DISCUSSION

CONCLUSION

Rule-based approach

Molecular Representation Eg: CH₃CHOOH {C:2, H:4, O : 2, Q : 0}.

CONCLUSION

Rule-based approach

METHOD

RESULT-DISCUSSION

What is the current scale and comprehensiveness of the template library within this context?

DFS search

'Unbalance': 'Products'

'Diff_formula': {'S': 1, 'O': 3, 'H': 1, 'Q': -1},

Check length: 4

Search rules from length 4: SO₃²⁻ {'S': 1, 'O': 3, 'Q': -2}

Substrate: {'H':1, 'Q':+1}

Check length: 2

Search rules with length 2: H^+ {'H':1, 'Q':1}

CONCLUSION

MCS-based approach

METHOD

RESULT-DISCUSSION

CONCLUSION

MCS-based approach

INTRODUCTION

METHOD

RESULT-DISCUSSION

METHOD

RESULT-DISCUSSION

CONCLUSION

03

RESULT -DISCUSSION

METHOD

RESULT-DISCUSSION

CONCLUSION

04

CONCLUSION

Thank you for your attendance

Founded by the European Union This project has received funding from the European Unions Horizon 2021 research and innovation programme under the Marie-Skłodowska-Curie grant agreement No 101072930

Appendix

METHOD

RESULT-DISCUSSION

CONCLUSION

Equivariant Isomorphism

RESULT

- Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., ... & Zhou, T. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4), 1-4.
- 1. LemaÃŽtre, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of 2. machine learning research, 18(17), 1-5.

Thank you for your attention!

INTRODUCTION	METHOD	RESULT-DISCUSSION	CONCLUSION
INTRODUCTION	METHOD	RESULT-DISCUSSION	CONCLUSION
INTRODUCTION	METHOD	RESULT-DISCUSSION	CONCLUSION