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STOCHASTIC THERMODYNAMICS

All 20t century statistical physics concerns systems either at thermal
equilibrium or close to it, with very few non-static degrees of freedom

Quick, raise your hand if you “are close to thermal equilibrium”
Almost no system outside the lab is governed by 20t century stat. phys.

Salvation! 215t century has seen a major revolution in statistical physics,
allowing us to describe systems arbitrarily far from thermal equilibrium:

Stochastic Thermodynamics



STOCHASTIC THERMODYNAMICS

MAJOR STRENGTHENINGS OF SECOND LAW WHENEVER
(SEEMINGLY) INNOCUOUS CONSTRAINTS HOLD

Speed limit theorems:
- Strictly positive lower bound on dissipation of any non-static process

Thermodynamic uncertainty relations:
- Strictly positive lower bound on dissipation of any process that gives
high statistical precision in value of integrated current

Integral fluctuation theorems:
- Strictly positive lower bound on dissipation of any process that has
randomness in how much dissipation it produces

Many more:
- Kinetic uncertainty relation, thermodynamic correlation inequality, etc.



STOCHASTIC THERMODYNAMICS

MAJOR STRENGTHENINGS OF SECOND LAW WHENEVER
(SEEMINGLY) INNOCUOUS CONSTRAINTS HOLD

Here | describe two more

These strengthened second laws apply to any process that is either

« modular (all digital devices and biological systems)

 periodic (all digital devices)



DEPENDENCE OF {lots of things} ON INITIAL DISTRIBUTION

Arbitrary physical process P(x; | x¢) taking py — p1
Arbitrary ”cost function” C(py) = F(pg) — [S(Ppg) — S(po)] where F(.) is linear

- F(py) = Heat flow into system; C(p,) is dissipated work
- F(py) = / dtz< 1t )) C(po) is nonadiabatic EP
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Arbitrary ”cost function” C(py) = F(pg) — [S(Ppg) — S(po)] where F(.) is linear
- F(py) = Heat flow into system; C(py) is dissipated work (Entropy production — EP)
- F(py) = / dtz< J1upit(a )) C(po) is nonadiabatic EP
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C(q,) is called residual cost
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D(py || go) = D(Bpy ||Bg,) is called mismatch cost
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- F(py) = Heat flow into system; C(py) is dissipated work (Entropy production — EP)
- F(po) = / dtZ( D st (o )) C(po) is nonadiabatic EP

Define gy as minimizer of cost function:

C(q,) is called residual cost
D(po || go) — D(p; || 91) is called mismatch cost

where D(. || .) is relative entropy (KL divergence)

C(po) = C(qo) + [D(po || go) — D(p; || g1)]
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DEPENDENCE OF {lots of things} ON INITIAL DISTRIBUTION

Arbitrary physical process P(x; | x¢) taking py — p1
Arbitrary ”cost function” C(py) = F(pg) — [S(Ppg) — S(po)] where F(.) is linear

- F(py) = Heat flow into system; C(py) is dissipated work (Entropy production — EP)
- F(po) = / dtz< D st (o )) C(pp) is nonadiabatic EP

do is minimizer of cost function:

C(po) = C(qo) + [D(po || go) = D(p; || g1)]

Any nontrivial physical process that results in
zero thermodynamic cost for one initial distribution
will be costly for any other initial distribution




DEPENDENCE OF {lots of things} ON INITIAL DISTRIBUTION

Arbitrary physical process P(x; | x¢) taking py — p1
Arbitrary ”cost function” C(py) = F(pg) — [S(Ppg) — S(po)] where F(.) is linear

- F(py) = Heat flow into system; C(py) is dissipated work (Entropy production — EP)
- F(po) = / dtz< D st (o )) C(pp) is nonadiabatic EP

do is minimizer of cost function:

C(po) = C(qo) + [D(po || go) = D(p; || g1)]

Holds for Langevin dynamics, (open) quantum thermodynamics,
non-Markovian dynamics, nonconservative forces, unidirectional transitions.

Also holds at trajectory level.




DEPENDENCE OF {lots of things} ON INITIAL DISTRIBUTION

Arbitrary physical process P(x; | x¢) taking py — p1
Arbitrary ”cost function” C(py) = F(pg) — [S(Ppg) — S(po)] where F(.) is linear

- F(py) = Heat flow into system; C(py) is dissipated work (Entropy production — EP)
- F(po) = / dtz< D st (o )) C(pp) is nonadiabatic EP

do is minimizer of cost function:

C(po) = C(qo) + [D(po || go) = D(p; || g1)]

Often can solve for qq in closed form.
Example: It is stationary state of dynamics for C(py) = nonadiabatic EP
Example: It is equilibrium distribution for C(p,) = EP




DEPENDENCE OF {lots of things} ON INITIAL DISTRIBUTION

Arbitrary physical process P(x; | xo) taking po — p;

Arbitrary ”cost function” C(py) = F(pg) — [S(Ppg) — S(po)] where F(.) is linear
- F(py) = Heat flow into system; C(py) is dissipated work (Entropy production — EP)
- F(py) = / dtz< J1upit(a )) C(po) is nonadiabatic EP

do is minimizer of cost function:

C(po) = C(qo) + [D(po || go) = D(p; || g1)]

This formula is exact, not a bound



DEPENDENCE OF {lots of things} ON INITIAL DISTRIBUTION

Arbitrary physical process P(x; | x¢) taking py — p1
Arbitrary ”cost function” C(py) = F(pg) — [S(Ppg) — S(po)] where F(.) is linear

F(po) = 2, p(x) f(x) for some function f(x)

C(po) = C(qo) + [D(po || go) — D(p; || g1)]

> D(poll g0) — D(p1 || g1)

Given qq, this lower bound is completely independent of details of the
physical process.

Just like second law is.

In particular, none of the restrictions in the SLT, TUR, KUR etc.



DEPENDENCE OF {lots of things} ON INITIAL DISTRIBUTION

Arbitrary physical process P(x; | x¢) taking py — p1
Arbitrary ”cost function” C(py) = F(pg) — [S(Ppg) — S(po)] where F(.) is linear

F(po) = 2, p(x) f(x) for some function f(x)

C(po) = C(qo) + [D(po || go) — D(p; || g1)]

> D(poll g0) — D(p1 || g1)

Only effect of changing f(.) or P(.) on the mismatch cost is to change qq



LOWER BOUNDS ON MISMATCH COST

Arbitrary physical process P(x; | x¢) taking py — p1
Arbitrary ”cost function” C(py) = F(pg) — [S(Ppg) — S(po)] where F(.) is linear

F(po) = 2, p(x) f(x) for some function f(x)

C(po) = C(qo) + [D(po || go) — D(p; || g1)]

Example:
- Suppose your process unavoidably generates a lot of heat;
 Then residual entropy production is large.
« Then f(x) is large for all x, on scale of In|X| (maximum entropy)

- Often when this happens | max,f(x) — min,f(x) | is also large

* Means qy(x) is very close to edge of simplex
* Means mismatch cost is large for all p, not too close to q,

Worst case mismatch cost: max,f(x) — min,f(x) — In|X]|




LOWER BOUNDS ON RESIDUAL COST

Continuous-time Markov process taking P(x; | xq) taking po — p;

Arbitrary “cost function” C(p,) = F(po) — [S(Ppo) — S(po)] where F(.) is linear

F(po) = 2, p(x) f(x) for some function f(x)

C(po) = C(qo) + [D(po || go) — D(p; || g1)]

“Thermodynamic Speed limit theorem (SLT)” bounds C(qy):

L(pOJ pl)z
2 Atot

C(qy) =
where

L(p, p’) = |p, p’| is L, distance
Aot = average number system state changes during the process if
start with distribution qq



LOWER BOUNDS ON RESIDUAL COST

Continuous-time Markov process taking P(x; | xq) taking po — p;

Arbitrary “cost function” C(p,) = F(po) — [S(Ppo) — S(po)] where F(.) is linear

F(po) = 2, p(x) f(x) for some function f(x)

C(po) = C(qo) + [D(po || go) — D(p; || g1)]

“Thermodynamic Speed limit theorem (SLT)” bounds C(qy):

W(qy, Pqp)

tot

C(g,) = 2W(qe, Pqo)tanh™

where

Wi(p, p’) = |p, p’| is Wasserstein distance through the network of possible
state transitions

- Lots of other SLTs



LOWER BOUNDS ON RESIDUAL COST

Continuous-time Markov process taking P(x; | xq) taking po — p;

Arbitrary “cost function” C(p,) = F(po) — [S(Ppo) — S(po)] where F(.) is linear

F(po) = 2, p(x) f(x) for some function f(x)

C(po) = C(qo) + [D(po || go) — D(p; || g1)]

“Thermodynamic Uncertainty Relation (TUR)” bounds C(q,):
2kB[E(])]?
Var(])

C(qy) =

where
) =2, «d(x, x') for all state changes x to x” during the process if
start with distribution qq

and
d(a, b) is an arbitrary “deviation function” obeying d(a, b) = -d(b, a)

- Lots of strengthened (but more complicated) TURs



DEPENDENCE OF {lots of things} ON INITIAL DISTRIBUTION

Arbitrary physical process P(x; | x¢) taking py — p1
Arbitrary ”cost function” C(py) = F(pg) — [S(Ppg) — S(po)] where F(.) is linear

F(po) = 2, p(x) f(x) for some function f(x)

C(po) = C(qo) + [D(po || go) — D(p; || g1)]

In contrast to thermodynamic uncertainty relations,
speed limit theorems, etc.,
mismatch cost bound is often large in macroscopic processes




MISMATCH COST IN PERIODIC PROCESSES

A physical process over a space X that repeats (e.g., a periodic process)

So over N iterations, the sum-total mismatch cost (lower bound on cost) is:

N-—-1
o(NX) > inf [D(P'po || q) — D(P"'po || Pg)]



MISMATCH COST IN PERIODIC PROCESSES

A physical process over a space X that repeats (e.g., a periodic process)

So over N iterations, the sum-total mismatch cost (lower bound on cost) is:

N—1
o(NA) > inf [D(P'po || q) — D(P"'po || Pg)]

KEY POINT: Since the process repeats, q is the same in each repetition.
However, Ptpy will differ over repetitions.

Therefore At most one mismatch cost in the sum
can equal O in general

- Independent of the physical details of the underlying process
(just like second law of thermodynamics)



MISMATCH COST IN PERIODIC PROCESSES

A physical process over a space X that repeats (e.g., a periodic process)

So over N iterations, the sum-total mismatch cost (lower bound on cost) is:

N-—-1
o(NX) > inf [D(P'po || g) — D(P**'po || Pg)]

KEY POINT: Since the process is periodic, q is the same in each period.
However, Ptp, will differ over periods.

Therefore At most one mismatch cost in the sum
can equal O in general

A strictly positive lower bound on cost for any periodic process

Ex: Positive lower bound on entropy production (EP) for any digital device
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Some papers soon to be submitted on strengthened second law

that apply in

* Any (Shannon) communication channel

* Any Matlab program






