How Constraints Affect Evolution of Entropy – Strengthened Second Laws

David H. Wolpert (Santa Fe Institute)

with

Tom Ouldridge, Gonzalo Manzano, Edgar Roldan, Abhishek Yadev, Francesco Caravelli, Gulce Kardes

STOCHASTIC THERMODYNAMICS

- All 20th century statistical physics concerns systems either at thermal equilibrium or close to it, with very few non-static degrees of freedom
- Quick, raise your hand if you "are close to thermal equilibrium"
- Almost *no* system outside the lab is governed by 20th century stat. phys.

!!!!!

• **Salvation**! 21st century has seen a major revolution in statistical physics, allowing us to describe systems arbitrarily far from thermal equilibrium:

Stochastic Thermodynamics

STOCHASTIC THERMODYNAMICS

MAJOR STRENGTHENINGS OF SECOND LAW WHENEVER (SEEMINGLY) INNOCUOUS CONSTRAINTS HOLD

Speed limit theorems:

- Strictly positive lower bound on dissipation of any non-static process

• Thermodynamic uncertainty relations:

- Strictly positive lower bound on dissipation of any process that gives high statistical precision in value of integrated current

• Integral fluctuation theorems:

- Strictly positive lower bound on dissipation of any process that has randomness in how much dissipation it produces

Many more:

- Kinetic uncertainty relation, thermodynamic correlation inequality, etc.

STOCHASTIC THERMODYNAMICS

MAJOR STRENGTHENINGS OF SECOND LAW WHENEVER (SEEMINGLY) INNOCUOUS CONSTRAINTS HOLD

Here I describe two more

These strengthened second laws apply to any process that is either

- modular (all digital devices and biological systems)
- periodic (all digital devices)

Arbitrary physical process $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

- $F(p_0)$ = Heat flow into system; $C(p_0)$ is **dissipated work**
- $F(p_0) = \int_0^1 dt \sum_{x} \left(\frac{\partial p_t(x)}{\partial t} \ln p_t^{st}(x) \right)$; $C(p_0)$ is **nonadiabatic EP**

Arbitrary physical process $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

- $F(p_0)$ = Heat flow into system; $C(p_0)$ is **dissipated work** (Entropy production EP)
- $F(p_0) = \int_0^1 dt \sum_{x} \left(\frac{\partial p_t(x)}{\partial t} \ln p_t^{st}(x) \right)$; $C(p_0)$ is **nonadiabatic EP**

Define q_0 as minimizer of cost function:

$$C(p_0) = C(q_0) + [C(p_0) - C(q_0)]$$

Arbitrary physical process $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

- $F(p_0)$ = Heat flow into system; $C(p_0)$ is **dissipated work** (Entropy production EP)
- $F(p_0) = \int_0^1 dt \sum_x \left(\frac{\partial p_t(x)}{\partial t} \ln p_t^{st}(x) \right)$; $C(p_0)$ is **nonadiabatic EP**

Define q_0 as minimizer of cost function:

$$C(p_0) = C(q_0) + [C(p_0) - C(q_0)]$$

 $C(q_0)$ is called **residual cost**

Arbitrary physical process $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

- $F(p_0)$ = Heat flow into system; $C(p_0)$ is **dissipated work** (Entropy production EP)
- $F(p_0) = \int_0^1 dt \sum_x \left(\frac{\partial p_t(x)}{\partial t} \ln p_t^{st}(x) \right)$; $C(p_0)$ is **nonadiabatic EP**

Define q_0 as minimizer of cost function:

$$C(p_0) = C(q_0) + [C(p_0) - C(q_0)]$$

 $C(q_0)$ is called residual cost

$$C(p_0) - C(q_0) = D(p_0 \parallel q_0) - D(Pp_0 \parallel Pq_0)$$

$$\geq 0$$

where D(. || .) is relative entropy (KL divergence)

 $D(p_0 \parallel q_0) - D(Pp_0 \parallel Pq_0)$ is called **mismatch cost**

Arbitrary physical process $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

- $F(p_0)$ = Heat flow into system; $C(p_0)$ is **dissipated work** (Entropy production – EP)

-
$$F(p_0) = \int_0^1 dt \sum_{x} \left(\frac{\partial p_t(x)}{\partial t} \ln p_t^{st}(x) \right)$$
; $C(p_0)$ is **nonadiabatic EP**

Define q_0 as minimizer of cost function:

 $C(q_0)$ is called **residual cost** $D(p_0 \parallel q_0) - D(p_1 \parallel q_1)$ is called **mismatch cost**

where D(. || .) is relative entropy (KL divergence)

$$C(p_0) = C(q_0) + [D(p_0 || q_0) - D(p_1 || q_1)]$$

Wolpert, D., Kolchinsky, A., *New J. Phys.* (2020) Riechers, P., Gu, M., *Phys. Rev. E* (2021) Ouldridge, T., Wolpert, D., *New J. Phys.* (2023) Manzano, G., Kardes, G., Roldan, E., Wolpert D., *Phys. Rev. X* (2024)

Arbitrary physical process $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

- $F(p_0)$ = Heat flow into system; $C(p_0)$ is **dissipated work** (Entropy production EP)
- $F(p_0) = \int_0^1 dt \sum_x \left(\frac{\partial p_t(x)}{\partial t} \ln p_t^{st}(x) \right)$; $C(p_0)$ is **nonadiabatic EP**

 q_0 is minimizer of cost function:

$$C(p_0) = C(q_0) + [D(p_0 || q_0) - D(p_1 || q_1)]$$

Any nontrivial physical process that results in zero thermodynamic cost for one initial distribution will be costly for any other initial distribution

Arbitrary physical process $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

- $F(p_0)$ = Heat flow into system; $C(p_0)$ is **dissipated work** (Entropy production EP)
- $F(p_0) = \int_0^1 dt \sum_x \left(\frac{\partial p_t(x)}{\partial t} \ln p_t^{st}(x) \right)$; $C(p_0)$ is **nonadiabatic EP**

q₀ is minimizer of cost function:

$$C(p_0) = C(q_0) + [D(p_0 || q_0) - D(p_1 || q_1)]$$

Holds for <u>Langevin dynamics</u>, (open) <u>quantum thermodynamics</u>, <u>non-Markovian dynamics</u>, <u>nonconservative forces</u>, <u>unidirectional transitions</u>.

Also holds at trajectory level.

Arbitrary physical process $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

- $F(p_0)$ = Heat flow into system; $C(p_0)$ is **dissipated work** (Entropy production – EP)

-
$$F(p_0) = \int_0^1 dt \sum_{x} \left(\frac{\partial p_t(x)}{\partial t} \ln p_t^{st}(x) \right)$$
; $C(p_0)$ is **nonadiabatic EP**

 q_0 is minimizer of cost function:

$$C(p_0) = C(q_0) + [D(p_0 || q_0) - D(p_1 || q_1)]$$

Often can solve for q_0 in closed form.

Example: It is stationary state of dynamics for $C(p_0)$ = nonadiabatic EP Example: It is equilibrium distribution for $C(p_0)$ = EP

Arbitrary physical process $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

- $F(p_0)$ = Heat flow into system; $C(p_0)$ is **dissipated work** (Entropy production EP)
- $F(p_0) = \int_0^1 dt \sum_x \left(\frac{\partial p_t(x)}{\partial t} \ln p_t^{st}(x) \right)$; $C(p_0)$ is **nonadiabatic EP**

 q_0 is minimizer of cost function:

$$C(p_0) = C(q_0) + [D(p_0 || q_0) - D(p_1 || q_1)]$$

This formula is exact, not a bound

Arbitrary physical process $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

 $F(p_0) = \Sigma_x p(x) f(x)$ for some function f(x)

$$C(p_0) = C(q_0) + [D(p_0 || q_0) - D(p_1 || q_1)]$$

$$\geq D(p_0 || q_0) - D(p_1 || q_1)$$

Given q_0 , this lower bound is *completely* independent of details of the physical process.

Just like second law is.

In particular, none of the restrictions in the SLT, TUR, KUR etc.

Arbitrary physical process $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

 $F(p_0) = \Sigma_x p(x) f(x)$ for some function f(x)

$$C(p_0) = C(q_0) + [D(p_0 || q_0) - D(p_1 || q_1)]$$

$$\geq D(p_0 || q_0) - D(p_1 || q_1)$$

Only effect of changing f(.) or $\underline{P}(.)$ on the mismatch cost is to change q_0

LOWER BOUNDS ON MISMATCH COST

Arbitrary physical process $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

 $F(p_0) = \Sigma_x p(x) f(x)$ for some function f(x)

$$C(p_0) = C(q_0) + [D(p_0 || q_0) - D(p_1 || q_1)]$$

Example:

- Suppose your process unavoidably generates a lot of heat;
 - Then residual entropy production is large.
 - Then f(x) is large for all x, on scale of ln|X| (maximum entropy)
- Often when this happens $\max_{x} f(x) \min_{x} f(x)$ is also large
 - Means $q_0(x)$ is very close to edge of simplex
 - Means mismatch cost is large for all p₀ not too close to q₀

Worst case mismatch cost: $max_x f(x) - min_x f(x) - ln|X|$

LOWER BOUNDS ON RESIDUAL COST

Continuous-time Markov process taking $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

 $F(p_0) = \Sigma_x p(x) f(x)$ for some function f(x)

$$C(p_0) = C(q_0) + [D(p_0 || q_0) - D(p_1 || q_1)]$$

"Thermodynamic Speed limit theorem (SLT)" bounds $C(q_0)$:

$$C(q_0) \ge \frac{L(p_0, p_1)^2}{2 A_{tot}}$$

where

L(p, p') = |p, p'| is L_1 distance

 A_{tot} = average number system state changes during the process if start with distribution q_0

LOWER BOUNDS ON RESIDUAL COST

Continuous-time Markov process taking $P(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

 $F(p_0) = \Sigma_x p(x) f(x)$ for some function f(x)

$$C(p_0) = C(q_0) + [D(p_0 || q_0) - D(p_1 || q_1)]$$

"Thermodynamic Speed limit theorem (SLT)" bounds $C(q_0)$:

$$C(q_0) \ge 2W(q_0, Pq_0) \tanh^{-1} \frac{W(q_0, Pq_0)}{A_{tot}}$$

where

W(p, p') = |p, p'| is Wasserstein distance through the network of possible state transitions

- Lots of other SLTs

LOWER BOUNDS ON RESIDUAL COST

Continuous-time Markov process taking $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

 $F(p_0) = \Sigma_x p(x) f(x)$ for some function f(x)

$$C(p_0) = C(q_0) + [D(p_0 || q_0) - D(p_1 || q_1)]$$

"Thermodynamic Uncertainty Relation (TUR)" bounds $C(q_0)$:

$$C(q_0) \ge \frac{2kB[E(J)]^2}{Var(J)}$$

where

 $J = \Sigma_{x,x'} d(x, x')$ for all state changes x to x' during the process if start with distribution q_0

and

d(a, b) is an arbitrary "deviation function" obeying d(a, b) = -d(b, a)

- Lots of strengthened (but more complicated) TURs

Arbitrary physical process $\underline{P}(x_1 \mid x_0)$ taking $p_0 \rightarrow p_1$

Arbitrary "cost function" $C(p_0) = F(p_0) - [S(\underline{P}p_0) - S(p_0)]$ where F(.) is linear

 $F(p_0) = \Sigma_x p(x) f(x)$ for some function f(x)

$$C(p_0) = C(q_0) + [D(p_0 || q_0) - D(p_1 || q_1)]$$

In contrast to thermodynamic uncertainty relations, speed limit theorems, etc., mismatch cost bound is often large in macroscopic processes

MISMATCH COST IN PERIODIC PROCESSES

A physical process over a space X that repeats (e.g., a periodic process)

So over N iterations, the sum-total mismatch cost (lower bound on cost) is:

$$\sigma(N\lambda) \ge \inf_{q \in \Delta_X} \sum_{t=0}^{N-1} \left[D(P^t p_0 || q) - D(P^{t+1} p_0 || Pq) \right]$$

MISMATCH COST IN PERIODIC PROCESSES

A physical process over a space X that repeats (e.g., a periodic process)

So over N iterations, the sum-total mismatch cost (lower bound on cost) is:

$$\sigma(N\lambda) \ge \inf_{q \in \Delta_X} \sum_{t=0}^{N-1} \left[D(P^t p_0 || q) - D(P^{t+1} p_0 || Pq) \right]$$

<u>KEY POINT</u>: Since the process repeats, q is the same in each repetition. However, $P^{t}p_{0}$ will differ over repetitions.

Therefore

At most one mismatch cost in the sum can equal 0 in general

- Independent of the physical details of the underlying process (just like second law of thermodynamics)

MISMATCH COST IN PERIODIC PROCESSES

A physical process over a space X that repeats (e.g., a periodic process)

So over N iterations, the sum-total mismatch cost (lower bound on cost) is:

$$\sigma(N\lambda) \ge \inf_{q \in \Delta_X} \sum_{t=0}^{N-1} \left[D(P^t p_0 || q) - D(P^{t+1} p_0 || Pq) \right]$$

<u>KEY POINT</u>: Since the process is periodic, q is the same in each period. However, $P^{t}p_{0}$ will differ over periods.

Therefore

At most one mismatch cost in the sum can equal 0 in general

A **strictly positive** lower bound on cost for **any** periodic process

Ex: Positive lower bound on entropy production (EP) for any digital device

- Kolchinsky, A., DHW Phys. Rev. E (2021)
- Riechers, P., Gu, M., Phys. Rev. E (2021)
- Ouldridge, T., DHW New J. Phys. (2023)
- Manzano, G., Kardes, G., Roldan, E., DHW *Phys. Rev. X* (2024)
- DHW (14 co-authors), PNAS in press (2024)
- Yadav, A., Caravelli F., and DHW, arXiv:2411.16088 (2024)

Some papers soon to be submitted on strengthened second law that apply in

- Any (Shannon) communication channel
- Any Matlab program