DNA methylation in HNSCC samples

A story of needles and haystacks

Daria Meyer

TBI Winterseminar 10.02.2025

Background: Head and Neck Squamous Cell Carcinoma (HNSCC)

HNSCC specific DNA methylation (5mC) exist

Research Article

Cancer Prevention Research

New DNA Methylation Markers and Global DNA Hypomethylation Are Associated with Oral Cancer Development

Jean-Philippe Foy^{1,2,3}, Curtis R. Pickering⁴, Vassiliki A. Papadimitrakopoulou⁵, Jaroslav Jelinek⁶, Steven H. Lin⁷, William N. William Jr⁵, Mitchell J. Frederick⁴, Jing Wang⁶, Wenhua Lang⁵, Lei Feng⁹, Li Zhang⁸, Edward S. Kim¹⁰, You H. Fan⁵, Waun K. Hong¹¹, Adel K. El-Naggar¹², J. Jack Lee⁹, Jeffrey N. Myers⁴, Jean-Pierre Issa⁶, Scott M. Lippman¹³, Li Mao¹⁴, and Pierre Saintigny^{1,2,15,16}

International Journal of Molecular Sciences

Article

FRIEDRICH-SCHILLER-**UNIVERSITÄ**

JENA

Pre-Operative Evaluation of DNA Methylation Profile in Oral Squamous Cell Carcinoma Can Predict Tumor **Aggressive Potential**

Davide B. Gissi 1, 10, Viscardo P. Fabbri 2, 1, Andrea Gabusi 10, Jacopo Lenzi 30, Luca Morandi 4,*0, Sofia Melotti 2, Sofia Asioli 2, Achille Tarsitano 50, Tiziana Balbi 6, Claudio Marchetti 50 and Lucio Montebugnoli 1

MDPI

HNSCC = Nose, Mouth, Throat

Daria Meyer

MSP needs regions which show methylations in tumor samples but not in control samples

- completely unmethylated in controls (ideally)
- → further primer design constraints (primer length, distance, nucleotide composition,...)

treatment with sodium bisulfite

Background: Whole genome nanopore sequencing (enriched for CpG islands)

	Sample	Sex	Age	HPV	Tumor	Surgery
Control	T-0025-N T-0045-N T-0099-N	m m m	59 y 22 y 57 y	neg neg neg	0 % 0 % 0 %	UPPP UPPP UPPP
Tumor	T-0044-C T-0085-C T-0126-C	m m m	53 y 74 y 59 y	pos neg neg	$80\%\ 80\%\ 70\%$	HNSCC HNSCC HNSCC

Enrichment on CpG islands (CGIs) by using Adaptive Sampling

Nanopore sequencing - overall methylation

Nanopore sequencing - CpG island methylation

per CpG island methylation information shows:

- → less artefacts and higher sequencing depth (mean sequencing depth = ??X)
- → in contrast to genome-wide cytosine methylation, CGIs are rather unmethylated in both tumor and control samples

Prediction of MSP biomarker regions with diffONT

F 3× S

					1		
	Sample	F1	L8	USP44	K1	Z5	U1
Control	T-0025-N T-0045-N T-0099-N	20.82 19.03 11.93	$8.01 \\ 16.40 \\ 7.13$	$9.29 \\ 9.74 \\ 8.76$	$12.87 \\ 19.03 \\ 9.34$	$20.82 \\ 13.85 \\ 9.92$	$4.71 \\ 8.08 \\ 9.45$
Tumor	T-0044-C T-0085-C T-0126-C	$0.73 \\ 2.91 \\ 7.16$	$0.46 \\ 1.56 \\ 1.83$	$1.24 \\ 2.42 \\ 7.14$	$0.18 \\ 2.58 \\ 19.80$	$3.41 \\ 4.98 \\ 4.02$	$1.97 \\ 1.75 \\ 2.09$

Cq value = # cycles until amplification above threshold Δ Cq value = Cq marker - Cq reference gene (ACTB)

- \rightarrow Δ Cq values in tumor samples lower than in control
- → more amplification in the tumor samples
- → MSP confirms selected regions
- → MSP discriminates between tumor and control

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Validation using Methylation-Specific PCR (MSP)

Youden's J statistic = sensitivity + specificity -1

Daria Meyer

Methylation-Specific PCR (MSP) in saliva - same same, but different

Summary

- Low Coverage Nanopore Sequencing data can usefully predict differentially methylated region between tumor and control samples
- diffONT can predict regions, which are usable in methylation-specific PCR
- methylation-specific PCR support nanopore sequencing results
- transferring results from tissue into saliva is difficult

Outlook

- Compare against publicly available methylation data (TCGA)
- Check publicly available gene expression data for analyzed regions (TCGA)

Thank you for your attention.

Special thanks to:

Manja Marz Emanuel Barth

Comments and Questions?

Martina Schmitz Alfred Hansel Laura Wiehle Bawany Hums

EUROPÄISCHE UNION Europäischer Sozialfonds

Funded by Thüringen-Stipendium

Backup-Slides

	FC ID	Sample	Wash	Adaptive	Yield (Gb)	HSA	CGI	Enrichment
Control	FAR96893	T0025N	1x	Yes $+2000$ nt	6.46	1.74	5.40	3.10
	FAV87040	T0025N	1x	Yes + 2000nt	24.82	6.70	23.26	3.47
	FAR33296	T0045N	1x	after wash	5.45	2.35	3.52	1.50
	FAS60674	T0045N	0x	Yes $+2000$ nt	4.11	1.06	2.81	2.65
	FAV39381	T0045N	1x	Yes $+2000$ nt	16.11	4.42	11.74	2.66
	FAV38963	T0099N	1x	Yes $+2000$ nt	24.40	6.03	16.74	2.78
Tumor	FAQ01752	T0044C	2x	No	13.49	3.92	4.20	1.07
	FAR39219	T0044C	1x	Yes $+2000$ nt	9.68	2.61	9.15	3.51
	FAV38989	T0085C	1x	Yes $+2000$ nt	17.13	4.65	14.63	3.15
	FAV39137	T0126C	1 x	Yes $+2000$ nt	23.50	5.98	11.98	2.00

Nanopore sequencing - overall methylation

