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Problem specification: data — chemical reaction network

(CRN
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ASSIT+ Cls &5 TICI + ArSCI
NCS + IIC1 < NCI 4 Cl,
NCS + Arll <5 NIIS + ArSCI
ArSCl+ AsSTT <5 TICI + AR,S,
ArgSs + Cly S5 2 ArSCI
CRN:

Species + reactions




A question of methodology:
How to exiract structure from data?

200 400 600 800 1000
time (min)

Observations, data
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Today, this proces is (in general):
i) Not systematic, lacks methodology
i)  Arduous and time-intensive

ArSIT + Cls IICT + ArSCI

|
11

NCS +1IC1 S NCIL+ Cl,
5

NCS + Arll = NIIS + ArSCl
6

ArSCl 4+ ArSIT S TICI + AR,S,

T

ArsSs + Cly, S 2 ArSCI

CRN:

Species + reactions




Methodology: Descartes

1. Filter: Accept only what is true beyond reasonable doubt

— 2. Division: Split problems up in smallest parts

3. Solve: Simple problems first

4. Exhaustion: Generalize & enumerate, cover all possibilities




Methodology: Descartes

1. Filter: Accept only what is true beyond reasonable doubt

2. Division: Split problems up in smallest parts

3. Solve: Simple problems first

4. Exhaustion: Generalize & enumerate, cover all possibilities

Chemistry has solved questions of structure before, let’s see what we did then.



Analytical Challenges — elucidating structure (molecules) —%

Organic chemistry (<1960s) used to center around identifying compounds. This process eventually became systematized,

involving many steps of examination and experimental tests.

- Preliminary Examination: homogeneity, state, color, odor, ignition test

- Physical constants: Melting point, boiling point

- Elemental analysis

- Solubility tests (in H, O, dil. HCl, dil. NaOH, NaHC03, cold H2504, H3P04, ether).

- Classification tests (for functional groups, unsaturation, halogens, acids, alcohols, amines, aldehydes, ketones, aromatics, ethers,
esters, nitro, phenol)

- Literature comparison
- Preparation of derivatives (+ analysis thereof, e.g. specific gravity, refractive index, melting point, optical rotation, .. .)

- If molecule is new: fragmentation + characterization of fragments

(See also The Systematic Identification Of Organic Compounds 3™ edition (1940))



Analytical Challenges — elucidating structure (molecules)

Organic chemistry (>1960s) was dramatically transformed by analytical techniques,

allowing to focus on myriad other topics than identification

“If the sole aim of the course in “identification” were to teach methods of rapid
identification of unknown compounds, major emphasis should be placed on modern
instrumental methods such as infrared, Raman, and ultraviolet spectroscopy; nuclear
magnetic resonance; X-ray diffraction; kinetic methods and determination of
dissociation constants by potentiometric titration.”

“Because liberal application of these techniques would, in many cases, reduce the work
of the student to instrumental analysis with concomitant sacrifice of attention to the
chemical behavior of the unknown compounds, the use of such technics has been
strictly limited”

(from The Systematic Identification Of Organic Compounds 4™ edition (1956))



Analytical Challenges — elucidating structure (molecules) S=me

Today, elucidating structures of (small) molecules has become
a quick puzzle you can do for fun on the internet
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H, signal

Why is NMR so efficient? N 3

. Cl Cl

All elucidation comhbines structural clues to filter hypotheses

N M R . I|I III Illl I'II I|I I|I
- Measurement of local structure through interpretable indices oo
- Scaling: more complex structures give more distinct clues
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NMR as a puzzle

Spectra CoH1, (>4000 isomers)
CQH12 % § . .
"HNMR | I Nmr indices:

(500 MHz, CDCly) # HNMR peﬂkS,
# CNMR peaks,
peak integrals,
peak multiplicity,

3.01 —
9.0

80 75 70 65 60 55 50 45 40 35 30 25 20 15
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“ Draw your solution
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Nmr indices:

peak integrals,

peak couplings,
APT signs, . ..

# HNMR peaks,
# (NMR peaks,

peak multiplicity,

CoHy5 (>4000 isomers)

Draw your solution
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Analytical Challenges — elucidating structure (CRNs)

Today, we can quickly elucidate (small) molecular structures.

(Through scalable, interpretable, structural indices)
&

Elucidating chemical reaction networks (CRNs) is still hard and slow.




Analytical Challenges — elucidating structure (CRNs)

Today, we can quickly elucidate (small) molecular structures.

(Through scalable, interpretable, structural indices)
o

Elucidating chemical reaction networks (CRNs) is still hard and slow.

There is no“ Systematic ldentification Of (RNs”

But we do already have analytical techniques for Reaction Monitoring
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Analytical Challenges — elucidating structure (CRNs)

But we do already have analytical techniques for Reaction Monitoring
what is still missing are scalable, interpretable, structural indices.
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Analytical Challenges — elucidating structure (CRNs)

But we do already have analytical techniques for Reaction Monitoring
what is still missing are scalable, interpretable, structural indices.

X

X

i.e. unambiguous clves about CRN
structure extractable from data



My research line: structural indices of CRNs from reaction-
monitoring data
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Some measurable structural indices

Discussed in Doubice, see slides in Discord
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Radon partitions (generalized
notions of convexity)

Data dimension,
Nullspace
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KENA: 2 reaction steps
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X, 2 X, 2 X,

2 reaction steps
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Q1: which is X_1, which is X_27?

Q2: can we show it without
Trial & error / data fitting?

l.e. can we prove it, or
measure it, ‘nmr-style’?
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Log-log reveals “Kinetic exponents”
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Theory | — linear CRNs

d:|X] =7 [X]
General solution: [X] = exp(] t)[X],
Xl = [Xilo + tJ[Xlg) + t2 07Xlo) | (s 07 Xl)

2 3!

time (min)




Theory | — linear CRNs

d:|X] =7 [X]
General solution: [X] = exp(] t)[X],
Xl = [Xilo + tJ[Xlg) + t2 (Hz[;q“) + 3 (Hg[;!q(’) + .
e e

, , Change due to Change due to Change due to
Path Interpretation: I reaction 2 reactions 3 reactions



Theory | — linear CRNs

(J%[X]o) N tg(ll?’[X]o) N

2 3!

L o

Xkl = [Xilo + tJ[X]o) + t°

0 1 2
O_O_O Change due to Change due to Change due to
| reaction 2 reactions 3 reactions
ki (ki + ki) —ky (ki + ki +k3) ki ks
J2 = —ki (ki + kT +k3) kiky + (ki +k3)* +kiky —ky(ki +k3+k3)
ki k3 —ky (ki +k3 +k3) ky (k3 +k3)

—k{ ki 0
J=\ ki —ki—ki k3

0 k3 k5




Reaction steps for nonlinear networks

Xo +X,2X, X,+X, X2
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Kinetic exponents: General CRNs

Nonlinear dynamics still has
series expansion

+ pathlike interpretation
Xkl = ay, t"k + ay, 41 "+

Kinetic Exponent law

Kin. Exp. product =
I+ > Kin. Exp. reactants



Kinetic exponents: General CRNs

Nonlinear dynamics still has
series expansion
+ pathlike interpretation

Kinetic Exponent law

K(product) =
1+ Zv(reuc’run’r) K(reactant)
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Kinetic exponents: General CRNs

Nonlinear dynamics still has
series expansion
+ pathlike interpretation

Kinetic Exponent law

K(product) =
1+ Zv(reuc’run’r) K(reactant)
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Kinetic exponents are extractable from real data
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Some measurable CRN properties
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Data dimension — some history

Basic rough idea (d):
d = # independent reactions = # independent species

= ‘effective’ rank™ of (mean-subtracted) data

|I&EC FUNDAMENTALS

VOL 2 NO. 2 MAY 1963

INDEPENDENCE OF CHEMICAL REACTIONS

e RUTHERFORD ARIS AND R. H. 5. MAH
In The Ilneur 0|gebru sense Depariment of Chemical Engineering, Universily of Minnesota, Minneapolis, Mian.




Data dimension

Basic rough idea (d):
d = # independent reactions = # independent species

= ‘effective’ rank of (mean-subtracted) data

=¢—|=r—c¢

Hspecies - # conservation laws = # reactions - # cycles

|I&EC FUNDAMENTALS

VOL 2 NO. 2 MAY 1963

Found very limited experimental adoption.

INDEPENDENCE OF CHEMICAL REACTIONS

RUTHERFORD ARIS AND R. H. 5. MAH
D prar gt u:-" Chemical Engineering, University of Minnesota, Minneapelis, Mian




The first structural law

d=s—=|1=r—¢

#Hspecies - # conservation laws = # reactions - # cycles

s= 3 (A,B,C)
£ =1 ([A]+[B] + [C] = Constant)




Used in a limited sense: isoshestic points (d=1)

- Spectral overlap (reactant(s), product(s))
- 1d transformation (chemical, physical)

d=1 indicates particularly simple transformation, no
side reactions™

c Z0
\I/\/ o~ 2 20
O 0 E = E o 9
organocat. o o = 151 o
N—SePh NH 5 ) ] %
E -2 ‘(d-): @ 10 08803'3'3“
* 7] — o O%poo
0 2 SePh o 2 S 2 £ o
H = Q g 5 o]
/O o [ 1 ' w =] o 2%
\T/\/ S 0 120 260 min SENE
3 _
880 860 840 0 100 200 300
Wavenumber (cm™) Time (min)
d Q 8 100
ete U N n . . -
NoOOR NH * e 015 45min 8 3
Me nitroreductase Me = 3 =
= 4 > X=]
+ + o o w50
°. ;i a i
O 9 E =
R 7 Sar 7 Sar o o 3
S o 0
3 3 @ 0
800 1000 1200 0 25 50
Wavelength (nm) Time (min)

Isoemmissive




Data dimension

d=1 d=2 d=3 d=4
(isoshestic point) (Isoshestic Hine- curve)

Increasingly hard to see directly. (low) d can in general be
estimated via Singular Value Decomposition / PCA / ...

o-O0-O000

/
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Quick example
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Quick example
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Problem: classical theory naively predicts d=3
and ignores time-dependence / resolution d !




Data dimension vs the real world
Basic rough idea (d):

d = # independent reactions = # independent species = ‘rank’ of (mean-subtracted) data

Some problems with the naive theory:
- Techniques often don’t see all species
- Discernable dimension (“rank”) of data depends on resolution (time, concentration, # variables, .. .)

- Chemical phenomenology (e.g. phase transitions, collinear reactions) can alter d
- dim(data) # dim(CRN) ?

[Submitted on 15 Jun 2023 (v1), last revised 8 Apr 2024 (this version, v3)]
On data and dimension in chemistry | --
irreversibility, concealment and emergent

Emergent conservation laws, hidden currents, new theory needed conservation laws
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Theory to bridge experimental resolution and chemical phenomenology

[Submitted on 15 Jun 2023 (v1), last revised 8 Apr 2024 (this version, v3)] Research Article (3 Open Access @ (i)
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In review, PRX

Lot more indices + laws




Example: Co-production conservation laws

Emergent conservation laws, hidden currents, new theory needed O<-®->O

s—l=r—¢?




Co-production conservation laws




Co-production conservation laws

Merge collinear reactions, now reactions are genuvinely
independent (vis-a-vis dynamics).

A+B —pC+(1—p)D

T = e . —I— .I'FI'I.-IJ, {4?]

where
T: co-production index, # (collinear) co-
production relations

de. 7F co-production emanants (emergent con-
servation laws),

MNe: #f broken cycles.




Co-production conservation laws

Merge collinear reactions, now reactions are genuinely
independent (vis-a-vis dynamics).

A+B —pC+(1—p)D

T = 0a + Aw, (47)

where

T: co-production index, # (collinear) co-
production relations

de: 7f co-production emanants (emergent con-
servation laws),

Ne: #f broken cycles.




Dimension and phase behavior

X1+ X1 (:) X2 [XZ]eq — KZ [Xl]gq
X1t Xp_1 2 Xy [Xnleq = Kn [X1]64
@ N Xl s=nL=0

Suppose we slowly add X
S —dimensional data



Dimension and phase behavior

X(s) 2 Xy (aq)
X, + X, 2X,

Suppose we slowly add X

In the presence of a phase equilibrium,

O-dimensional data!

[X1]leq = K solubility
[Xz]eq = K3 [Xl]gq = KZKE

[Xn]eq =Ky [Xl]gq = K,K§

Phase behavior can dramatically alter data dimension
Phases can be small (e.g. micelles), phase behavior
often goes unnoticed!
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Amount of substance
concentration of K — mer

Very different behavior, same observables
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Example from systems chemistry

. . . . . . -1
Typical data: UPLC chromatogram with distribution of oligomers 1 —18 10
Single building block: [; = 2, two building blocks: [, = 3, 102
In practice, we systematically find low-dimensional data (d=2,3,[ > 10) 10-3 |
How can that be?
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Diversification of self-replicating molecules

Jan W. Sadownik, Elio Mattia, Piotr Nowak and Sijbren Otto*
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Example from systems chemistry

Caught in the Act: Mechanistic Insight into Supramolecular
Polymerization-Driven Self-Replication from Real-Time Visualization

Sourav Maity, Jim Ottelé, Guillermo Monreal Santiago, Pim W. ]. M. Frederix, Peter Kroon,
Omer Markovitch, Marc C. A. Stuart, Siewert J. Marrink,* Sijbren Otto,* and Wouter H. Roos*
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Emergent simplicity in chemistry
due to (psuedo)phases
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Phase rules, phase diagrams




Em e rg e nll. S i m p I i c"y i n Ch e m i S'I'ry A.B., Y. Geiger, S. Otto. When aggregation becomes the

norm. /nvited, in preparation , ). Am. Chem. Soc.
due to (psuedo)phases

Many chemical systems exhibit signatures and
prerequisites of hidden phase behavior, e.g.

Common reactions in organic chemistry
Concentrated salt solutions

—

his profoundly alters their description, and
how we can optimize them for a given task.

Formose reaction
Oligopeptide solutions

Large molecular CRNS
Many ODEs

> Phase rules, phase diagrams



Thank you
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Promo

Join our interdisciplinary autocatalysis seminar
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