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Problem specification: data → chemical reaction network

(CRN)

CRN: 

Species + reactions
Observations, data



A question of  methodology:

How to extract structure from data?

CRN: 

Species + reactions
Observations, data

Today, this proces is (in general):

i) Not systematic, lacks methodology

ii) Arduous and time-intensive



Methodology: Descartes



Methodology: Descartes

Chemistry has solved questions of  structure before, let’s see what we did then.



Analytical Challenges – elucidating structure (molecules)

Organic chemistry (<1960s) used to center around identifying compounds. This process eventually became systematized, 
involving many steps of  examination and experimental tests. 

- Preliminary Examination: homogeneity, state, color, odor, ignition test

- Physical constants: Melting point, boiling point

- Elemental analysis 

- Solubility tests (in H2O, dil. HCl, dil. NaOH, NaHCO3, cold H2SO4, H3PO4, ether).

- Classification tests (for functional groups, unsaturation, halogens, acids, alcohols, amines, aldehydes, ketones, aromatics, ethers, 
esters, nitro, phenol)

- Literature comparison

- Preparation of derivatives (+ analysis thereof, e.g. specific gravity, refractive index, melting point, optical rotation, …)

- If molecule is new: fragmentation + characterization of fragments

(See also The Systematic Identification Of  Organic Compounds 3rd edition (1940))



Analytical Challenges – elucidating structure (molecules)

Organic chemistry (>1960s) was dramatically transformed by analytical techniques, 
allowing to focus on myriad other topics than identification

“If the sole aim of  the course in “identification” were to teach methods of  rapid
identification of  unknown compounds, major emphasis should be placed on modern 
instrumental methods such as infrared, Raman, and ultraviolet spectroscopy; nuclear
magnetic resonance; X-ray diffraction; kinetic methods and determination of  
dissociation constants by potentiometric titration.”

“Because liberal application of  these techniques would, in many cases, reduce the work 
of  the student to instrumental analysis with concomitant sacrifice of  attention to the 
chemical behavior of  the unknown compounds, the use of  such technics has been 
strictly limited”

(from The Systematic Identification Of  Organic Compounds 4th edition (1956))



Analytical Challenges – elucidating structure (molecules)

Today, elucidating structures of  (small) molecules has become

a quick puzzle you can do for fun on the internet



Why is NMR so efficient?
All elucidation combines structural clues to filter hypotheses

NMR:

- Measurement of  local structure through interpretable indices 

- Scaling: more complex structures give more distinct clues

Chemical shift (𝜹): 

Functional groups

Coupling + Splitting : 

near neighbors, # near nuclei

Integrals: 

(rel.) # local nuclei

And more …



NMR as a puzzle

Nmr indices: 
# HNMR peaks, 
# CNMR peaks,
peak integrals, 
peak multiplicity, 
peak couplings, 
APT signs, …

C9H12 (>4000 isomers)



Indices exponentially reduce candidate structures

Nmr indices: 
# HNMR peaks, 
# CNMR peaks,
peak integrals, 
peak multiplicity, 
peak couplings, 
APT signs, …

C9H12 (>4000 isomers)



Analytical Challenges – elucidating structure (CRNs)

Today, we can quickly elucidate (small) molecular structures.

(Through scalable, interpretable, structural indices)

Elucidating chemical reaction networks (CRNs) is still hard and slow.
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Analytical Challenges – elucidating structure (CRNs)

Today, we can quickly elucidate (small) molecular structures.

(Through scalable, interpretable, structural indices)

Elucidating chemical reaction networks (CRNs) is still hard and slow.

There is no“Systematic Identification Of  CRNs”

But we do already have analytical techniques for Reaction Monitoring

what is still missing are scalable, interpretable, structural indices.

i.e. unambiguous clues about CRN 

structure extractable from data



My research line: structural indices of  CRNs from reaction-

monitoring data



Some measurable structural indices

Discussed in Doubice, see slides in Discord

Data dimension, 

Nullspace

Radon partitions (generalized

notions of  convexity)
Kinetic exponents*

*similar to Delplot Rank

Xk = 𝑎0 + 𝑎1 𝑡 + 𝑎2 𝑡2 + …



KENA: 2 reaction steps

𝑋0 ⇄ 𝑋1 ⇄ 𝑋2



Q1: which is X_1, which is X_2?

Q2: can we show it without 

Trial & error / data fitting?

i.e. can we prove it, or 

measure it, ‘nmr-style’?

2 reaction steps

𝑋0 ⇄ 𝑋1 ⇄ 𝑋2



2 reaction steps

𝑋0 ⇄ 𝑋1 ⇄ 𝑋2

Q1: which is X_1, which is X_2?

Q2: can we show it without 

Trial & error / data fitting?

i.e. can we measure it?



Log-log

𝑋0 ⇄ 𝑋1 ⇄ 𝑋2
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Q1: which is X_1, which is X_2?

Q2: can we show it without 

Trial & error / data fitting?

i.e. can we measure it?
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Log-log reveals “Kinetic exponents”

𝑋0 ⇄ 𝑋1 ⇄ 𝑋2

1

2

∝ 𝑡0

∝ 𝑡1

∝ 𝑡2

0

𝑋0 (0
+) ∝ 𝑡0

𝑋1 (0
+) ∝ 𝑡1

𝑋2 (0
+) ∝ 𝑡2

Leading terms in dynamics 

as function of  time contain 

network connectivity

(proof in a few slides)
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Theory I – linear CRNs

𝑑𝑡 𝐗 = 𝕁 [𝐗]

𝐗 = exp 𝕁 𝑡 𝐗 0General solution:

Xk = Xk 0 + 𝑡 𝕁 𝐗 0 + 𝑡2
𝕁2 𝐗 0

2
+ 𝑡3

𝕁3 𝐗 0

3!
+ …
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Reaction steps for nonlinear networks

𝑋0 + 𝑋1 ⇄ 𝑋2 𝑋2 + 𝑋0 ⇄ 𝑋3
1 2

00

1

2
∝ 𝑡1

∝ 𝑡2



Kinetic exponents: General CRNs

𝑑𝑡 𝐗 = ෠𝕁 𝐗 [𝐗]
Nonlinear dynamics still has 

series expansion

+ pathlike interpretation

Kinetic Exponent law

Kin. Exp. product = 

1+  ∑ Kin. Exp. reactants 

0

1

1

Xk = 𝑎𝜅𝑘 𝑡𝜅𝑘 + 𝑎𝜅𝑘+1 𝑡𝜅𝑘+1 + …
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Kinetic exponents are extractable from real data





Some measurable CRN properties

Data dimension & 

conservation laws

Radon 

partitions

Kinetic
exponents



Data dimension – some history

Basic rough idea (d): 

d = # independent reactions = # independent species

d = ‘effective’ rank* of  (mean-subtracted) data

*In the linear algebra sense



Data dimension

Basic rough idea (d): 

d = # independent reactions = # independent species

d = ‘effective’ rank of  (mean-subtracted) data 

d = s – l = r – c

#species - # conservation laws = # reactions - # cycles

Found very limited experimental adoption. 



The first structural law

d = s – l = r – c

#species - # conservation laws = # reactions - # cycles

A

B C

A ⇄ B ⇄ C ⇄ A

s= 3         (A,B,C)

ℓ = 1    ([A] +[B] + [C] = Constant)

r = 3

c = 1



Used in a limited sense: isosbestic points (d=1)

isoemmissive

isosbestic

- Spectral overlap (reactant(s), product(s)) 

- 1d transformation (chemical, physical)
d=1 indicates particularly simple transformation, no 

side reactions* 



Data dimension

d=2 

(Isosbestic line curve)

d=1 

(isosbestic point)

d=3 d=4

Increasingly hard to see directly. (low) d can in general be

estimated via Singular Value Decomposition / PCA /  …



Quick example

SVD →

full data d = 2 ,  on short timescales d=1   



Quick example

SVD →

full data d = 2 ,  on short 

timescales d=1   

Problem: classical theory naively predicts d=3 

and ignores time-dependence / resolution d !



Data dimension vs the real world
Basic rough idea (d): 

d = # independent reactions = # independent species = ‘rank’ of  (mean-subtracted) data 

Some problems with the naive theory:

- Techniques often don’t see all species 

- Discernable dimension (“rank”) of  data depends on resolution (time, concentration, # variables, …)

- Chemical phenomenology (e.g. phase transitions, collinear reactions) can alter d

- dim(data) ≠ dim(CRN) ?

Emergent conservation laws, hidden currents, new theory needed



Theory to bridge experimental resolution and chemical phenomenology

arXiv:2306.09553

In review, PRX

Lot more indices + laws



Example: Co-production conservation laws

𝐶 ⟵ 𝐴+ 𝐵 ⟶ 𝐷
𝑙𝑠 = 2, 𝑙𝑖𝑟𝑟= 1 

𝐶 ⇄ 𝐴 + 𝐵 ⇄ 𝐷
𝑙𝑠 = 2, d = 2

𝑑

1

2

s – l = r – c ?

Emergent conservation laws, hidden currents, new theory needed



Co-production conservation laws

𝐶 ⟵ 𝐴+ 𝐵 ⟶ 𝐷
𝑙𝑠 = 2, 𝑙𝑖𝑟𝑟= 1 

𝐶 ⇄ 𝐴 + 𝐵 ⇄ 𝐷
𝑙𝑠 = 2, d = 2

𝑑

1

2

𝐿 = 𝜅2
+ 𝐶 − 𝜅1

+[𝐷]
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Merge collinear reactions, now reactions are genuinely

independent (vis-a-vis dynamics).



Co-production conservation laws

𝐴 + 𝐵 ⟶ 𝑝𝐶 + 1 − 𝑝 𝐷

Merge collinear reactions, now reactions are genuinely

independent (vis-a-vis dynamics).



Dimension and phase behavior

X(s) ⇄ X1(aq)

X1+ X1⇄X2

X1+ Xn−1⇄Xn

∅ → X1

X1 𝑒𝑞 = Ks   solubility

X2 𝑒𝑞 = K2 X1 𝑒𝑞
2

⋮

Xn 𝑒𝑞 = Kn X1 𝑒𝑞
𝑛

⋮

𝑠 = 𝑛, ℓ = 0
𝑑 = 𝑠

Suppose we slowly add X1
𝑠 −dimensional data
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Phases can be small (e.g. micelles), phase behavior 

often goes unnoticed!
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Very different behavior, same observables

In dynamic combinatorial chemistry,

one oftentimes observes very

low-dimensional data (d=1,2)

in spite of  there being many

species that can be isolated

(e.g. by HPLC-MS)



Example from systems chemistry

Typical data: UPLC chromatogram with distribution of  oligomers 1 – 18

Single building block: 𝑙𝑠 = 2 , two building blocks: 𝑙𝑠 = 3, 

In practice, we systematically find low-dimensional data (d=2, 3 , 𝑙 > 10) 

How can that be?
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Example from systems chemistry

Typical data: UPLC chromatogram with distribution of  oligomers 1 – 18

Single building block: 𝑙𝑠 = 2 , two building blocks: 𝑙𝑠 = 3, 

In practice, we systematically find low-dimensional data (d=2, 3 , 𝑙 > 10) 

How can that be? ↦ Hidden phase behavior



Emergent simplicity in chemistry

due to (psuedo)phases

Large molecular CRNS

Many ODEs Phase rules, phase diagrams



Emergent simplicity in chemistry

due to (psuedo)phases

Large molecular CRNS

Many ODEs Phase rules, phase diagrams

A.B., Y. Geiger, S. Otto. When aggregation becomes the

norm. invited, in preparation , J. Am. Chem. Soc.

Many chemical systems exhibit signatures and 

prerequisites of  hidden phase behavior, e.g.

- Common reactions in organic chemistry

- Concentrated salt solutions

- Formose reaction

- Oligopeptide solutions 

⋮ 

This profoundly alters their description, and 

how we can optimize them for a given task.



Thank you

Robert Pollice Daan van de Weem

Martijn van Kuppeveld
Ottolab

Hermanslab

Nicola Vassena 

Oriane CoskerYannick Geiger



Promo

Join our interdisciplinary autocatalysis seminar 

researchseminars.org/seminar/AutocatalysisRN

@ARNseminar

w. Praful Gagrani, Nicola Vassena, Wei-Hsiang Lin

@alexblokhuis 

@AlexBlokhuis

@alexblokhuis 

Daily video microscopy

chemistry experiments

https://www.youtube.com/redirect?event=channel_description&redir_token=QUFFLUhqa1N2X2dQX1MxTFRTZnpnRzkxV0trM2RteFh6Z3xBQ3Jtc0trNXNEX3pzVkVQa1J6cHhMQTJvU015V1BNbkoxTFJJUHZodGxPZ25sN2hhTS03RlpCWjZQNDBHbEVnYllPUjhFR2FSTFViTGRoMTlFZUFzRXRiMGVpOUhHRjlDSEJYMjN5dWdGNnFWcGVENHpZVDZVYw&q=https%3A%2F%2Fresearchseminars.org%2Fseminar%2FAutocatalysisRN
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