Modeling Isotope Labeling Experiments -Symmetries in Atom Transition Networks

Richard Golnik

University of Leipzig

2025/02/11

(ロ) (型) (E) (E) (E) (O)

Introduction

Figure: Metabolic interlacing of pyruvate production and degradation.

◆□◆ ▲□◆ ▲目◆ ▲目◆ ▲□◆

Isotope labeling experiments

Figure: Schematic depiction of positional enrichment, isotopomers, and mass isotopomers

Isotope labeling experiments

Figure: Metabolic development of 1-13C-Glucose via different metabolic pathways.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Overview

Figure: Overview of the construction process from a chemical reaction network (CRN) to a simplified atom transition network (sATN).

Complexes

Molecules as molecule graphs [1]

Figure: Example depiction for a molecular graph of pyruvate [1].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Complexes

- Molecules as molecule graphs [1]
- For $r \in R$:

are designated as complexes.

Figure: Example depiction for a molecular graph of pyruvate [1].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Complexes

- Molecules as molecule graphs [1]
- For $r \in R$:

are designated as complexes.

A reaction $r \in R$ can be considered as Figure: Example depiction for a molecular graph a transformation of complexes: of pyruvate [1].

$$r = Q \to Q' \tag{2}$$

Atom-to-Atom mapping

Definition (Atom-to-atom mapping (AAM))

An atom-atom map (AAM) for a reaction $r = (Q \rightarrow Q')$ is a bijection of the vertex sets of the complexes $\varphi : V(Q) \rightarrow V(Q')$ that preserves atom labels and hence satisfies

$$\ell_{V(Q)}(x) = \ell_{V(Q')}(\varphi(x)) \tag{3}$$

for all $x \in V(Q)$.

Figure: Depiction of an example reaction $2A \rightarrow B + C + D$.

Isomorphism

Definition (Isomorphism)

Let G = (V, E) and H = (W, F) be two undirected (directed) graphs with vertex labels $\ell_G : V \to L_V$ and $\ell_H : W \to L_H$. An isomorphism is a **bijection** $\mu : V \to W$ such that

$$\{x, y\} \in E \Leftrightarrow \{\mu(x), \mu(y)\} \in F \qquad ((x, y) \in E \Leftrightarrow (\mu(x), \mu(y) \in F))$$
(4)

and $\ell_G(x) = \ell_H(\mu(x))$.

Isomorphism

Definition (Isomorphism)

Let G = (V, E) and H = (W, F) be two undirected (directed) graphs with vertex labels $\ell_G : V \to L_V$ and $\ell_H : W \to L_H$. An isomorphism is a **bijection** $\mu : V \to W$ such that

$$\{x, y\} \in E \Leftrightarrow \{\mu(x), \mu(y)\} \in F \qquad ((x, y) \in E \Leftrightarrow (\mu(x), \mu(y) \in F))$$
(4)
and $\ell_G(x) = \ell_H(\mu(x)).$

Automorphism

The set of automorphisms Aut(G) on a graph G forms a group under composition.

Definition (Orbit)

$$\operatorname{orb}(x) \coloneqq \{ y \in V(G) \mid \exists \varrho \in \operatorname{Aut}(G) : \varrho(x) = y \}$$
(5)

Definition (Orbit)

$$\operatorname{orb}(x) \coloneqq \{ y \in V(G) \mid \exists \varrho \in \operatorname{Aut}(G) \colon \varrho(x) = y \}$$
(5)

Definition (Orbit)

$$\operatorname{orb}(x) \coloneqq \{ y \in V(G) \mid \exists \varrho \in \operatorname{Aut}(G) \colon \varrho(x) = y \}$$
(5)

Definition (Orbit)

$$\operatorname{orb}(x) \coloneqq \{ y \in V(G) \mid \exists \varrho \in \operatorname{Aut}(G) \colon \varrho(x) = y \}$$
(5)

For $\rho \in \operatorname{Aut}(Q)$ and $\rho' \in \operatorname{Aut}(Q')$ and AAM $\varphi : V(Q) \to V(Q')$ the maps φ and $\rho' \circ \varphi \circ \rho^{-1}$ describe the same chemical reaction

Definition (Equivalent AAMs)

Let $\varphi: V(Q) \to V(Q')$ and $\psi: V(Q) \to V(Q')$ be two vertex label preserving bijections. Then φ and ψ are equivalent if there are automorphisms $\varrho \in \operatorname{Aut}(Q)$ and $\varrho' \in \operatorname{Aut}(Q')$ such that $\psi = \varrho' \circ \varphi \circ \varrho^{-1}$.

Definition (Equivalent AAMs)

Let $\varphi: V(Q) \to V(Q')$ and $\psi: V(Q) \to V(Q')$ be two vertex label preserving bijections. Then φ and ψ are equivalent if there are automorphisms $\varrho \in \operatorname{Aut}(Q)$ and $\varrho' \in \operatorname{Aut}(Q')$ such that $\psi = \varrho' \circ \varphi \circ \varrho^{-1}$.

Figure: Example for two equivalent AAMs for example reaction $2A \rightarrow B + C + D$.

Definition (Equivalent AAMs)

Let $\varphi: V(Q) \to V(Q')$ and $\psi: V(Q) \to V(Q')$ be two vertex label preserving bijections. Then φ and ψ are equivalent if there are automorphisms $\varrho \in \operatorname{Aut}(Q)$ and $\varrho' \in \operatorname{Aut}(Q')$ such that $\psi = \varrho' \circ \varphi \circ \varrho^{-1}$.

Figure: Example for two equivalent AAMs for example reaction $2A \rightarrow B + C + D$.

Definition (Equivalent AAMs)

Let $\varphi: V(Q) \to V(Q')$ and $\psi: V(Q) \to V(Q')$ be two vertex label preserving bijections. Then φ and ψ are equivalent if there are automorphisms $\varrho \in \operatorname{Aut}(Q)$ and $\varrho' \in \operatorname{Aut}(Q')$ such that $\psi = \varrho' \circ \varphi \circ \varrho^{-1}$.

Figure: Example for two equivalent AAMs for example reaction $2A \rightarrow B + C + D$.

Raw atom transition graph

Definition (raw atom transition graph (rATG))

The raw (reaction-wise) atom transition graph (rATG) $\tilde{T}_{QQ'}$ of a single reaction $r = (Q \longrightarrow Q')$ with AAM φ is the bipartite graph with vertex set $V(T_{QQ'}) = V(Q) \cup V(Q')$ and a set of directed edges $E(\tilde{T}_{QQ'}) = \bigcup_{x \in V(Q)} E_{out}(x)$ where

$$E_{out}(x) \coloneqq \{ (x, (\varrho' \circ \varphi \circ \varrho^{-1})(x) | \varrho \in \operatorname{Aut}(Q), \varrho' \in \operatorname{Aut}(Q') \}$$
(6)

Raw atom transition graph

Definition (raw atom transition graph (rATG))

The raw (reaction-wise) atom transition graph (rATG) $\tilde{T}_{QQ'}$ of a single reaction $r = (Q \longrightarrow Q')$ with AAM φ is the bipartite graph with vertex set $V(T_{QQ'}) = V(Q) \cup V(Q')$ and a set of directed edges $E(\tilde{T}_{QQ'}) = \bigcup_{x \in V(Q)} E_{out}(x)$ where

$$E_{out}(x) \coloneqq \{ (x, (\varrho' \circ \varphi \circ \varrho^{-1})(x) | \varrho \in \operatorname{Aut}(Q), \varrho' \in \operatorname{Aut}(Q') \}$$
(6)

Definition

Let $r = (Q \rightarrow Q')$ be a reaction, $x \in V(Q)$ and $y \in V(Q')$. Then $\eta(x, y)$ is the number of pairs (x', y') such that $x' \in \operatorname{orb}_Q(x), y' \in \operatorname{orb}_{Q'}(y)$ and $y' = \varphi(x')$.

$$\eta(x,y) \coloneqq |\{(x',y') \mid y' = \varphi(x'), x' \in \operatorname{orb}_Q(x), y' \in \operatorname{orb}_{Q'}(y)\}|$$

$$(7)$$

Definition

Let $r = (Q \to Q')$ be a reaction, $x \in V(Q)$ and $y \in V(Q')$. Then $\eta(x, y)$ is the number of pairs (x', y') such that $x' \in \operatorname{orb}_Q(x), y' \in \operatorname{orb}_{Q'}(y)$ and $y' = \varphi(x')$.

$$\eta(x,y) \coloneqq |\{(x',y') \mid y' = \varphi(x'), x' \in \operatorname{orb}_Q(x), y' \in \operatorname{orb}_{Q'}(y)\}|$$
(7)

Definition

Let $r = (Q \to Q')$ be a reaction, $x \in V(Q)$ and $y \in V(Q')$. Then $\eta(x, y)$ is the number of pairs (x', y') such that $x' \in \operatorname{orb}_Q(x), y' \in \operatorname{orb}_{Q'}(y)$ and $y' = \varphi(x')$.

$$\eta(x,y) \coloneqq |\{(x',y') \mid y' = \varphi(x'), x' \in \operatorname{orb}_Q(x), y' \in \operatorname{orb}_{Q'}(y)\}|$$
(7)

• Set of edges from $\operatorname{orb}_Q(x)$ to $\operatorname{orb}_{Q'}(y)$ in the rATG:

$$E_{xy}^{\tilde{T}} \coloneqq \{ (x', y') \in E(\tilde{T}_{QQ'}) \mid x' \in \operatorname{orb}_Q(x), y' \in \operatorname{orb}_{Q'}(y) \}$$

$$(8)$$

Definition

Let $r = (Q \to Q')$ be a reaction, $x \in V(Q)$ and $y \in V(Q')$. Then $\eta(x, y)$ is the number of pairs (x', y') such that $x' \in \operatorname{orb}_Q(x), y' \in \operatorname{orb}_{Q'}(y)$ and $y' = \varphi(x')$.

$$\eta(x,y) \coloneqq |\{(x',y') \mid y' = \varphi(x'), x' \in \operatorname{orb}_Q(x), y' \in \operatorname{orb}_{Q'}(y)\}|$$

$$(7)$$

• Set of edges from $\operatorname{orb}_Q(x)$ to $\operatorname{orb}_{Q'}(y)$ in the rATG:

$$E_{xy}^{\tilde{T}} \coloneqq \{ (x', y') \in E(\tilde{T}_{QQ'}) \mid x' \in \operatorname{orb}_Q(x), y' \in \operatorname{orb}_{Q'}(y) \}$$

$$(8)$$

Edge-weights in atom transition graphs:

$$h_{\tilde{\mathcal{T}}_{QQ'}}(x,y) = \frac{\eta(x,y)}{|E_{xy}^{\tilde{\mathcal{T}}}|} = \frac{\eta(x,y)}{|\operatorname{orb}_Q(x)| \cdot |\operatorname{orb}_{Q'}(y)|}$$
(9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Atom equivalence classes

Definition (Atom equivalence relationships)

Let $r = (Q \rightarrow Q')$ be a reaction and Q_{\circ} and Q'_{\circ} the disjoint union of the pairwisely non-isomorphic connected components Q and Q', respectively. Then $\zeta : Q \cup Q' \rightarrow Q_{\circ} \cup Q'_{\circ}$ is a map such that

- $\zeta(Q) = Q_\circ$ and $\zeta(Q') = Q'_\circ$
- ζ(c) is a connected component of Q_◦ or Q_◦' if and only if c is a connected component of Q or Q'
- $\blacktriangleright \zeta$ is an isomorphisms between connected components

Atom transition graph

Definition (Atom transition graph (ATG))

The atom transition graph (ATG) $T_r = T_{QQ'}$ of a reaction $r = (Q \rightarrow Q')$ is obtained as the quotient of the raw atom transition graph $\tilde{T}_{QQ'}$ w.r.t. the equivalence classes $\zeta^{-1}(\cdot)$ defined by the isomorphic connected components of Q and Q', respectively.

Edge-weights for ATGs

The number of edges between orb_c(u), orb_{c'}(v):

$$\left|E_{uv}^{T}\right| = \left|\operatorname{orb}_{c}(u)\right| \cdot \left|\operatorname{orb}_{c'}(v)\right| \tag{10}$$

◆□◆ ▲□◆ ▲目◆ ▲目◆ ▲□◆

Edge-weights for ATGs

▶ The number of edges between orb_c(u), orb_{c'}(v):

$$\left|E_{uv}^{T}\right| = \left|\operatorname{orb}_{c}(u)\right| \cdot \left|\operatorname{orb}_{c'}(v)\right| \tag{10}$$

• Edge-weights in ATGs:

$$h_{\mathcal{T}_{QQ'}}(u,v) = \frac{\eta(u,v)}{|\mathcal{E}_{uv}^{\mathcal{T}}|} = \frac{\eta(u,v)}{|\operatorname{orb}_{c}(u)| \cdot |\operatorname{orb}_{c'}(v)|}$$
(11)

Simplified Atom Transition Graphs

・ロ・・聞・・思・・思・ ・ 思・

Overview of atom transition graphs

うせん 前 ふかん キャート 金字 ふしゃ

Simplified Atom Transition Networks (sATN)

Figure: Overview over the construction from chemical reaction networks (CRN) to simplified atom transition networks (ATN)

Summary

- \checkmark Non-trivial stoichiometries and symmetries
- $\checkmark\,$ Conserve valuations on the orbits of atoms.
- $\checkmark\,$ Linear inhomogenous system of differential equations

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- $\checkmark\,$ Stationary and non-stationary ILEs
- \checkmark Multi-labeling experiments.

 \checkmark Positional enrichment

 $\checkmark\,$ Positional enrichment

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

 \times MIDs

 $\checkmark\,$ Positional enrichment

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

- \times MIDs
- × Isotopomers

- \checkmark Positional enrichment
- \times MIDs
- × Isotopomers
- ✓ Preprint on Research Square: https://doi.org/10.21203/rs.3.rs-5888287/v1

• Generalisation to elementary metabolite units and cumomers.

Acknowledgement

- Peter F. Stadler
- Thomas Gatter
- Bruno Schmidt
- Nico Domschke
- BeerInf Group

UNIVERSITÄT LEIPZIG

Thank you.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Bibliography

Christoph Flamm, Daniel Merkle, Peter F. Stadler, and Uffe Thorsen.

Automatic Inference of Graph Transformation Rules Using the Cyclic Nature of Chemical Reactions, April 2016.

