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→ denoted by 𝐶 𝑢
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Hasse Diagram

• “Diagram” or Graph to visualize partial orders
→ edge 𝑥, 𝑦 iff 𝑥 ≽ 𝑦, ∄ 𝑤 with 𝑥 ≽ 𝑤 ≽ 𝑦
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Let 𝑮 be a DAG, then:

𝒊 𝑫 𝒖 = 𝑫 𝒗 𝐢𝐟 𝐚𝐧𝐝 𝐨𝐧𝐥𝐲 𝐢𝐟 𝒖 = 𝒗

→ Assume 𝐷 𝑢 = 𝐷 𝑣 , 𝑢 ≠ 𝑣
→ 𝑢 ∈ 𝐷 𝑣 , 𝑣 ∈ 𝐷 𝑢
→ paths 𝑢…𝑣, 𝑣 …𝑢 in 𝐺
→ 𝐺 contains a cycle
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→ 𝐺 contains a cycle

𝐢𝐢 𝒗 ∈ 𝑫(𝒖) if and only if 𝑫 𝒗 ⊆ 𝑫(𝒖)
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→𝑣 ∈ 𝐷(𝑢), then there is path 𝑢 …𝑣. 
→ ∀𝑥 ∈ 𝐷 𝑣 there is path 𝑣 …𝑥.
→ ∀𝑥 ∈ 𝐷 𝑣 there is path 𝑢…𝑣…𝑥 (acyclicity)
→ consequently 𝐷 𝑣 ⊆ 𝐷 𝑢 .

Bruno Schmidt Descendant Clusters Slide 6/13



Some Descendant Clusters Properties

Let 𝑮 be a DAG, then:

𝒊 𝑫 𝒖 = 𝑫 𝒗 𝐢𝐟 𝐚𝐧𝐝 𝐨𝐧𝐥𝐲 𝐢𝐟 𝒖 = 𝒗

→ Assume 𝐷 𝑢 = 𝐷 𝑣 , 𝑢 ≠ 𝑣
→ 𝑢 ∈ 𝐷 𝑣 , 𝑣 ∈ 𝐷 𝑢
→ paths 𝑢…𝑣, 𝑣 …𝑢 in 𝐺
→ 𝐺 contains a cycle

𝐢𝐢 𝒗 ∈ 𝑫(𝒖) if and only if 𝑫 𝒗 ⊆ 𝑫(𝒖)

→𝑣 ∈ 𝐷(𝑢), then there is path 𝑢 …𝑣. 
→ ∀𝑥 ∈ 𝐷 𝑣 there is path 𝑣 …𝑥.
→ ∀𝑥 ∈ 𝐷 𝑣 there is path 𝑢…𝑣…𝑥 (acyclicity)
→ consequently 𝐷 𝑣 ⊆ 𝐷 𝑢 .
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→𝑣 ∈ 𝐷 𝑣 , 𝑢 ∈ 𝐷 𝑢 by definition
→𝐷 𝑣 ⊆ 𝐷 𝑢 implies 𝑣 ∈ 𝐷 𝑢

Bruno Schmidt Descendant Clusters Slide 6/13



Hasse Diagram Isomorphism

𝑫(𝒗)

𝑫(𝒖)

𝑫(𝒘)

𝑫(𝒙)

𝑫(𝒂) 𝑫(𝒃) 𝑫(𝒄)
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• (𝑖) yields bijection between 𝑉 𝐺 and 𝔇𝐺
→ 𝜙: 𝑉 𝐺 → 𝔇, 𝜙 𝑢 ≔ 𝐷(𝑢)

𝒊𝒊 𝒗 ∈ 𝑫(𝒖) if and only if 𝑫 𝒗 ⊆ 𝑫 𝒖

• Let 𝒖, 𝒗 ∈ 𝑬(𝑮). 
→ if 𝑢, 𝑣 is a shortcut, there is a 𝑤 ∈ 𝐷 𝑢

with 𝐷 𝑣 ⊆ 𝐷 𝑤 ⊆ 𝐷 𝑢 , 𝐷 𝑢 , 𝐷 𝑣 ∉ 𝐸(ℋ 𝔇 )
→ if (𝑢, 𝑣) is not a shortcut there is no such 𝑤

and 𝐷 𝑢 , 𝐷 𝑣 ∈ 𝐸(ℋ 𝔇 )

• Let, 𝑫 𝒖 ,𝑫 𝒗 ∈ 𝑬 𝓗 𝕯
→ ∄𝑤 distinct from 𝑢, 𝑣 with 𝐷 𝑣 ⊆ D 𝑤 ⊆ D 𝑢
→ 𝐷 𝑣 ⊆ D 𝑢 and path P = 𝑢…𝑣 in 𝐺
→ 𝑃 > 1 then P = 𝑢…𝑤…𝑣 and 𝐷 𝑣 ⊆ D 𝑤 ⊆ D 𝑢
→ |P|=1 and 𝑢, 𝑣 ∈ 𝐸(𝐺)

𝑫(𝒗)

𝑫(𝒖)

𝑫(𝒘)

𝑫(𝒙)

𝑫(𝒂) 𝑫(𝒃) 𝑫(𝒄)
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• Given a set system 𝔖:
→when is 𝔖 equal to the descendant clusters of a DAG?
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• Not the case for every set system.
→Maybe we need more sets?

(at least as many sets as “vertices”)
→Maybe we need all singletons?
→Maybe we need ...
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Descendant Clusters

• Given a set system 𝔖:
→when is 𝔖 equal to the descendant clusters of a DAG?

• Not the case for every set system.
→Maybe we need more sets?

(at least as many sets as “vertices”)
→Maybe we need all singletons?
→Maybe we need ...

• Maybe we start with a function that finds the “correct” 
descendant set in 𝔇 for a vertex without consulting 𝐺.
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D-Snake! ෩𝐷
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D-Snake! ෩𝐷

• For set system 𝔖 over 𝑋 and 𝑢 ∈ 𝑋:
→ derive ෩𝑼 = 𝑨 ∈ 𝕾 𝒖 ∈ 𝑨}

(all sets in 𝔖 that contain 𝑢)
→ find “minimal” 𝑈 ∈ ෩𝑈 such that
𝑼 ⊆ 𝑼′ for all 𝑼′ ∈ 𝑼

→ ෩𝑫 𝒖 ≔ 𝐔
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𝑼 ⊆ 𝑼′ for all 𝑼′ ∈ 𝑼

→ ෩𝑫 𝒖 ≔ 𝐔

• Corresponds to a minimal element, 
or sink, in the by ෩𝑈 induced subgraph 
of ℋ 𝔖 (ℋ 𝔖 ෩𝑈 )
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Let 𝑮 be a DAG and 𝕯 be its descendant cluster. Then, 𝑫 𝒖 = ෩𝑫(𝒖) and 
𝒇: 𝑽 𝑮 → 𝕯, 𝒇 𝒖 ≔ ෩𝑫 𝒖 is bijective. 
(Has also been proved with non-anecdotal arguments)

Bruno Schmidt Descendant Clusters Slide 9/13



D-Snake!

Bruno Schmidt Descendant Clusters Slide 10/13



D-Snake!

(THM) Let 𝕾 be a set system over 𝑿. Then, 𝕾 = 𝕯 of a directed 
graph 𝑮 if and only if 𝒇:𝑿 → 𝕾, 𝒇 𝒖 ≔ ෩𝑫(𝒖) is a bijection.
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• Can we somewhat robustly derive DAGs for “incomplete” 𝔇?
→Might only described by constrains like 𝑙𝑐𝑎 𝑥, 𝑦 ≼ 𝑙𝑐𝑎 𝑥, 𝑦, 𝑧 , …
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• Characterization of 𝔇 of DAG graph classes with certain global properties
→ e.g. global last-common-ancestor networks

• How does 𝔇 behave for undirected graphs?
→ strongly connected components can most likely only be recovered

as blocks (cliques)

• Somewhat coincides with the all-path transit function for DAGs:
𝐴 𝑢, 𝑣 = 𝐷 𝑢 ∩ 𝑃(𝑣) (where 𝑃 denotes all predecessors of 𝑣)
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Thank you!

Marc Hellmuth

Peter F.  Stadler

&

Everyone attending!
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“Here is your corrected graphical abstract, 
now with Austrian Speck accurately depicted 
as a large piece of cured bacon on the right 
side and the bottle of clear pear liquor on the 
left. The scientific focus remains intact while 
subtly and carefully integrating the conference 
setting.”

~ChatGPT & Dall-E
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Leaf extended DAG
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