POLYNOMIAL SOLUTIONS TO HARD PROBLEMS FOR UNDIRECTED 2-QUASI BEST MATCH GRAPHS

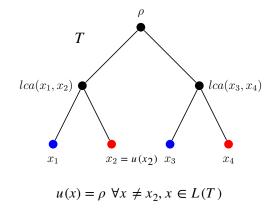
Annachiara Korchmaros joint work with Peter F. Stadler, Marc Hellmuth, and Federico Romaniello

40th TBI Winterseminar in Bled

Febuary 11, 2025

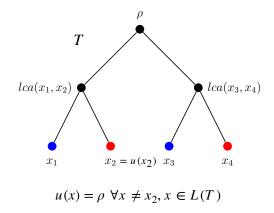
2QBMG: EXPLAINING TREE

- Tree **T** is rooted at ρ , phylogenetic, $\sigma : L(T) \longrightarrow \{\bullet, \bullet\}$.
- u: $L(T) \longrightarrow V(T)$ is a truncation map for *T* if u(x) = t s.t. *t* in the path from *x* to ρ .

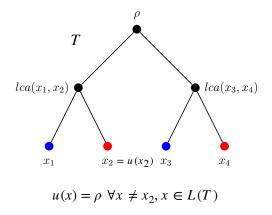


- Tree **T** is rooted at ρ , phylogenetic, $\sigma : L(T) \longrightarrow \{\bullet, \bullet\}$.
- u: $L(T) \longrightarrow V(T)$ is a truncation map for *T* if u(x) = t s.t. *t* in the path from *x* to ρ .
- ▶ $y \in L(T)$ is 2-quasi-best match of $x \in L(T)$ with $\sigma(x) \neq \sigma(y)$ if

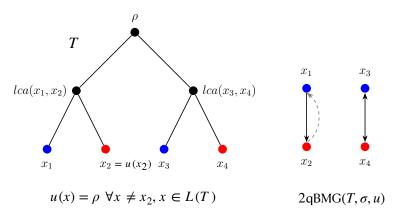
1. $\operatorname{lca}(x, y) \preceq \operatorname{lca}(x, z)$ for all $z \in L(T)$ with $\sigma(z) = \sigma(y)$ 2. $\operatorname{lca}(x, y) \preceq u(x)$.



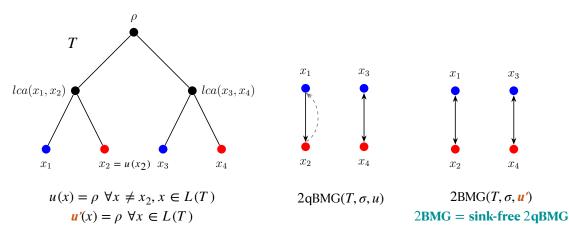
- Tree **T** is rooted at ρ , phylogenetic, $\sigma : L(T) \longrightarrow \{\bullet, \bullet\}$.
- u: $L(T) \longrightarrow V(T)$ is a truncation map for *T* if u(x) = t s.t. *t* in the path from *x* to ρ .
- ► $y \in L(T)$ is **2-quasi-best match** of $x \in L(T)$ with $\sigma(x) \neq \sigma(y)$ if
 - 1. $\operatorname{lca}(x, y) \preceq \operatorname{lca}(x, z)$ for all $z \in L(T)$ with $\sigma(z) = \sigma(y)$ 2. $\operatorname{lca}(x, y) \preceq u(x)$.
- \overrightarrow{G} bipartite digraph is **2qBMG** explained by (T, σ, u) if 1. $V(\overrightarrow{G}) = L(T)$ and bipartition is consistent with σ 2. $x \longrightarrow y$ iff y is a 2-quasi best match of x.



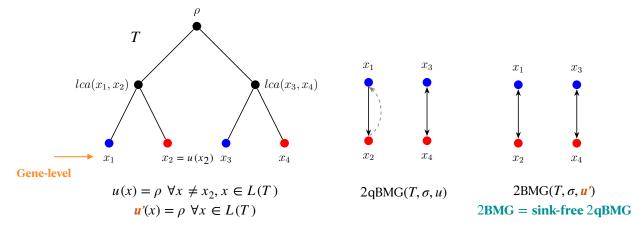
- Tree **T** is rooted at ρ , phylogenetic, $\sigma : L(T) \longrightarrow \{\bullet, \bullet\}$.
- u: $L(T) \longrightarrow V(T)$ is a truncation map for *T* if u(x) = t s.t. *t* in the path from *x* to ρ .
- ► $y \in L(T)$ is **2-quasi-best match** of $x \in L(T)$ with $\sigma(x) \neq \sigma(y)$ if
 - 1. $\operatorname{lca}(x, y) \preceq \operatorname{lca}(x, z)$ for all $z \in L(T)$ with $\sigma(z) = \sigma(y)$ 2. $\operatorname{lca}(x, y) \preceq u(x)$.
- \overrightarrow{G} bipartite digraph is **2qBMG** explained by (T, σ, u) if 1. $V(\overrightarrow{G}) = L(T)$ and bipartition is consistent with σ 2. $x \longrightarrow y$ iff y is a 2-quasi best match of x.



- Tree **T** is rooted at ρ , phylogenetic, $\sigma : L(T) \longrightarrow \{\bullet, \bullet\}$.
- u: $L(T) \longrightarrow V(T)$ is a truncation map for *T* if u(x) = t s.t. *t* in the path from *x* to ρ .
- ► $y \in L(T)$ is **2-quasi-best match** of $x \in L(T)$ with $\sigma(x) \neq \sigma(y)$ if
 - 1. $\operatorname{lca}(x, y) \preceq \operatorname{lca}(x, z)$ for all $z \in L(T)$ with $\sigma(z) = \sigma(y)$ 2. $\operatorname{lca}(x, y) \preceq u(x)$.
- \overrightarrow{G} bipartite digraph is **2qBMG** explained by (T, σ, u) if 1. $V(\overrightarrow{G}) = L(T)$ and bipartition is consistent with σ 2. $x \longrightarrow y$ iff y is a 2-quasi best match of x.

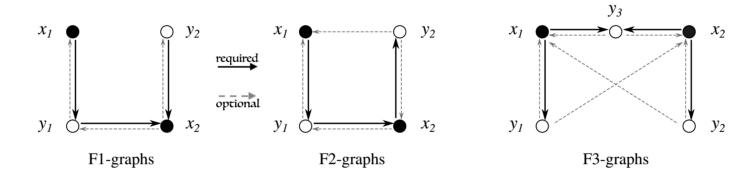


- Tree **T** is rooted at ρ , phylogenetic, $\sigma : L(T) \longrightarrow \{\bullet, \bullet\}$.
- u: $L(T) \longrightarrow V(T)$ is a truncation map for *T* if u(x) = t s.t. *t* in the path from *x* to ρ .
- ► $y \in L(T)$ is **2-quasi-best match** of $x \in L(T)$ with $\sigma(x) \neq \sigma(y)$ if
 - 1. $\operatorname{lca}(x, y) \preceq \operatorname{lca}(x, z)$ for all $z \in L(T)$ with $\sigma(z) = \sigma(y)$ 2. $\operatorname{lca}(x, y) \preceq u(x)$.
- \overrightarrow{G} bipartite digraph is **2qBMG** explained by (T, σ, u) if 1. $V(\overrightarrow{G}) = L(T)$ and bipartition is consistent with σ 2. $x \longrightarrow y$ iff y is a 2-quasi best match of x.



2QBMG: FORBIDDEN INDUCED-SUBGRAPHS

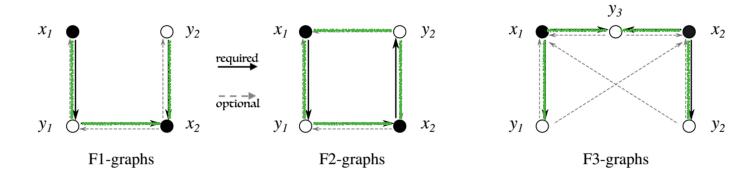
• A bipartite digraph is a 2-qBMG iff it contains no induced F1-, F2-, and F3-graph¹.



¹David Schaller, Peter F Stadler, and Marc Hellmuth (2021). "Complexity of modification problems for best match graphs". In: *Theoretical Computer Science* 865.

2QBMG: FORBIDDEN INDUCED-SUBGRAPHS

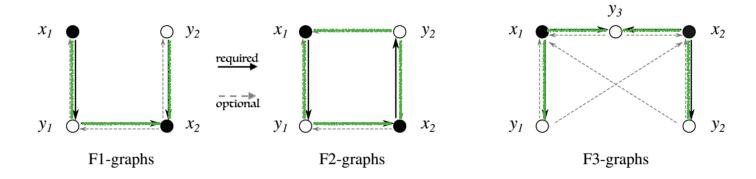
• A bipartite digraph is a 2-qBMG iff it contains no induced F1-, F2-, and F3-graph¹.



¹David Schaller, Peter F Stadler, and Marc Hellmuth (2021). **"Complexity of modification problems for best match graphs".** In: *Theoretical Computer Science* 865.

2QBMG: FORBIDDEN INDUCED-SUBGRAPHS

▶ A bipartite digraph is a 2-qBMG iff it contains no induced F1-, F2-, and F3-graph¹.



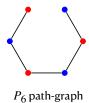
• **un2qBMG** is the undirected underlying graph *G* of a 2qBMG \vec{G} . Question 1: Is a un2qBMG P_4 -, C_4 -, or P_5 -free?²

¹David Schaller, Peter F Stadler, and Marc Hellmuth (2021). "Complexity of modification ²Annachiara Korchmaros (2024). "Forbidden Paths and Cycles in the Undirected Underlying Graph of a 2-quasi Best Match Graph". In: 24th Conference Information Technologies – Applications and Theory (ITAT 2024).

${\sf UN2QBMG}{:}\ {\sf CHORDAL}\ {\sf BIPARTITE}$

Proposition

 P_6 is the minimum forbidden induced subgraph for un2qBMGs.



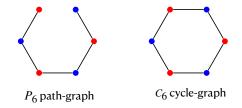
${\sf UN2QBMG}{:}\ {\sf CHORDAL}\ {\sf BIPARTITE}$

Proposition

 P_6 is the minimum forbidden induced subgraph for un2qBMGs.

Theorem 1

*Every un2qBMG is P*₆*- and C*₆*-free.*



${\tt UN2QBMG: CHORDAL BIPARTITE}$

Proposition

 P_6 is the minimum forbidden induced subgraph for un2qBMGs.

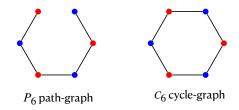
Theorem 1

Every un2qBMG is P₆- and C₆-free.

Corollary

Every un2qBMG *is* P_6 *-free and chordal bipartite* (*ie* C_l *-free for* $l \ge 6$).

• Every C_l contains P_6 as induced subgraph for l > 6.



${\tt UN2QBMG: CHORDAL BIPARTITE}$

Proposition

 P_6 is the minimum forbidden induced subgraph for un2qBMGs.

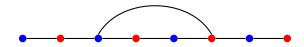
Theorem 1

Every un2qBMG is P₆- and C₆-free.

Corollary

Every un2qBMG *is* P_6 *-free and chordal bipartite* (*ie* C_l *-free for* $l \ge 6$).

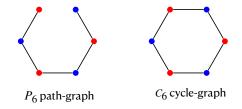
• Every C_l contains P_6 as induced subgraph for l > 6.



sunset-graph

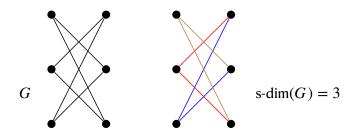
Proposition 2

Every un2qBMG is sunset-free.



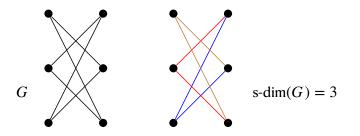
BICLIQUE COVER PROBLEM

► A collection of (induced) bicliques covering *E*(*G*) is a **biclique cover**.



BICLIQUE COVER PROBLEM

► A collection of (induced) bicliques covering *E*(*G*) is a **biclique cover**.



The minimum cardinality of biclique cover of G is the bipartite dimension and referred as s-dim(G) for bipartite graphs¹.

¹ Jérôme Amilhastre, Marie-Catherine Vilarem, and Philippe Janssen (1998). **"Complexity of minimum biclique cover and minimum biclique decomposition for bipartite domino-free graphs".** In: *Discrete applied mathematics* 86.2-3, pp. 125–144.

Known results:

1. Computing s-dim (**biclique cover problem**) is NP-complete for bipartite and chordal biparite graphs¹.

¹Haiko Müller (1996). **"On edge perfectness and classes of bipartite graphs".** In: *Discrete Mathematics* 149.1-3, pp. 159–187.

Known results:

- 1. Computing s-dim (**biclique cover problem**) is NP-complete for bipartite and chordal biparite graphs¹.
- 2. The biclique cover problem is **polynomial** for bipartite domino-free, convex, distance hereditary graphs².

¹Haiko Müller (1996). **"On edge perfectness and classes of bipartite graphs".** In: *Discrete Mathematics* 149.1-3, pp. 159–187.

²Jérôme Amilhastre, Marie-Catherine Vilarem, and Philippe Janssen (1998). "Complexity of minimum biclique cover and minimum biclique decomposition for bipartite domino-free graphs". In: *Discrete applied mathematics* 86.2-3, pp. 125–144.

Known results:

- 1. Computing s-dim (**biclique cover problem**) is NP-complete for bipartite and chordal biparite graphs¹.
- 2. The biclique cover problem is **polynomial** for bipartite domino-free, convex, distance hereditary graphs².

Question 1: What's the complexity of determining s-dim(un2qBMG)?

¹Haiko Müller (1996). **"On edge perfectness and classes of bipartite graphs".** In: *Discrete Mathematics* 149.1-3, pp. 159–187.

²Jérôme Amilhastre, Marie-Catherine Vilarem, and Philippe Janssen (1998). "Complexity of minimum biclique cover and minimum biclique decomposition for bipartite domino-free graphs". In: *Discrete applied mathematics* 86.2-3, pp. 125–144.

Known results:

- 1. Computing s-dim (**biclique cover problem**) is NP-complete for bipartite and chordal biparite graphs¹.
- 2. The biclique cover problem is **polynomial** for bipartite domino-free, convex, distance hereditary graphs².

Question 1: What's the complexity of determining s-dim(un2qBMG)?

Question 2: Is un2qBMG domino-free? convex? distance hereditary?

¹Haiko Müller (1996). **"On edge perfectness and classes of bipartite graphs".** In: *Discrete Mathematics* 149.1-3, pp. 159–187.

²Jérôme Amilhastre, Marie-Catherine Vilarem, and Philippe Janssen (1998). "Complexity of minimum biclique cover and minimum biclique decomposition for bipartite domino-free graphs". In: *Discrete applied mathematics* 86.2-3, pp. 125–144.

Domino-free graphs do no

n fo

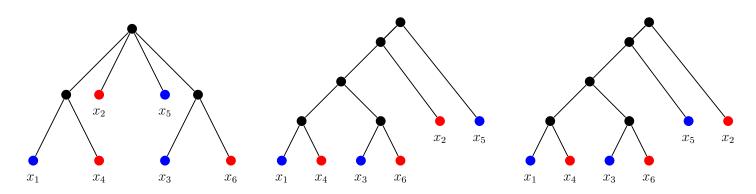
Domino-free graphs do no

anse ion

DOMINO-FREE GRAPHS

Known results.

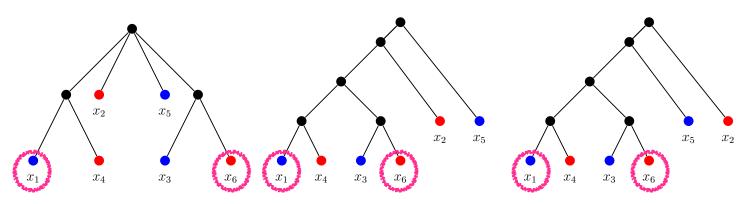
Theorem 2 biparite graphs¹¹.



DOMINO-FREE GRAPHS

Known results

Theorem 2 biparite graphs¹¹.

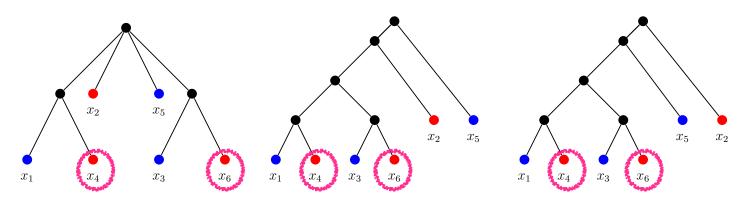


DOMINO-FREE GRAPHS

Known results

Theorem 2

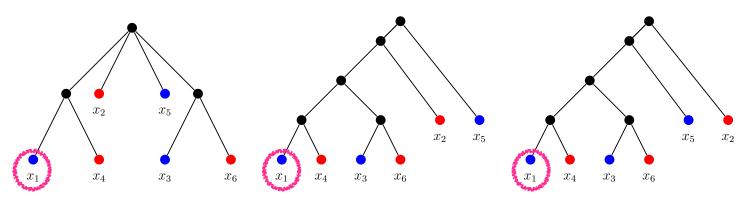
biparite graphs¹¹.



DOMINO-FREE GRAPHS

Known results.

Theorem 2 biparite graphs¹¹.

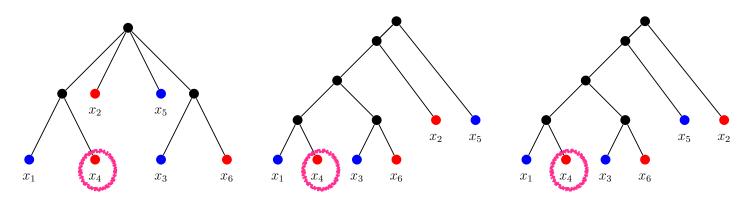


DOMINO-FREE GRAPHS

Known results.

Theorem 2

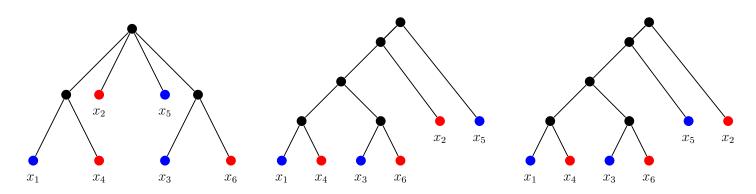
biparite graphs¹¹.



DOMINO-FREE GRAPHS

Known results.

Theorem 2 biparite graphs¹¹.



• Chordal graphs are **distance-hereditary** iff they are domino-free¹.

• Chordal graphs are **distance-hereditary** iff they are domino-free¹.

Corollary

un2qBMGs are not distance-hereditary graphs.

¹Haiko Müller (1996). "On edge perfectness and classes of bipartite graphs". In: *Discrete Mathematics* 149.1-3, pp. 159–187.

• Chordal graphs are **distance-hereditary** iff they are domino-free¹.

Corollary

un2qBMGs are not distance-hereditary graphs.

- A graph is bipartite **convex** if its adjacent matrix satisfies the consecutive 1's property (C1P)
- C1P: there exists a permutation of rows st the 1's in each column are consecutive.

¹Haiko Müller (1996). "On edge perfectness and classes of bipartite graphs". In: *Discrete Mathematics* 149.1-3, pp. 159–187.

• Chordal graphs are **distance-hereditary** iff they are domino-free¹.

(1 0 1 0)

Corollary

un2qBMGs are not distance-hereditary graphs.

- A graph is bipartite **convex** if its adjacent matrix satisfies the consecutive 1's property (C1P)
- C1P: there exists a permutation of rows st the 1's in each column are consecutive.

Lemma²

$$M_{c} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} and M_{p} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} do not satisfy C1P.$$

²Witold Lipski Jr (1978). "Generalizations of the consecutive ones property and related **NP-complete problems".** In: *Coordinated Science Laboratory Report no. T-67.*

¹Haiko Müller (1996). "On edge perfectness and classes of bipartite graphs". In: *Discrete Mathematics* 149.1-3, pp. 159–187.

• Chordal graphs are **distance-hereditary** iff they are domino-free¹.

Corollary

un2qBMGs are not distance-hereditary graphs.

- A graph is bipartite **convex** if its adjacent matrix satisfies the consecutive 1's property (C1P)
- C1P: there exists a permutation of rows st the 1's in each column are consecutive.

Lemma²

$$M_c = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 and $M_p = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$ do not satisfy C1P.

²Witold Lipski Jr (1978). "Generalizations of the consecutive ones property and related **NP-complete problems".** In: *Coordinated Science Laboratory Report no. T-67.*

¹Haiko Müller (1996). **"On edge perfectness and classes of bipartite graphs".** In: *Discrete Mathematics* 149.1-3, pp. 159–187.

DISTANCE HEREDITARY & CONVEX GRAPHS

Chordal graphs are distance-hereditary iff they are domino-free¹.

Corollary

un2qBMGs are not distance-hereditary graphs.

- A graph is bipartite convex if its adjacent matrix satisfies the consecutive 1's property (C1P)
- C1P: there exists a permutation of rows st the 1's in each column are consecutive.

Lemma²

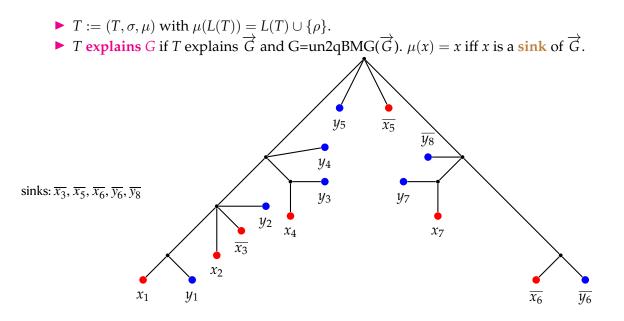
$$M_c = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} and M_p = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} do \text{ not satisfy C1P.}$$

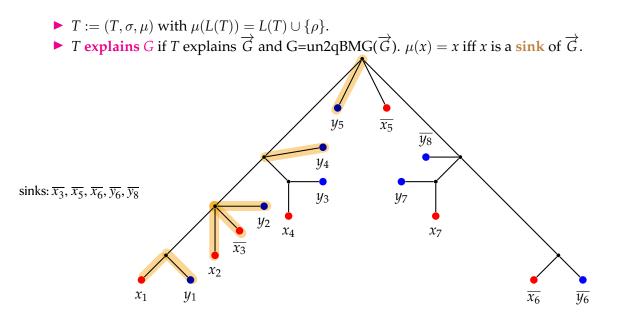
Conjecture

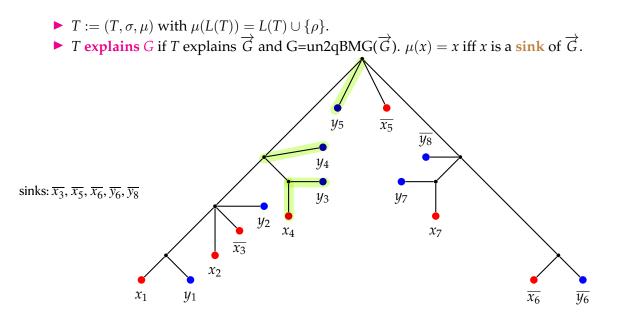
un2qBMGs are not convex graphs.

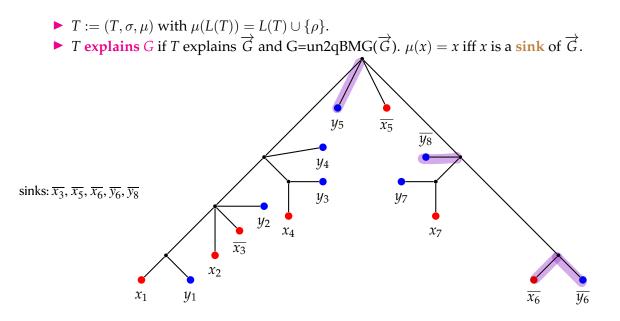
¹Haiko Müller (1996). "On edge perfectness and classes of bipartite graphs". In: Discrete Mathematics 149.1-3, pp. 159–187.

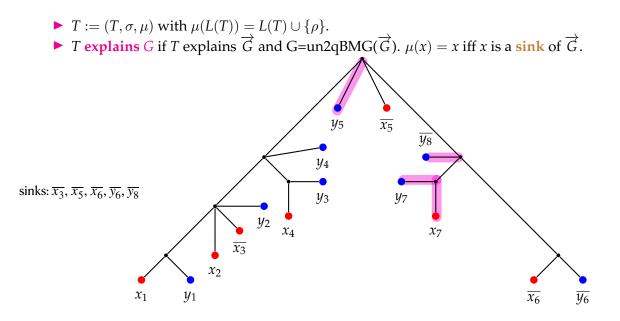
²Witold Lipski Jr (1978). "Generalizations of the consecutive ones property and related NP-complete problems". In: Coordinated Science Laboratory Report no. T-67.

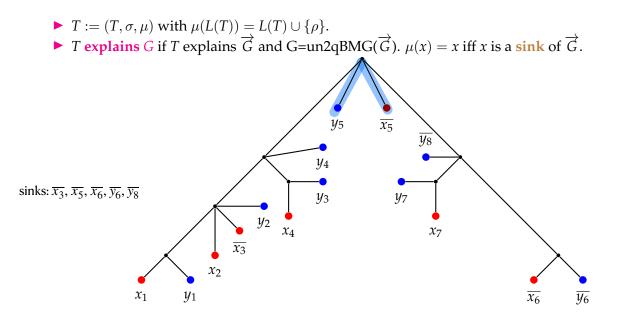


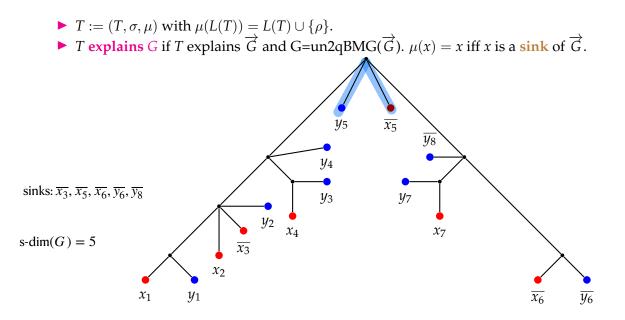


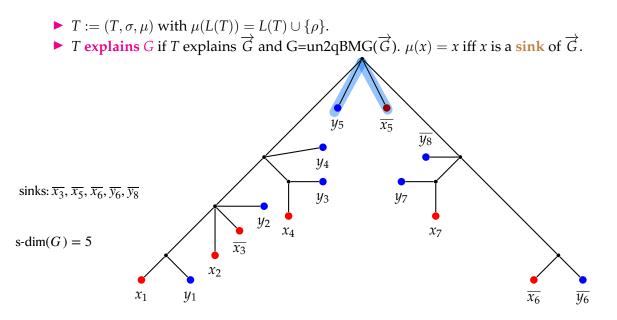












Theorem 3

If G is explained by T, s-dim $(un2qBG) \le 1 + numb$. of starts of T. The bound is tight when the root of T has two children of different colors, one of which is a sink.

▶ $A, B \subseteq V(G)$; A **2-dominates** B if $\forall b \in B, \exists a_1, a_2 \in A$ st $a_1b, a_2b \in E(G)$.

Subhabrata Paul and Kamal Santra (2024). "Algorithmic study on 2-transitivity of graphs". In: *Discrete Applied Mathematics* 358, pp. 57–75.

- ▶ $A, B \subseteq V(G)$; A **2-dominates** B if $\forall b \in B, \exists a_1, a_2 \in A$ st $a_1b, a_2b \in E(G)$.
- ▶ { $V_1, V_2, ..., V_k$ } is 2-transitivity partition of V(G) if V_i 2-dominates V_j for $1 \le i < j \le k$.

Subhabrata Paul and Kamal Santra (2024). "Algorithmic study on 2-transitivity of graphs". In: *Discrete Applied Mathematics* 358, pp. 57–75.

- ▶ $A, B \subseteq V(G)$; A **2-dominates** B if $\forall b \in B, \exists a_1, a_2 \in A$ st $a_1b, a_2b \in E(G)$.
- ▶ { $V_1, V_2, ..., V_k$ } is 2-transitivity partition of V(G) if V_i 2-dominates V_j for $1 \le i < j \le k$.
- **Tr**₂(**G**) (2-transitivity of *G*) is the maximum order of 2-transitivity partitions of *G*.

Subhabrata Paul and Kamal Santra (2024). "Algorithmic study on 2-transitivity of graphs". In: *Discrete Applied Mathematics* 358, pp. 57–75.

- ▶ $A, B \subseteq V(G)$; A **2-dominates** B if $\forall b \in B, \exists a_1, a_2 \in A$ st $a_1b, a_2b \in E(G)$.
- ▶ { $V_1, V_2, ..., V_k$ } is 2-transitivity partition of V(G) if V_i 2-dominates V_j for $1 \le i < j \le k$.
- **Tr**₂(**G**) (2-transitivity of *G*) is the maximum order of 2-transitivity partitions of *G*.

Known results :

- 1. Computing $Tr_2(G)$ (maximum 2-transitivity problem) is NP-complete for bipartite graphs.
- 2. Computing $Tr_2(G)$ is **polynomial** for bipartite chain graphs.

Subhabrata Paul and Kamal Santra (2024). "Algorithmic study on 2-transitivity of graphs". In: *Discrete Applied Mathematics* 358, pp. 57–75.

BIPARTITE CHAIN GRAPHS

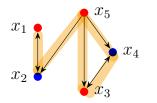
▶ A bipartite graph is **bipartite chain** if there exists an ordering of vertices st $N(x_n) \subseteq N(\bullet) \subseteq \cdots \subseteq N(x_1)$ and $N(y_m) \subseteq N(\bullet) \subseteq \cdots \subseteq N(y_1)$.

BIPARTITE CHAIN GRAPHS

▶ A bipartite graph is **bipartite chain** if there exists an ordering of vertices st $N(x_n) \subseteq N(\bullet) \subseteq \cdots \subseteq N(x_1)$ and $N(y_m) \subseteq N(\bullet) \subseteq \cdots \subseteq N(y_1)$.

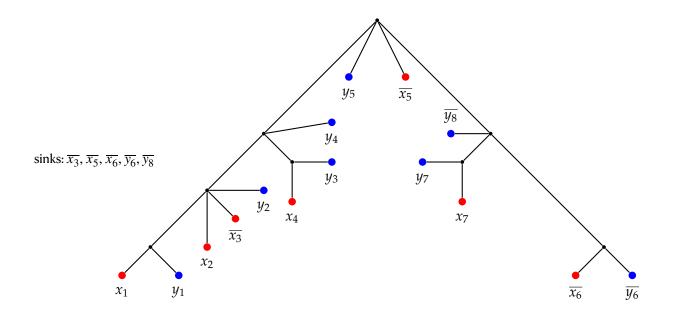
Fact

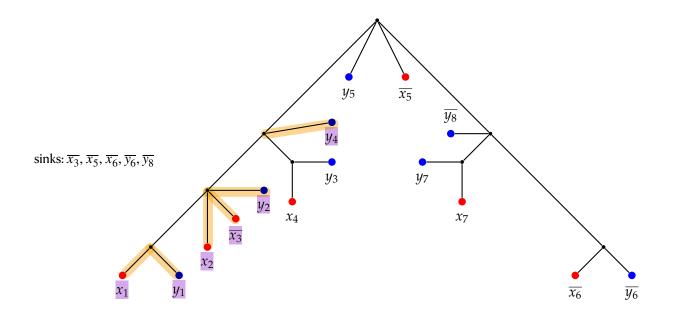
un2qBMGs are not bipartite chain graphs.

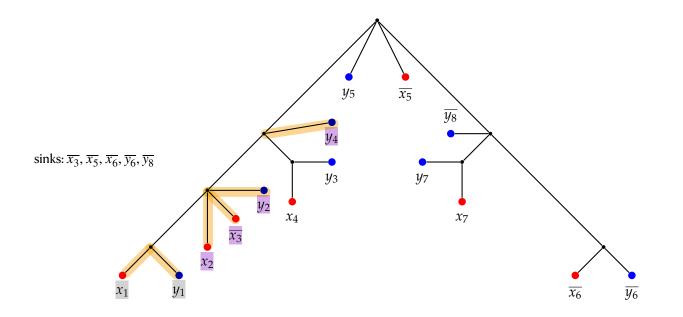


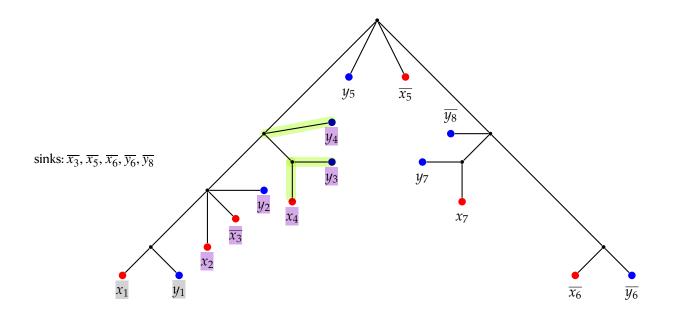
G is not a bipartite chain graph!

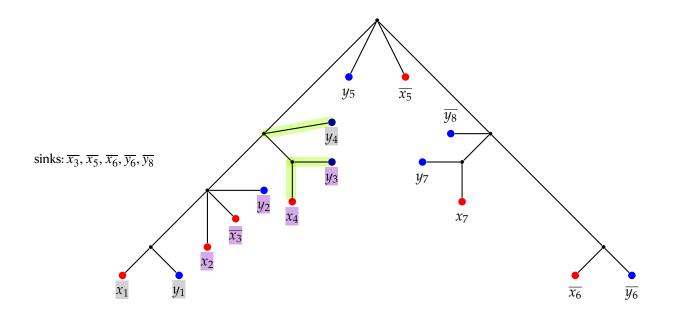
 $N(x_2) \nsubseteq N(x_4)$ and $N(x_4) \nsubseteq N(x_2)$

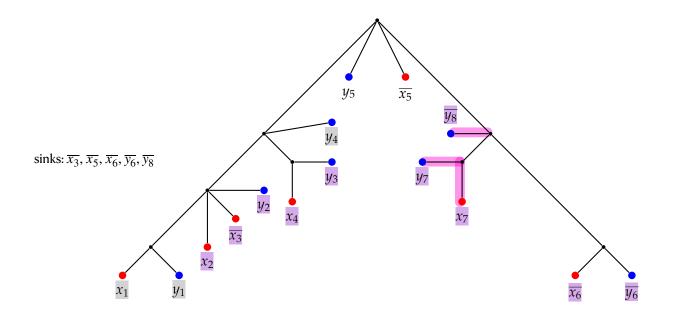


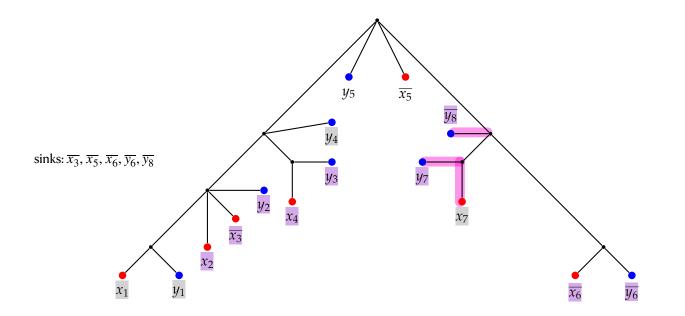


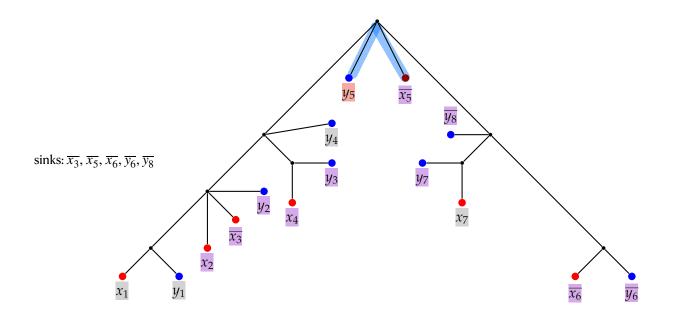


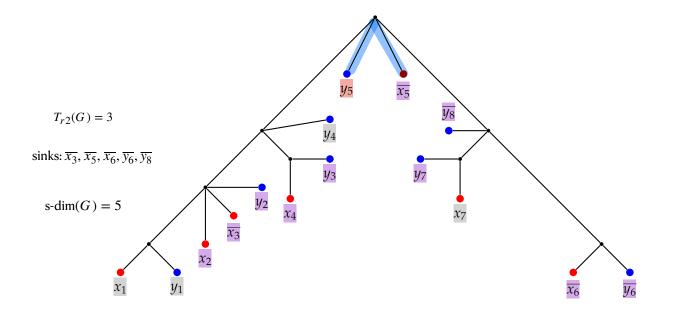












WORKING IN PROGRESS..

- 1. Can we recognize if a graph is un2qBMG in a polynomial time? ((P6, C6)-free in linear time)
- 2. Can we build a tree that explains an un2qBMG is polynomial time?
- 3. How difficult is to edit a graph to a un2qBMG?

