Designing Artificial xrRNA
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Introduction to xrRNA
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Introduction to xrRNA

* XrRNA stops exoribonuclease Xrn1l

* Conserved secondary structure features:

e Central 3-way junction with helices
e Two pseudoknots PK1 and PK2
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Introduction to xrRNA

* XrRNA stops exoribonuclease Xrn1l

* Conserved secondary structure features:

* Central 3-way junction with helices -y
e Two pseudoknots PK1 and PK2

* Conserved tertiary structure feature:
* Ringlike structure around the 5’ end




Introduction to xrRNA

* XrRNA stops exoribonuclease Xrn1l

* Conserved secondary structure features:

* Central 3-way junction with helices -y
e Two pseudoknots PK1 and PK2

* Conserved tertiary structure feature:
* Ringlike structure around the 5’ end

* Mechanical block against Xrn1l



Designing XxrRNAs

1. Which features are essential for biological xrRNAs?
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Designing XxrRNAs i

Yao, Hua-Ting, et

1. Which features are essential for biological xrRNAs?

2. Design sequences with those features using Infrared
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2. Infrared Model

* Sample sequences under a set of constraints and functions



2. Infrared Model

* Sample sequences under a set of constraints and functions
* Constraints that lead to xrRNA designs:
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2. Infrared Model

* Sample sequences under a set of constraints and functions

* Constraints that lead to xrRNA designs:
* Bases that should form basepairs need to be complementary
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2. Infrared Model

* Sample sequences under a set of constraints and functions

* Constraints that lead to xrRNA designs:
* Bases that should form basepairs need to be complementary
* Positions with conserved bases are fixed
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2. Infrared Model

* Sample sequences under a set of constraints and functions

* Constraints that lead to xrRNA designs:
* Bases that should form basepairs need to be complementary

e Positions with conserved bases are fixed ERCEET N

* Length of the individual features and total length
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2. Infrared Model

* Sample sequences under a set of constraints and functions

* Constraints that lead to xrRNA designs:
* Bases that should form basepairs need to be complementary
* Positions with conserved bases are fixed

* Length of the individual features and total length

* Gaps only on one
uniform sampling
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2. Design Optimization

* Sample a starting sequence from global sequence space
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* This sequence will probably not fold into the correct structure
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* Sample a starting sequence from global sequence space

* This sequence will probably not fold into the correct structure P
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2. Design Optimization

* Sample a starting sequence from global sequence space
* This sequence will probably not fold into the correct structure

* Move around the local neighborhood and improve the objective

function Target Structure: llnitial Sample
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2. Design Optimization

e Sample a starting sequence from global sequence space
* This sequence will probably not fold into the correct structure

* Move around the local neighborhood and improve the objective

funCtIOn Target Structure: llnitiaISampIe
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2. Design Optimization

e Sample a starting sequence from global sequence space
* This sequence will probably not fold into the correct structure
* Move around the local neighborhood and improve the objective

funCtIOn Target Structure: llnitiaISampIe

((...)) How well does the designed

AGACGUU / sequence fold into our target
structure

((...)) \)bjective Function

0.2
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2. Design Optimization

e Sample a starting sequence from global sequence space
* This sequence will probably not fold into the correct structure
* Move around the local neighborhood and improve the objective

function Target Structure: llnitial Sample
How well does the designed

((...))
AGACGUU / sequence fold into our target
structure

((...)) N)bjective Function

0.2
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21



2. Design Optimization

e Sample a starting sequence from global sequence space
* This sequence will probably not fold into the correct structure
* Move around the local neighborhood and improve the objective
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2. Design Optimization

e Sample a starting sequence from global sequence space
* This sequence will probably not fold into the correct structure
* Move around the local neighborhood and improve the objective

function

Target Structure: llnitiaISampIe
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2. Design Optimization

e Sample a starting sequence from global sequence space
* This sequence will probably not fold into the correct structure
* Move around the local neighborhood and improve the objective

function Target Structure: llnitial Sample
How well does the designed

((...))
AGACGUU / sequence fold into our target
structure

((...)) Objective Function
Resample Pos.
Reject Change

ACACGGU ) 0.3
(C--)) Select Pos.
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2. Design Optimization

e Sample a starting sequence from global sequence space
* This sequence will probably not fold into the correct structure
* Move around the local neighborhood and improve the objective

function Target Structure: llnitial Sample
How well does the designed

((...))
AGACGUU sequence fold into our target

((...)) Objective Function structure
Resample Pos.
Reject Change

ACACGGU ) 0.3
(C--)) Select Pos.
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2. Objective Functions - Target Probability

* Probability that sequence s folds into structure p
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* Sounds good, but RNAs don’t fold into a single structure
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2. Objective Functions - Target Probability

* Probability that sequence s folds into structure p

* Sounds good, but RNAs don’t fold into a single structure
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2. Objective Functions - Target Probability

* Probability that sequence s folds into structure p

* Sounds good, but RNAs don’t fold into a single structure
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2. Objective Functions - Target Probability

* Probability that sequence s folds into structure p

* Sounds good, but RNAs don’t fold into a single structure

e Same target probability
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2. Objective Functions - Target Probability

* Probability that sequence s folds into structure p

* Sounds good, but RNAs don’t fold into a single structure

e Same target probability

* But one is a significantly
better design

Energy

target structure

~

%

Structure

Energy

target structure
o ~ alternative structures

@

Structure



2. Objective Functions - Target Probability
* Probability that sequence s folds into structure p

* Sounds good, but RNAs don’t fold into a single structure

e Same target probability

* But one is a significantly

better design
* Also not a good optimization function if far away from the optimum



2. Objective Functions - Ensemble Defect

* Average number of incorrect nucleotides

candidate design: CCCAACCCAAAGGG
target structure:  ..... (((ee')))



2. Objective Functions - Ensemble Defect

* Average number of incorrect nucleotides

ensemble )
candidate design: CCCAACCCAAAGGE .« - .. ((..... ) )
target structure:  ..... ((Cewe))) WYe ..., ((ees)) .
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2. Objective Functions - Ensemble Defect

* Average number of incorrect nucleotides

weighted average
distance, . ( (.........

candidate design: CCCAACCCAAAGGG / . .... ((.....
target structure:  ..... (((eee)))Fo—een.. ((eos)
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2. Objective Functions - Ensemble Defect

* Average number of incorrect nucleotides

* A sequence that can fold into many structures similar to the target

structure has a good ED
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2. Objective Functions - Ensemble Defect

* Average number of incorrect nucleotides

* A sequence that can fold into many structures similar to the target

structure has a good ED

e Harder to find design that

has the target as MFE
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2. Objective Functions - Ensemble Defect

* Average number of incorrect nucleotides

* A sequence that can fold into many structures similar to the target
structure has a good ED

e Harder to find design that
has the target as MFE
* Works if far away from the optimum



2. Objective Functions - Ensemble Defect

* Average number of incorrect nucleotides

* A sequence that can fold into many structures similar to the target
structure has a good ED

* Harder to find design that
has the target as MFE

* Works if far away from the optimum

e Start with ED; Use probability to make fine-grained optimizations



Designing XxrRNAs

1. Characterize essential features conserved in biological xrRNAs

2. Sample sequences with those features using Infrared

3. Validate candidate designs in-silico 4 i, \

SIMRNA
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3. In-Silico Validation Using Steered MD

e Xrnl braces against the ring of
the xrRNA and can‘t pull the 5°
end out
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3. In-Silico Validation Using Steered I\/ID
. 00000000T 0000000 00L

e Xrnl braces against the ring of
the xrRNA and can‘t pull the 5°
end out

* Possible to approximate with
steered MD

» Use a force gradient to pull the
5 end through a pore



3. In-Silico Validation Using Steered MD

45

MD Simulation, 400 pN external force, 2fs timestep, Amber OL3 RNA FF, 500 ns, implicit solvent GBn2, 0.15 mol/L Salt Conc.
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Designing xrRNAS

1. Characterize essential features conserved in biological xrRNAs

2. Sample sequences with those features using Infrared

wt artil.2
- + /- + 1 Xrnl
—

3. Validate candidate designs in-silico

4. Test designs in-vitro -



4. In-Vitro Experiments Validate Designs

* In-vitro experiments show our artificial xrRNA exhibits resistance to
Xrnl like biological examples

biological xrRNA our design

47



Acknowledgments

lvo Hofacker Denis Skibinski
Michael T. Wolfinger Katrin Gutenbrunner
Hua-Ting Yao Jule Walter

Mario Morl

The whole TBI Team

Thank you for your Attention



