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RiboAI: Data-Driven Exploration of Protein Production
Prof. Hofacker

Prof. Tschiatschek Prof. Ameres

● Reinforcement Learning
● Probabilistic Models in ML
● Interactive Machine Learning

Probabilistic and Interactive 
Machine Learning

● ViennaRNA Package
● RNA Secondary Structure Prediction
● Computational RNA Biology
● Thermodynamics of RNA Folding

Computational and Structural 
RNA Biology

● SLAM Seq
● RNA Modifications
● mRNA Stability & Degradation

Post-Transcriptional RNA 
Regulation

RiboAI
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3 Professors
+
1 Senior Scientist
+
2 PhD Student
= 
1 RiboAI project



RiboAI: Data-Driven Exploration of Protein Production

Sequence properties 
(nt, codon, structure)

Expression & Stability 
● mRNA abundance

(RNA-seq)
● mRNA half-life
● Ribosome profile

(Ribo-seq)

Contextual Factors
● cell type specificity
● protein localization
● protein domain folding

Big Data
Machine 
Learning

model 
interpretation

Knowledge 
gained

Application

synthetic biology

vaccine development
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RiboAI - PhD Timeline

07/2024                    1st Year 07/2025                   2nd Year 07/2026                   3rd Year 07/2027                  07/2028START END

Data generation Machine Learning Explainable AI Validation

❏ Sourcing/Generation of Data
❏ QC of Data
❏ Implementation of baselines

❏ Training these models

❏ Theoretical verification of 
obtained biological knowledge

❏ Experimental validation (in-vitro)
❏ Model refinement

😐

today
02/2025

❏ Developing advanced ML models (Gabriele Martino, 2nd PhD student)

❏ Adoption of XAI techniques
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A
C
G
U

exon junction
5UTR

CDS
3UTR

genome mappability score
transcript mappability score

open reading frame
ribosome profile

mRNA abundance
RNALfold

Data (Hot-)encoded, the machine vision

pos index 1 2 3 4

position A C G U exon junciton 5UTR RNALfold mRNA abundance ribosome profile

1 0 1 0 0 0 1 -5.6 0.3 0

2 0 0 1 0 0 1 -5.6 0.8 0

3 1 0 0 0 0 1 -5.6 0.2 0

4 0 0 1 0 0 1 -5.6 1.8 0
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target

Nucleotide-Resolution Featuresper transcript:

Embedding:



—AAAA

—AAAA

—AAAA

—AAAA

Ribosome Profile - snapshot of translation in action
rp

f r
ea

d
s

—AAAA

5UTR 3UTRCDS
START STOP

overrepresented reads

Ribosome flux

freeze (cycloheximide) + digestion (RNase I) =
ribosome 
protected 
fragments

How-to ribosome profile:

1. created by freezing/stopping ribosomes on 
mRNA

2. digestion of not protected mRNA around 
ribosome-> creating ribosome protected 
fragments (reads)

3. sequence, filter & map reads back onto the 
transcript

map rpf back 
onto transcript

Ingolia NT, Hussmann JA, Weissman JS. 
Ribosome Profiling: Global Views of Translation. 
Cold Spring Harb Perspect Biol. 2019 May 1;11(5):a032698. 
doi: 10.1101/cshperspect.a032698.
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mRNA

5UTR 3UTR

CDS

ribosome



Ribo-seq low reproducibility - between datasets
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● all HEK datasets

● Low peak reproducibility 
around (p=.2) between 
datasets

● need to assure high 
quality ribosome profiles



Quality Control - Ribo-seq
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Indicator of high quality Ribosome Profile Data:

● no mapping outside of CDS

● clean cut at Start Codon/ before Stop Codon

● mean % of reads mapped in OpenReadingFrame (frame 0) 
> 60%

● high freq every 3nt in CDS

Start Codon

Stop Codon



QC - Pausing Score - A-site Codon - sanity check
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QC - Pausing Score - Amino Acid - sanity check
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Translation Efficiency in Feature space

Transcript-Level Features

position A C G U exon border 5UTR RNALfold mRNA abundance ribosome profile

1 0 1 0 0 0 1 -5.6 0.3 0

2 0 0 1 0 0 1 -5.6 0.8 0

3 1 0 0 0 0 1 -5.6 0.2 0

4 0 0 1 0 0 1 -5.6 1.8 0

targets

Nucleotide-Level-Resolution Featuresper transcript:

Tx_ID Ribo_RPKM RNA_RPKM GC_Content A:AU_Ratio C:CG_Ratio Exon Junct Density HalfLife Translation Efficiency Protein abundance

ENST00001 16.5 74.3 0.43 0.95 0.87 2 3.4 1.4 1.4

ENST00002 2.8 12.1 0.52 1.11 0.90 4 1.5 0.8 0.8

calculated

out of 

Ribo-seq



cell

capture of translating ribosomes

Ribo-Seq RNA-Seq

capture of mRNA abundance

lysis

creating ribosome 
protected fragments

random mRNA 
fragmentation

Library preparation/Deep sequencing/Read mapping/Signal analysis
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transcript position
CDSCDS 5UTR 3UTR5UTR 3UTR

Translation Efficiency

Calculating Translation Efficiency:

High TE: Suggests strong protein synthesis

Low TE: Suggest weak protein synthesis

Brar, G., Weissman, J. 
Ribosome profiling reveals the what, when, where and how of protein synthesis. 
Nat Rev Mol Cell Biol 16, 651–664 (2015)
https://doi.org/10.1038/nrm4069
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Improve accuracy through highly expressed Genes in HEK cells

tpm_cutoff = 5 
results in 10255 highly expressed genes

PE75 RNAseq data of WT HEK293T cells (SAMN22420269-SAMN22420271)
GEO accession: GSE186192 13



mRNA abundance (rpkm) ribosome occupancy (rpkm) translation efficiency

Cut-off leads to higher correlation between datasets (all HEK)
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Correlation - Translation Efficiency
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unexpected 
clustering

expected 
clustering



ichihara_2021, kito_2023, volegova_2018, sako_2020, 
weber_2020, song_2019 - PC2 cluster

rest - PC1 cluster

Looking deeper: PCA - TE
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PCA - mRNA abundance (rpkm)
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Same clustering as in 
Translation Efficiency PCA



PCA - differential expression analysis - do a few genes drive the PC2?

 histone-encoding genes 
(H1, H2, H3, H4 variants) {

mRNA abundance (RPKM) of 10 highest log2FC genes
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  ؟ I could find no explanation in papers ؟



PCA - removing the culprits
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● PC2 cluster dissolves

● PC2 decreased/PC1 increased



Maybe the machine does not care - time will tell!

Transcript-Level Features

position A C G U exon border 5UTR RNALfold mRNA abundance ribosome profile

1 0 1 0 0 0 1 -5.6 0.3 0

2 0 0 1 0 0 1 -5.6 0.8 0

3 1 0 0 0 0 1 -5.6 0.2 0

4 0 0 1 0 0 1 -5.6 1.8 0

targets

Nucleotide-Resolution-Level Featuresper transcript:

Tx_ID Ribo_RPKM RNA_RPKM GC_Content A:AU_Ratio C:CG_Ratio Exon Junct Density HalfLife Translation Efficiency Protein abundance

ENST00001 16.5 74.3 0.43 0.95 0.87 2 3.4 1.4 1.4

ENST00002 2.8 12.1 0.52 1.11 0.90 4 1.5 0.8 0.8



Going forward…

Ribo-Seq Data QC is challenging
Variability across datasets requires careful Data curation

which features to add/discard for ML

which genes/transcripts to keep for ML

what ML architecture to choose? (nucleotide level vs transcript level)
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Thanks to…

Ivo Hofacker (supervisor)
Gabriele Martino (PhD in crime)
Niko Popitsch (Senior Prophet Scientist at AmeresLab)
TBI (emotional support group) 

And you for listening
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😐



Problem with variability in Ribo-seq read length

E P A

5’ 3’

ribosome 
protected 

fragment (read)
30 nts

18 nts12 nts

5’ P-site 
offset

3’ P-site 
offset

RNase I

mRNA

CHX

AUG

start codon

Translation
Accurate P-site localization is the foundation of 
interpreting ribosome profiling data

Variability in rpf lengths! caused by: experimental 
conditions, ribosome conformations and nuclease biases

→ riboWaltz: most accurate p-site finder!

Aligns reads of the same length and finds with the help of 
the start codon the ORF and the P-site offsets, which are 
generalized over the whole rpf length bin.5UTR CDS

mRNA

Lauria F, Tebaldi T, Bernabò P, Groen EJN, Gillingwater TH, Viero G (2018) 
riboWaltz: Optimization of ribosome P-site positioning in ribosome profiling data. 
PLoS Comput Biol 14(8): e1006169. https://doi.org/10.1371/journal.pcbi.1006169
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