RiboAl

Ribo-Seq meets Machine Learning

> by: Denis Skibinski

supervised by: **Prof. Hofacker**

University Vienna TBI

RiboAI: Data-Driven Exploration of Protein Production

3 Professors + 1 Senior Scientist + 2 PhD Student = 1 RiboAl project

Prof. Hofacker

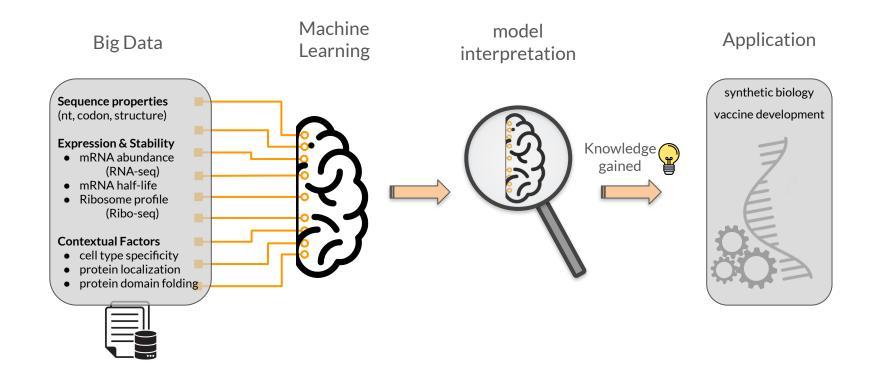
Computational and Structural RNA Biology

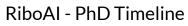
- ViennaRNA Package
- RNA Secondary Structure Prediction
- Computational RNA Biology
- Thermodynamics of RNA Folding

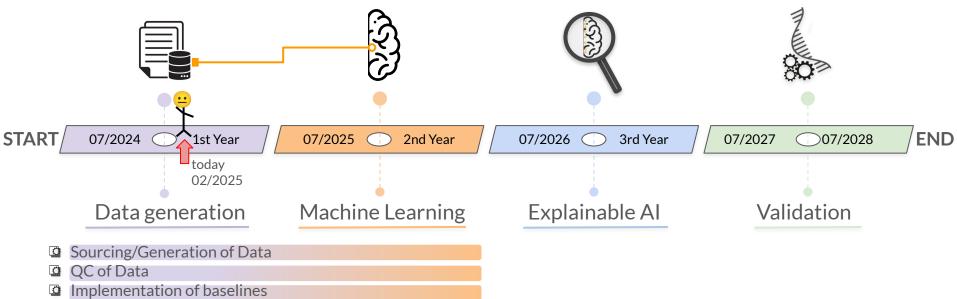
RiboAl

Probabilistic and Interactive Machine Learning

- Reinforcement Learning
- Probabilistic Models in ML
- Interactive Machine Learning


Post-Transcriptional RNA Regulation

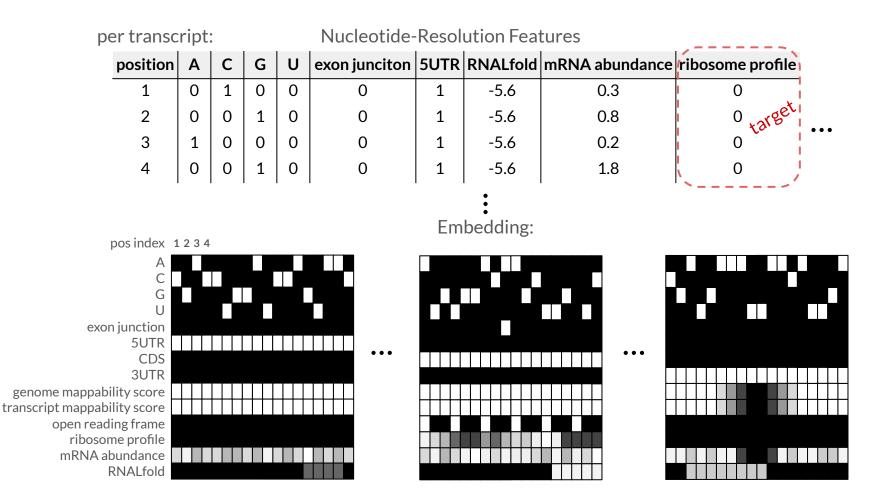

- SLAM Seq
- RNA Modifications
- mRNA Stability & Degradation


Prof. Tschiatschek

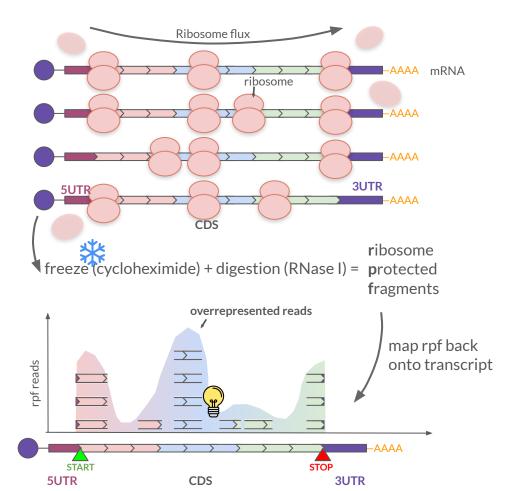
Prof. Ameres

RiboAI: Data-Driven Exploration of Protein Production

Developing advanced ML models (Gabriele Martino, 2nd PhD student)


Training these models

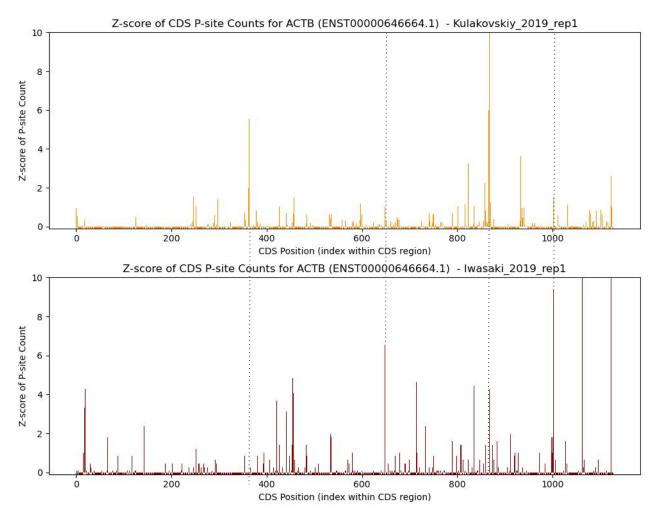
Adoption of XAI techniques


Theoretical verification of obtained biological knowledge

Experimental validation (in-vitro)
Model refinement

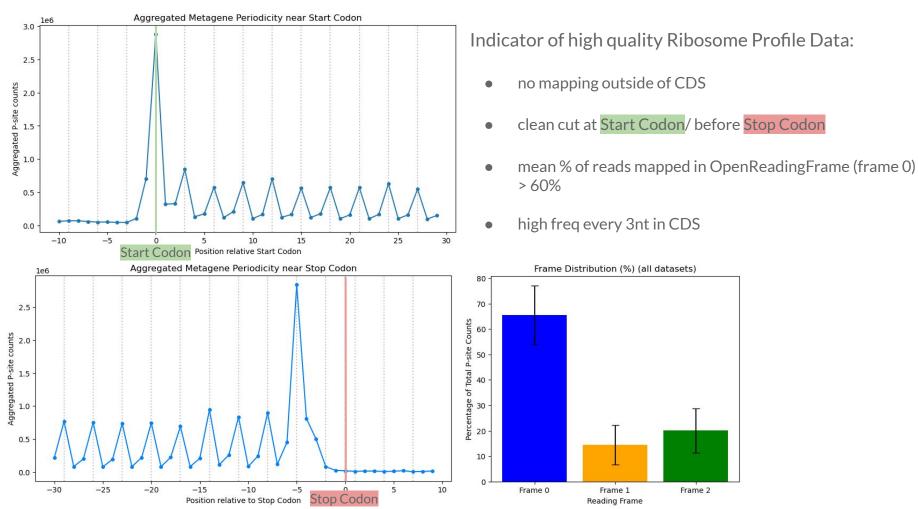
Data (Hot-)encoded, the machine vision

Ribosome Profile - snapshot of translation in action



How-to ribosome profile:

- 1. created by freezing/stopping ribosomes on mRNA
- 2. digestion of not protected mRNA around ribosome-> creating ribosome protected fragments (reads)
- 3. sequence, filter & map reads back onto the transcript


Ingolia NT, Hussmann JA, Weissman JS. Ribosome Profiling: Global Views of Translation. 6 Cold Spring Harb Perspect Biol. 2019 May 1;11(5):a032698. doi: 10.1101/cshperspect.a032698.

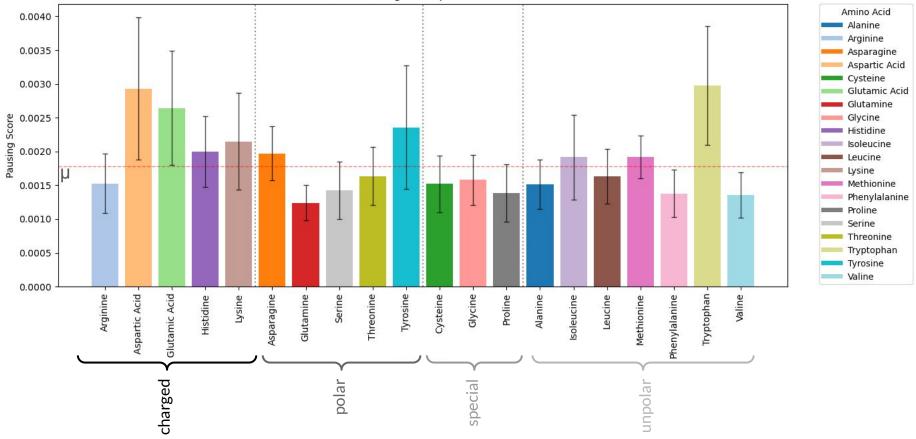
Ribo-seq low reproducibility - between datasets

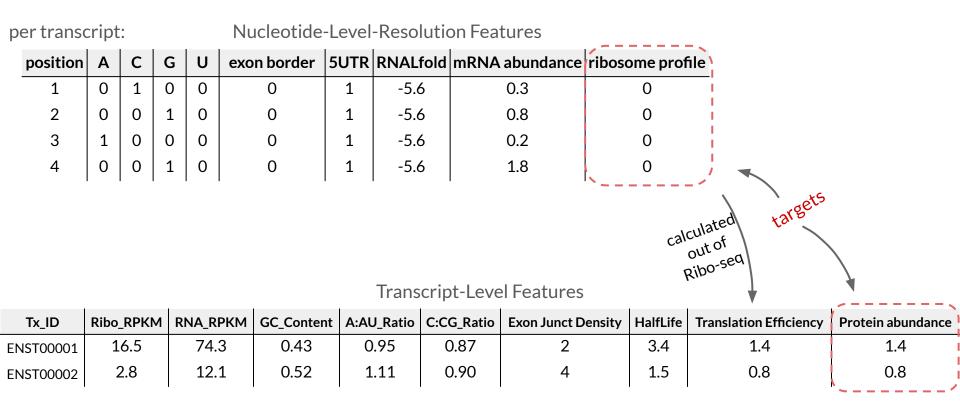
- all HEK datasets
- Low peak reproducibility around (p=.2) between datasets
- need to assure high quality ribosome profiles

Quality Control - Ribo-seq

8

QC - Pausing Score - A-site Codon - sanity check


A-site Pausing Score per Codon


9

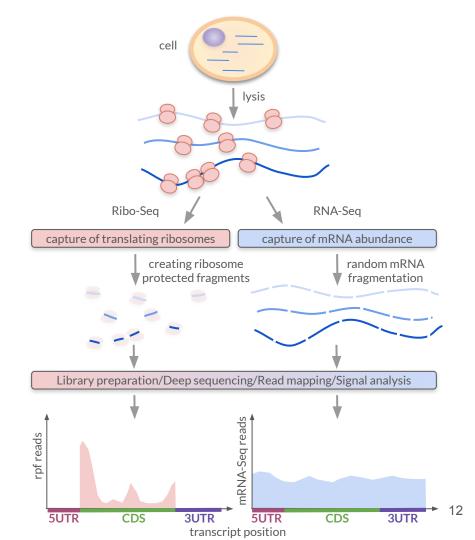
QC - Pausing Score - Amino Acid - sanity check

A-Site Pausing Score per Amino Acid

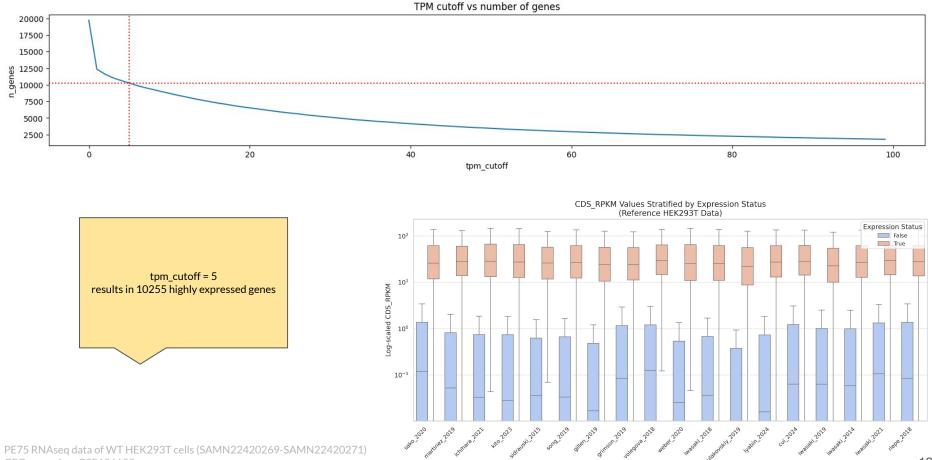
Translation Efficiency in Feature space

Translation Efficiency

Calculating Translation Efficiency:


$$log(TE_{tx}) = log\left(\frac{RiboSeq_{tx}}{RNASeq_{tx}}\right)$$

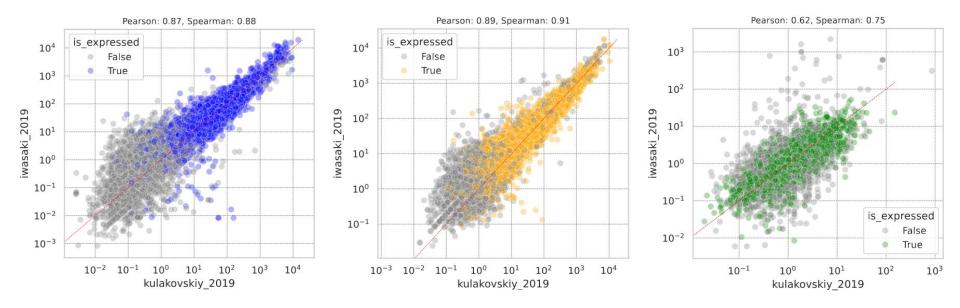
High TE:


Suggests strong protein synthesis

Low TE: Suggest weak protein synthesis

Brar, G., Weissman, J. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 16, 651–664 (2015) https://doi.org/10.1038/nrm4069

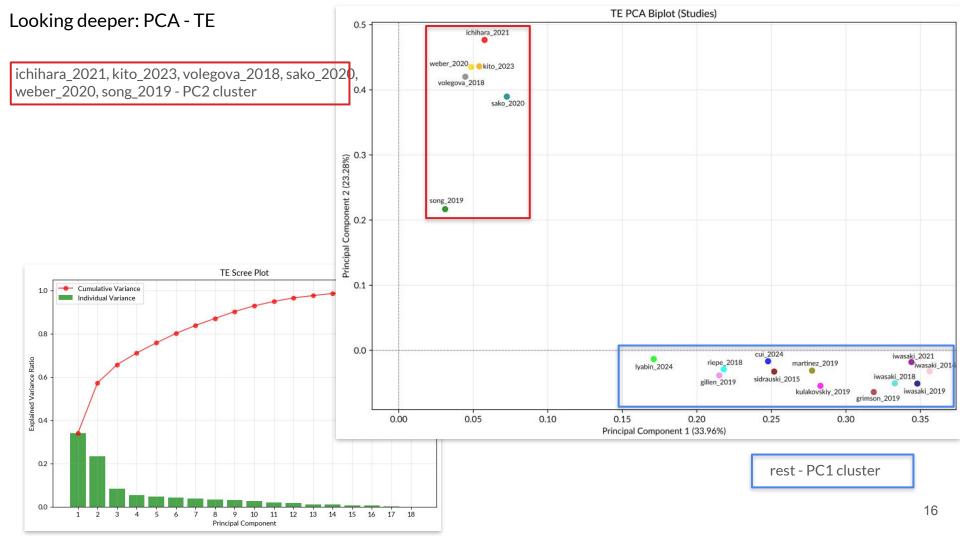
Improve accuracy through highly expressed Genes in HEK cells


GEO accession: GSE186192

Cut-off leads to higher correlation between datasets (all HEK)

mRNA abundance (rpkm)

ribosome occupancy (rpkm)


translation efficiency

Correlation - Translation Efficiency

										meulai	1. 0.00									
	song_2019	1	0.65	0.69	0.67	0.59	0.47	0.49	0.57	0.52	0.58	0.42	0.32	0.31	0.55	0.56	0.57	0.73	0.66	
	sako_2020	0.65	1	0.56	0.48	0.52	0.53	0.46	0.44	0.46	0.44	0.52	0.26	0.2	0.52	0.53	0.54	0.57	0.57	
unexpected clustering	martinez_2019	0.69	0.56	1	0.63	0.43	0.28	0.3	0.37	0.51	0.51	0.38	0.47	0.34	0.68	0.57	0.65	0.74	0.68	
	sidrauski_2015	0.67	0.48	0.63	1	0.48	0.38	0.44	0.55	0.49	0.59	0.44	0.49	0.45	0.58	0.62	0.6	0.72	0.69	- 1.0
	ichihara_2021	0.59	0.52	0.43	0.48	1	0.7	0.81	0.78	0.61	0.74	0.54	0.44	0.52	0.41	0.56	0.53	0.64	0.66	0.000
	weber_2020	0.47	0.53	0.28	0.38	0.7	1	0.84	0.76	0.62	0.7	0.63	0.54	0.62	0.46	0.59	0.53	0.52	0.63	- 0.8
	kito_2023	0.49	0.46	0.3	0.44	0.81	0.84	1	0.87	0.66	0.81	0.64	0.55	0.66	0.41	0.58	0.54	0.6	0.66	
	volegova_2018	0.57	0.44	0.37	0.55	0.78	0.76	0.87	1	0.71	0.86	0.58	0.58	0.7	0.45	0.62	0.53	0.67	0.71	- 0.6
	cui_2024	0.52	0.46	0.51	0.49	0.61	0.62	0.66	0.71	1	0.78	0.54	0.63	0.65	0.6	0.6	0.55	0.65	0.7	
	lyabin_2024	0.58	0.44	0.51	0.59	0.74	0.7	0.81	0.86	0.78	1	0.57	0.63	0.75	0.55	0.64	0.61	0.74	0.76	- 0.4
	riepe_2018	0.42	0.52	0.38	0.44	0.54	0.63	0.64	0.58	0.54	0.57	1	0.51	0.52	0.6	0.64	0.63	0.6	0.65	
	grimson_2019	0.32	0.26	0.47	0.49	0.44	0.54	0.55	0.58	0.63	0.63	0.51	1	0.8	0.73	0.73	0.64	0.59	0.73	- 0.2
	gillen_2019	0.31	0.2	0.34	0.45	0.52	0.62	0.66	0.7	0.65		0.52	0.8	1	0.55	0.65	0.6	0.6	0.69	*******
	ulakovskiy_2019	0.55	0.52	0.68	0.58	0.41	0.46	0.41	0.45	0.6	0.55	0.6	0.73	0.55	1	0.75	0.72	0.69	0.76	- 0.0
iwasaki 2019		0.56	0.53	0.57	0.62	0.56	0.59	0.58	0.62	0.6	0.64	0.64	0.73	0.65	0.75	1	0.86	0.76	0.86	
	iwasaki_2018	0.57	0.54	0.65	0.6	0.53	0.53	0.54	0.53	0.55	0.61	0.63	0.64	0.6	0.72	0.86	1	0.76	0.8	
iwasaki_20		0.73	0.57	0.74	0.72	0.64	0.52	0.6	0.67	0.65	0.74	0.6	0.59	0.6	0.69	0.76	0.76	1	0.86	
	iwasaki_2014	0.66	0.57	0.68	0.69	0.66	0.63	0.66	0.71	0.7	0.76	0.65	0.73	0.69	0.76	0.86	0.8	0.86	1	
		ŋ	0	ŋ	Ω.	н	0	m	00	4	4	00	ō.	ō.	6	ດ	00	E.	4	
		song_2019	sako_2020	201	sidrauski_2015	chihara_2021	weber_2020	kito_2023	volegova_2018	cui_2024	yabin_2024	riepe_2018	grimson_2019	gillen_2019	kulakovskiy_2019	iwasaki_201	iwasaki_2018	wasaki_202	2014	ovported
		buo	ako	nez	uski	ara	ber	kito	ova	GUİ	abin	epe	son	llen	skiy.	saki	saki	saki	iwasaki_2	expected
		Ň	S	nartinez	idraı	ichih	We		oleg		lya		grim	ip	kov	iwa	iwa	iwa	iwa	clustering
				E	S	1000			>				2771		kula					

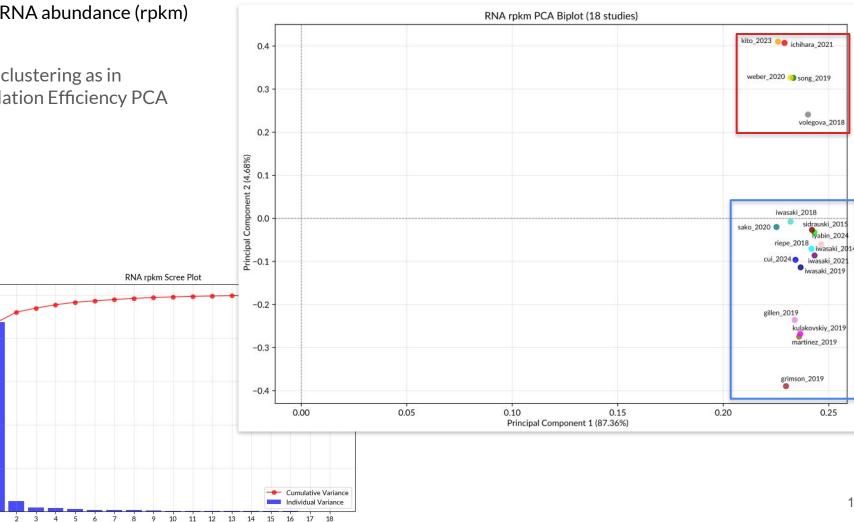
TE correlation (Spearman) Median: 0.60

PCA - mRNA abundance (rpkm)

Same clustering as in **Translation Efficiency PCA**

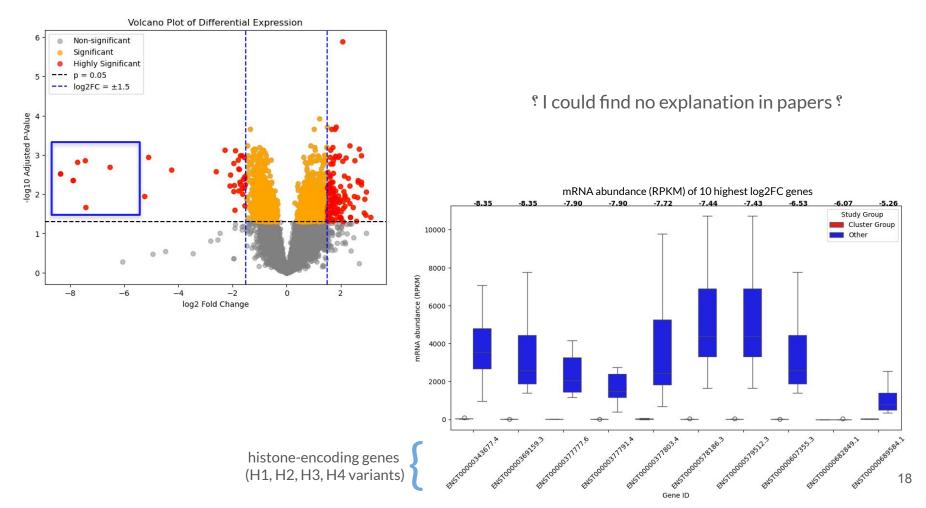
1.0

0.8

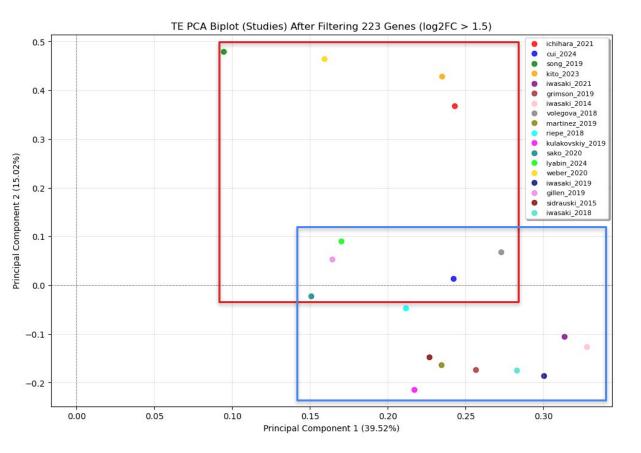

Explained Variance Ratio 60

0.2

0.0

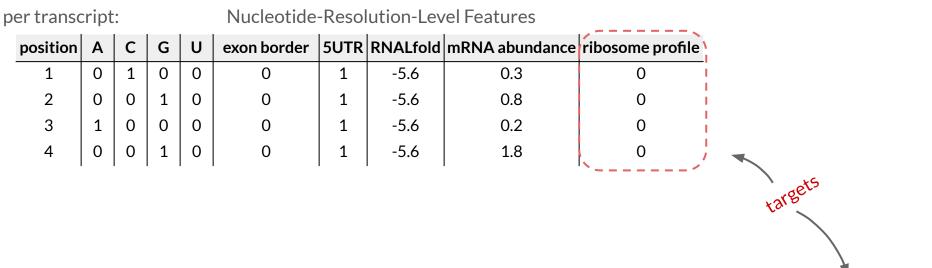

1

Principal Component



17

PCA - differential expression analysis - do a few genes drive the PC2?



PCA - removing the culprits

- PC2 cluster dissolves
- PC2 decreased/PC1 increased

Maybe the machine does not care - time will tell!

Transcript-Level Features

Tx_ID	Ribo_RPKM	RNA_RPKM	GC_Content	A:AU_Ratio	C:CG_Ratio	Exon Junct Density	HalfLife	Translation Efficiency	Protein abundance
ENST00001	16.5	74.3	0.43	0.95	0.87	2	3.4	1.4	1.4
ENST00002	2.8	12.1	0.52	1.11	0.90	4	1.5	0.8	0.8

Going forward...

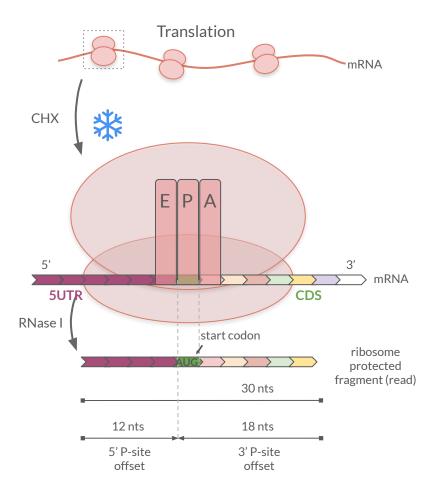
Ribo-Seq Data QC is challenging

Variability across datasets requires careful Data curation

which features to add/discard for ML

which genes/transcripts to keep for ML

what ML architecture to choose? (nucleotide level vs transcript level)


Thanks to...

Ivo Hofacker (supervisor) Gabriele Martino (PhD in crime) Niko Popitsch (Senior Prophet Scientist at AmeresLab) TBI (emotional support group)

And you for listening $\frac{2}{2}$

Problem with variability in Ribo-seq read length

Accurate P-site localization is the foundation of interpreting ribosome profiling data

Variability in rpf lengths! caused by: experimental conditions, ribosome conformations and nuclease biases

 \rightarrow riboWaltz: most accurate p-site finder!

Aligns reads of the same length and finds with the help of the start codon the ORF and the P-site offsets, which are generalized over the whole rpf length bin.

> Lauria F, Tebaldi T, Bernabò P, Groen EJN, Gillingwater TH, Viero G (2018) riboWaltz: Optimization of ribosome P-site positioning in ribosome profiling data. **23** PLoS Comput Biol 14(8): e1006169. https://doi.org/10.1371/journal.pcbi.1006169