

thi MATOMIC novo nordisk foundation

Beyond Affinity:

Predicting Enzyme Kinetics from Computational Models

Maximilian Faissner

Main Supervisor: Christoph Flamm (Institute for Theoretical Chemistry)

In collaboration with: **Shelley Copley** University of Colorado, Boulder **Walter Fontana** Harvard Medical School

Project Summary

Prediction Input:

- 3d Structures of enzymes

DccA from Caulobacter crescentus (5ESR)

- Reaction Scheme

 $R{-}CH_2{-}{X} + H_2O \rightarrow R{-}CH_2{-}OH + {X^-}$

- Substrates of interest (SMILES, 3d-conformers)

Output:

- Kinetic Parameters enzyme+substrate
- Specificity Profile (ex: Haloalkane Dehalogenases)

L.Carlucci et al. (2015)

gmhB phosphatase (3L8G) ligand: beta-HBP crystal structure pose

Thermodynamic Context of Enzyme Catalysis

Fundamental Concept

- Enzymes Lower Activation Energy
- Reaction Speed up by transition state stabilization

Multiple Energy Barriers

- Substrate Binding
- Catalysis
- Product Release
- Extensions: multi-step reactions, cofactors, ...

How do we quantify enzyme efficiency?

Expectation vs. Reality

chemistry.stackexchange.com/...

k_{cat}/K_m Catalytic Efficiency

Equilibrium Constants [M]:

- *K_m*(*M*) Substrate concentration at half-max. velocity
- $K_d(M)$ Eq. binding affinity

Rate Constants $[s^{-1}]$, $[M^{-1}s^{-1}]$:

- k_{cat} (s⁻¹) overall turnover
- k₁ second-order
- k_2 to k_5 first-order

$$E + S \rightleftharpoons E_{b,1} \rightleftharpoons E_{b,2} \rightleftharpoons \ldots \rightleftharpoons E_{b,n} \xrightarrow{k_n} E + P$$

$$E + S \xrightarrow[k_2 (k_{\text{off}})]{k_1 (k_{\text{on}})} ES \xrightarrow[k_4]{k_3} EP \xrightarrow[k_5]{k_5} E + P$$

$$K_M = \frac{k_{\text{off}}(k_2) + k_{\text{cat}}}{k_{\text{on}}(k_1)} \qquad k_{\text{cat}} = \frac{k_3 \cdot k_5}{k_3 + k_4 + k_5}$$

K_M (Michaelis constant) vs. K_D

Common interpretation: an approximate measure of enzyme-substrate affinity

$$K_M = \frac{k_{\text{off}} + k_{\text{cat}}}{k_{\text{on}}} \qquad K_D = \frac{k_{\text{off}}}{k_{\text{on}}}$$

valid only under the minimal one-substrate Michaelis-Menten scheme:

If
$$k_{\text{cat}} \ll k_{\text{off}}$$
, then $K_M \approx K_D$

Even with slow turnover:

- conformational gating (domain-level movements)
- partially reversible product-formation steps

Affinity Predictions *K*_D

Setup

- All-atom force field (e.g. Amber/GAFF) for enzyme + substrate
- ns-scale MD simulations in explicit solvent
- Compute snapshots from equilibrated trajectories

Common Option: Δ*G* via MM-PBSA/GBSA:

- Formula:

$$\Delta G_{\text{bind,solv}} = G_{\text{complex,solv}} - G_{\text{protein,solv}} - G_{\text{ligand}}$$

$$G = E_{\text{bnd}} + E_{\text{el}} + E_{\text{vdW}} + \Delta G_{\text{pol}} + \Delta G_{\text{np}} - TS_{\text{solute}}$$

Caveats / Limits:

- Representative conformations required
- Short Timescale (domain level movements!)
- ns-scale MD simulations in explicit solvent

Affinity Predictions K_D - Results (DccA)

Example: DccA (Haloalkane Dehalogenase)

 $R-CH_2-X + H_2O \rightarrow R-CH_2-OH + X^-$

Substrate	$k_{\mathrm{cat}}~(\mathrm{s}^{-1})$	K _m (mM)	$k_{\rm cat}/K_{\rm m}~({ m M}^{-1}{ m s}^{-1})$
1-bromohexane	23.6 ± 0.8	1.1 ± 0.1	$21{,}000\pm2000$
1-bromobutane	13.0 ± 0.4	6.6 ± 0.6	2000 ± 200
1,3-dibromopropane	29 ± 1	7.2 ± 0.8	4000 ± 500
1-chlorohexane	3.1 ± 0.1	1.2 ± 0.1	2600 ± 200
1,5-dichloropentane	5.0 ± 0.1	1.2 ± 0.1	4200 ± 400

- (a) Ground-state conformation is unlikely to be most reactive (if at all?)
- (b) higher-energy "rare" states often dominate catalysis
 → better alignment with the transition state

Established computational methods: QM/MM simulations + sampling to estimate energy landscape + transition states

How can we predict k_{cat} ?

When can you ignore the k_{chem} differences?

Practical Example:

Can we predict if k_{cat} of ... is lower/higher than 23.6 by only considering P?

1-Bromohexane	1-Bromobutane	1,3-Dibromopropane	1-Chlorohexane
	\sim	~~	~~~ *
$k_{cat} = 23.6 / s$?	?	?

P(reactive conformation) estimation

How to estimate the reactive fraction (red part)?

- Define close/relevant amino acid residues (~ catalytic triad)
- Define reactive substrate atoms
- Generate interaction fingerprints along MD trajectories
- Compute "Reactive Uptime"

MD Setup

- Same setup as affinity predictions
 - All-atom force field
 - explicit solvent

Molecular Interaction Footprint Results

total interaction frames (out of 100k)

Cleaving a C–Cl bond requires more energy!

Substrate	$k_{ m cat}~({ m s}^{-1})$	$K_{\rm m}~({ m mM})$	$k_{\rm cat}/K_{\rm m}~({ m M}^{-1}{ m s}^{-1})$
1-bromohexane	23.6 ± 0.8	1.1 ± 0.1	$21{,}000\pm2000$
1-bromobutane	13.0 ± 0.4	6.6 ± 0.6	2000 ± 200
1,3-dibromopropane	29 ± 1	7.2 ± 0.8	4000 ± 500
1-chlorohexane	3.1 ± 0.1	1.2 ± 0.1	2600 ± 200
1,5-dichloropentane	5.0 ± 0.1	1.2 ± 0.1	4200 ± 400

Short Term Goals

- Extend simulations to additional enzyme classes
 - dehydrogenases, kinases
- Accelerated MD
 - Solution to time scale limitations?
 - Better energy landscape exploration?

Long Term Goals

- QM/MM?

Thank you for your attention!

universität wien

thi MATOMIC

novo nordisk **fonden**

RCSB ID: 1RMT AphA phosphatase complexed with adenosine, Mg²⁺