Complexity of a Reaction Network

Deza Amistas, Christoph Flamm, Bashar Ibrahim, Peter Dittrich February 13, 2025

40th TBI Winterseminar in Bled

How do we measure the complexity of a reaction network?

• based on the number of reactants

How do we measure the complexity of a reaction network?

- based on the number of reactants
- based on the number of unique reaction centers

How do we measure the complexity of a reaction network?

- based on the number of reactants
- based on the number of unique reaction centers
- based on the number of parameters involved

the maximum number of persistent subspaces over all possible inflows under a general dilution flow

Outline

Outline

Preliminaries

Reaction Network

Organization Theory

Method

Application

Minimal Subspace Complexity

Autocatalytic Network

Adenine Chemistry

Summary and Conclusion

Preliminaries

Set vs. Multiset

Set -

Multiset -

Set vs. Multiset

Set - $\{H, C, O\}$

Multiset -

Set - {*C*, *H*, *O*}

Multiset - $\{H, H, H, H, C, C, O\}$

Reaction Network

A reaction network is a pair (M, R) where M is a set of molecules and R is a set of reactions $R \subseteq Pmult(M) \times Pmult(M)$.

M : {a, b, c} R : [Reactands : {a, a}Product : {b} Reactands : {a, b}Product : {c}]

A set of molecules is said to be an organization if:

- 1. **Closed** subset A of M is closed if by applying reactions from R_A to multisets over A we **cannot produce molecules not in** A.
- Self-maintaining applying reactions from R_A to a multiset over M does not reduce the number of molecules of any species of A.

• $A = \{a\}$: not an organization

- $A = \{a\}$: not an organization
- $A = \{b\}$: an organization

- $A = \{a\}$: not an organization
- $A = \{b\}$: an organization
- $A = \{c\}$: an organization

- $A = \{a\}$: not an organization
- $A = \{b\}$: an organization
- $A = \{c\}$: an organization
- $A = \{a, b\}$: not an organization

- $A = \{a\}$: not an organization
- $A = \{b\}$: an organization
- $A = \{c\}$: an organization
- $A = \{a, b\}$: not an organization
- $A = \{b, c\}$: an organization

- $A = \{a\}$: not an organization
- $A = \{b\}$: an organization
- $A = \{c\}$: an organization
- $A = \{a, b\}$: not an organization
- $A = \{b, c\}$: an organization
- $A = \{a, c\}$: not an organization

- $A = \{a\}$: not an organization
- $A = \{b\}$: an organization
- $A = \{c\}$: an organization
- $A = \{a, b\}$: not an organization
- $A = \{b, c\}$: an organization
- $A = \{a, c\}$: not an organization
- $A = \{a, b, c\}$: not an organization

only molecular species that forms an organization can be persistent

Given (M, R), its **persistent subspace complexity** C(M, R) is defined as:

$$C(M,R) = \max_{A \subseteq M} |O((M,R_A''))|,$$

where $O((M, R''_A))$ is the set of organizations of the reaction network (M, R''_A) and R''_A denotes the reactions of the original network plus reactions for inflow of A and outflow of all molecules.

In the absence of initial compounds, is there an inflow set that can generate the different states of the system?

Why are networks with high subspace complexity interesting?

• they can go into different states with different composition of species

Application

Minimal Subspace Complexity

Select Reversible Networks

An example of reversible network taken from lecture of Feinberg.

Minimal Subspace Complexity

Select Reversible Networks

An example of reversible network taken from lecture of Feinberg.

Minimal Subspace Complexity

Select Reversible Networks

An example of reversible network taken from lecture of Feinberg.

Select Reversible Networks

 $o = \{M\}$

Select Reversible Networks

 $o = \{M\}$

For all reversible networks where **any inflow set can trigger all reactions in the system to fire**, the **only organization** in the network is always the **complete set of molecules**

Select Reversible Networks

 $o = \{M\}$

For all reversible networks where **any inflow set can trigger all reactions in the system to fire**, the **only organization** in the network is always the **complete set of molecules**

Note: not all reversible networks exhibit this behavior.

Autocatalytic Network

An abstract example of an autocatalytic network

Inflow	Closure	Molecules set per organization
{a}	{a}	$o_1:\{a\}$
		$o_2: \{a, b, c, d, e\}$
{ <i>e</i> }	$\{b, d, e\}$	$o_1: \{b, d, e\}$
$\{b,e\}$		$o_2 : \{b, c, d, e\}$
$\{d, e\}$		$o_3: \{a, b, c, d, e\}$
$\{b, d, e\}$		

Autocatalytic Network

An abstract example of an autocatalytic network

Inflow	Closure	Molecules set per organization
{ <i>b</i> }	{ <i>b</i> }	$o_1:\{b\}$
		$o_2 : \{a, b\}$
		$o_3: \{b, c, d, e\}$
		$o_4: \{a, b, c, d, e\}$
$\{b, d\}$	$\{b, d\}$	$o_1: \{b, d\}$
		$o_2 : \{a, b, d\}$
		$o_3: \{b, c, d, e\}$
		$o_4: \{a, b, c, d, e\}$

Adenine Chemistry

Formation of adenine from hydrogen cyanide and ammonia

Rule 1: [N]1#[C]2[H]3.[N]4#[C]5[H]6 >> [N]1#[C]2[C]5([H]6) = [N]4[H]3

$\begin{aligned} & \textit{Rule 2}: [N]1\#[C]2[H]3.[N]4([H]6) = [C]5([*]7)[*]8 >> \\ & [N]1\#[C]2[C]5([*]7)([*]8)[N]4([H]6)[H]3 \end{aligned}$

$\begin{aligned} & \textit{Rule 3}: [N]1\#[C]2[*]3.[H]4[N]5([*]6)[*]7 >> \\ & [H]4[N]1 = [C]2([*]3)[N]5([*]6)[*]7 \end{aligned}$

$\begin{aligned} & \textit{Rule 4}: [H]1[N]2([H]4)[*]3.[H]5[N]6 = [C]7([*]8)[*]9 >> \\ & [*]3[N]2 = [C]7([*]8)[*]9.[H]1[N]6([H]4)[H]5 \end{aligned}$

$\begin{aligned} \textit{Rule 5}: [*]1[N]2 &= [C]3([*]8)[C]4([H]5)([*]6)[*]7 >> \\ [*]1[N]2([H]5)[C]3([*]8) &= [C]4([*]6)[*]7 \end{aligned}$

The reaction set of the Adenine chemistry:

 $1 A + 1 A \rightarrow 1 B$ $1 A + 1 B \rightarrow 1 C$ $1 C + 1 N \rightarrow 1 D$ $1 D + 1 N \rightarrow 1 E$ $1 A + 1 N \rightarrow 1 H$ $1 H + 1 E \rightarrow 1 F + 1 N$ $1 F \rightarrow 1 G + 1 N$ $1 H + 1 G \rightarrow 1 I + 1 N$ $1 I \rightarrow 1 J + 1 N$

Subset	Molecules set per organization
(A, D),	$o_1 : [A, B, C, D],$
(A, B, D),	$o_2 : [A, B, C, D, E, F, G, H, I, J, K]$
(A, C, D),	
(A, B, C, D)	
(A, G),	$o_1 : [A, B, C, G],$
(A, B, G),	$o_2 : [A, B, C, D, E, F, G, H, I, J, K]$
(A, C, G),	
(A, B, C, G)	

Adenine Chemistry

Formation of adenine from hydrogen cyanide and ammonia

Adenine Chemistry

Subset	Molecules set per organization
(<i>C</i> , <i>H</i>)	$o_1 : [C, H],$
	$o_2 : [C, D, E, F, G, H, I, J, K]$
(<i>D</i> , <i>H</i>)	$o_1 : [D, H],$
	$o_2 : [D, E, F, G, H, I, J, K]$

Summary and Conclusion

• the **minimum organization** of a reaction network under flow condition is the **closure of its inflow**

- the **minimum organization** of a reaction network under flow condition is the **closure of its inflow**
- in solving the complexity of the reaction network, consider only the closed set of molecules as inflow

Focus on rule-based systems

• Given a set of rules, what are the possible inflow sets that can generate the different states of the network?

Thank you!

