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Abstract

In recent years, the importance of RNA molecules in living cells has been rec-

ognized, and consequently the interest in RNA related science has increased

dramatically.

We introduce here new computational tools as well as modifications to estab-

lished tools for thermodynamic RNA secondary structure prediction. These

tools cover a variety of problems:

• Prediction of local RNA structures

• Prediction of RNA-RNA hybridization structures

• Extension of consensus structure prediction of RNA alignments

• Extension of RNA single structure prediction

• Prediction of local consensus structures of RNA alignments

The tools RNAcofold and RNAplfold cover the partition function and pair

probability of the structure of RNA dimers as well as local partition functions

and pair probability, respectively. RNAcofold can also predict equilibrium

concentrations of dimers and monomers dependent on given initial concen-

trations of monomers. The existing algorithm RNAfold has been modified

to include the partition function of canonical structures and a faster com-

putation of interior-loop energy. The energy evaluation of the consensus

structure prediction tool RNAalifold has been changed to a more realistic

physical model. Furthermore, the possibility of sequence weighting has been

added to RNAalifold, and a local version, RNALalifold, has been developed.

We show some applications of these new programs, which range from analysis

of siRNA/mRNA interaction for RNAcofold and accessibility prediction of

RNA interaction target sites for RNAplfold. We can, using other groups’ ex-

perimental results, conclude that the reported lack of miRNA function when

too many GU base pairs are present may be due to a change in the binding at
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the 5’ region of the miRNA. We also show that the new RNAalifold program

outperforms the previous version at least when the alignments contain many

gaps.

The programs developed are part of the freely available ViennaRNA software

package, and can be downloaded from

http://www.tbi.univie.ac.at/RNA/
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Zusammenfassung

In den vergangenen Jahren wurde die große Bedeutung der RNS für lebende

Systeme erkannt, weshalb das Interesse an Forschung über RNS stark ge-

stiegen ist.

In dieser Arbeit werden neue Algorithmen sowie Modifikationen von bekannt-

en Algorithmen für die thermodynamische Sekundärstrukturvorhersage von

RNS Molekülen vorgestellt.

Die neuen Programme RNAcofold und RNAplfold berechnen Zustandssum-

men und Basenpaarwahrscheinlichkeiten von RNS Dimeren beziehungsweise

lokalen RNS Sekundärstrukturen. RNAcofold kann darüberhinaus verwendet

werden, um die Gleichgewichtskonzentrationen von Dimeren und Monomeren

als Funktion der Startkonzentration von Monomeren vorherzusagen.

Das bestehenden Programm RNAfold wurde um die Zustandssummenberech-

nung von kanonischen RNS-Strukturen erweitert, und eine schnellere Berech-

nung von Inneren Schleifen wurde integriert. Die Energieevaluierung des

Programmes RNAalifold, das gemeinsame Strukturen von alignierten RNS

Molekülen vorhersagt, wurde auf ein physikalisch betrachtet realistischeres

Modell umgestellt. Darüberhinaus wurde die Möglichkeit, die einzelnen Se-

quenzen des Alignments für die Berechnung der gemeinsamen Struktur un-

terschiedlich zu gewichten, ergänzt.

Wir zeigen hier auch einige mögliche Anwendungen der erstellten Program-

me. Dazu gehört die Untersuchung der Interaktionen von mikro RNS mit

Boten-RNS, die mit RNAcofold durchgeführt werden kann. Durch die Unter-

suchung von experimentellen Daten, die von verschiedenen Gruppen durch

die Mutation von mikro RNS Bindungsstellen auf Boten-RNS erhalten wur-

den, können wir eine alternative Erklärung dafür geben, dass mehrere ein-

geführte G-U Basenpaare die Wirkung der mikro RNS beeinträchtigen. Wir

können diesen Effekt einer Veränderung des Musters der zwischenmoleku-

laren Bindung am 5’ Ende der mikro RNS zuschreiben, das bekannterweise

eine entscheidende Bedeutung für die Funktion der mikro RNS besitzt. Die
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Vorhersage der Zugänglichkeit möglicher Bindungsstellen für RNS Interaktio-

nen, für die das Programm RNAplfold herangezogen werden kann, ist sowohl

für die Vorhersage möglicher mikro RNS Bindungsstellen als auch für die

Evaluierung von Bindungsstellen für RNS Interferenz von großer Wichtigkeit.

Wir zeigen auch, dass die Modifikationen des Programmes RNAalifold dazu

führen, dass vor allem gemeinsame Strukturen von lückenhaft alignierten

RNS Molekülen besser vorhergesagt werden können als zuvor.

Die entwickelten Programme sind Teil des frei zugänglichen ViennaRNA Soft-

warepakets, das auf

http://www.tbi.univie.ac.at/RNA/

heruntergeladen werden kann, sowie Teil der zu diesem Paket gehörigen Funk-

tionsbibliothek, die Bioinformatikern weltweit die Verwendung der Algorith-

men auch innerhalb eigener Programme ermöglicht.
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1 Introduction

1.1 About this work

RNA, as an integral part of the living cell, has been living in the shadow of

its well known sister molecule DNA for almost half a century. Only recently

did most life-scientists realize that what they have called junk-DNA – that

is non protein coding DNA – can indeed have a multitude of functions via

RNA products. Today, RNA is accepted as a central part of many important

cellular functions, and some scientists, like John Mattick, believe that it was

the ability to use RNA for diverse regulatory functions that made complex

modern life (i.e. multi-cellular organisms) possible.

This work is concerned with the in silico prediction of RNA structures,

for local substructures as well as for intermolecular structures. With the

enormous amount of biological data already accessible and the even bigger

amounts of data which will be generated in the near future, fast computa-

tional methods for all areas of molecular biology are needed. Computational

methods for RNA structure prediction is what the theoretical biochemistry

group at the University of Vienna has been concerned with for many years.

This thesis summarizes algorithmic developments generated in recent years.

This work mostly is a compilation of several papers that were published in

recent years [7–9, 19, 92] as well as unpublished results and modifications of

algorithms we recently introduced. This thesis focuses on the development

of algorithms rather than on applications. However, there are some very

promising, mostly unpublished, results which have been generated by our

group.

The first chapters introduce RNA secondary structure prediction and mo-

tivate its necessity. In chapter 3, some additions to the existing RNAfold

program are described. Chapter 4 is concerned with the prediction of joint
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structures of two RNA molecules. Chapter 5 describes a program for local

partition function computation, and the final chapter 6 is concerned with

additions to the RNAalifold program for consensus structure prediction.

As the programs described in this work are diverse and have a variety of

different applications, applications and results derived from using these al-

gorithms are part of the respective chapters.

The algorithms and programs developed for this work have been implemented

in ANSI C and are part of the ViennaRNA software package, which can be

downloaded at

http://www.tbi.univie.ac.at/RNA/

While the programs described here have been thoroughly tested and contain

no mistakes we are aware of, there is still room for improvement in all of them.

All the programming work done for this thesis is strongly interconnected with

the ViennaRNA package, and the corresponding software library, and the new

programs are as easily maintainable as the established programs like RNAfold.
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1.2 RNA

1.2.1 History of RNA

Nucleic acids were first described by Miescher in 1869 [87]. Allegedly, he al-

ready suspected a connection to heredity – but it may well be that anybody

who discovered something new in the cell did so in those times. In 1909,

Phoebus Levene found that some nucleic acids contain ribose (in 1929 he

identified the sugar in the others as 2’ deoxyribose) [18]. Of the five nucle-

obases, Guanine was described first, in 1844, when it was isolated from guano.

Soon after the description of the DNA double helix in 1953 [130], RNAs were

suspected to play a role in information transfer from DNA to proteins [109].

The first hints in that direction came even earlier, when in the early forties

it had been realized that the cellular sites of protein synthesis are rich in

RNA [11, 16]. This was further confirmed by the discovery of tRNA (then

called sRNA) [48, 49] and the deciphering of the genetic code [94]. These

facts lead to the central dogma of molecular biology formulated by Francis

Crick [20, 21]. The central dogma is a set of rules about the direction that

information can flow in a cell. It basically states that there can not be

an information transfer originating from protein. The central dogma is not

concerned with the role of RNA (or DNA or proteins, for that matter) in the

cell. However, interpretations of the scientific community at large changed

the meaning of the central dogma, and RNA was reduced to a carrier of

information.

The discovery of catalytic activity of RNA in modern cells, namely E. coli

RNAse P by Sidney Altman 1983 [14] and a self-splicing intron in tetrahy-

mena by Thomas Cech 1982 [66], won them a Nobel prize in 1989, but was

not entirely sufficient to remove the “carrier of information” label from RNA.

In the 1990ies, however, RNA interference in plants [93] , fungi [112] and an-

imals [34] as well as the miRNA pathways in animals [71] and plants [108]

were discovered. Together with the finding that the Ribosome is essentially a
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DNA

RNA PROTEIN

Figure 1: The central dogma as depicted by Crick in 1970 [21]. Solid arrows show general,

dashed arrows special information transfers. Absent arrows are impossible according to

the central dogma.

Ribozyme [5,95] (interestingly, in his Nobel lecture 1962, James Watson sup-

posed that the ribosomal proteins are primarily structural proteins needed to

get rRNA and reaction intermediates in the right positions [131]) this helped

to shift the perception of RNA. Today, RNA is in the focus of attention of

many scientists, be it as regulatory molecule, as catalyst or as very versatile

silencing tool.

1.2.2 RNA chemistry

RNA, ribonucleic acid, Fig.2, is a hetero-polymer consisting of a backbone of

ribose in D-β furanose ring structure, phosphate groups and nucleobases. In

the RNA polymer, the ribose is linked by phospho-diester bonds between the

5’ and the 3’ carbon. Every phospho-diester group carries a negative charge,

so counter ions are important and usually present in aqueous solutions of

RNA (and DNA). Because of the 5’ to 3’ linkage of the sugars, RNA and

DNA are directed polymers. By definition, the sequence of nucleobases, the

variable part of the RNA molecule, is written from the 5’ to the 3’ end.
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Figure 2: Structure of RNA.

Left: structural formula, 2 Adenine nucleotides. Replacement of the two OH groups would

make this RNA a DNA.

Right: Space occupancy of 3 nucleotides

On the 1’ Oxygen one of the four nucleobases, the purines Adenine and

Guanine or the pyrimidines Cytosine and Uracil (3) is linked to the ribose

predominantly in anti conformation.

The differences to the more well known DNA (deoxy ribonucleic acid)

molecule are quite small. The first difference is the usage of Uracil instead of

Thymine, the second one is that DNA lacks the 2’ OH group of the ribose.

These differences have, however, some distinct physicochemical effects: first

of all, RNA is more catalytically active, due to the existence of the free OH

group on the Ribose ring. Secondly, the preferred form of RNA dimers is

the A-helix (see Fig. 4), as opposed to DNA, which mostly takes the B-

helix, dependent on its sequence and on environmental conditions [6]. These

chemical differences lead to different functions of RNA and DNA in biological

systems. Because of these functions, RNA molecules contain fewer monomers
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Cytosine
Thymine

Uracil

Guanine Adenine

Figure 3: The five nucleobases. Top: purines, Bottom: pyrimidines

by several orders of magnitude, i.e. the average RNA is much shorter than

the average DNA. Furthermore, RNA usually acts as a monomer, as opposed

to the famous DNA dimers building the DNA double helix. RNA dimers are

used rarely, mostly as “substitute” for genomic DNA in certain RNA viruses.

The RNA monomers, lacking a complementary counterpart, are prone to

fold back on themselves, forming structures that are fundamental for their

function in living systems.

1.2.3 RNA biology

As RNA has long been regarded as a rather uninteresting molecule, we prob-

ably do not know all functions that are mediated via RNA molecules in life.

However, many vital cellular functions are either catalyzed or controlled by

RNA molecules. The most prominent part of these functions belong to tran-

scription. There, RNA has catalytic as well as regulatory functions. For the

catalytic part, the Ribosome itself is a ribozyme, and of course there are

tRNAs and mRNAs. These three core elements of protein synthesis can be

found in all domains of life, and their maturation is also mediated mostly

6



Figure 4: The two main forms of nucleic acid helices. To the left the A type helix, which

is mostly adopted by RNA, as well as by DNA in environments devoid of water, e. g, in

most crystals. The right picture is the B-type helix, which is the natural conformation for

DNA in the cell. In both pictures, twelve base pairs are shown. It is easy to see that the

B-form is more elongated, with better access to the bases possible from the outside.
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with aid of RNA molecules: RNAse P, which cleaves the 5’ part of pre tRNA

has an important RNA part. The editing of rRNA, tRNA and mRNA bases is

guided by so called guide RNAs. For the rRNAs, snoRNAs, namely H/ACA

and C/D Box, are used for pseudo-uridinylation and 2’O-methylation of ri-

bose, respectively. Recently, snoRNAs targeting spliceosomal RNAs and tR-

NAs have been found [123,126].

In mRNA maturation, important parts of the major-spliceosome, which

splices at the “canonical” splice site GT-AG, are RNAs: U1, U2, U4, U5,

U6. The same is true for the minor-spliceosome, splicing at other sites [101],

where RNAs U11, U12, U4atac, U5 and U6atac take part. 7SK RNA has

recently also been identified as a part of the splicing apparatus in verte-

brates [67].

The 3’ end of replication dependent histone pre-mRNAs is not poly-aden-

ylated, but cleaved by a ribonucleoprotein complex consisting of U7 RNA

and protein components [117] . In addition, RNA is also used for transcrip-

tional control – the miRNA pathway is a very versatile tool for transcriptional

attenuation.

There are also functional motifs present in mRNAs, e.g. the iron response

element IRE [47], the internal Ribosome entry site IRES [59] and the se-

lenocystein insertion sequence SECIS [64]. Finally, the signal recognition

particle, SRP, which guides proteins to the ER during transcription, also has

an important RNA component [60].

Y-RNAs, which are part of the Ro ribonucleoprotein complex, whose function

is yet to be determined, but who are allegedly involved in quality control of

5S rRNA [68]. There are also a number of prokaryotic RNAs known (around

60 for E. coli), of which at least a third are known or supposed to be repres-

sors or activators of protein translation [40]. Another example of functional

prokaryotic RNAs tmRNA, which is used for rescuing stalled ribosomes [45].

The number of identified RNAs which are allegedly not really involved in

protein synthesis is small by comparison. An example could be vault RNAs,
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which are part of the vertebrate vault ribonucleoparticles [91]. Better known

is the function of e.g. telomerase RNAs, which are a part of the telomerase ri-

bonucleoparticle which caps chromosomes [33], and RNAse MRP [90], which

cleaves primers for DNA replication in eukarya.

An extensive review of known non-coding RNA and their function is e.g.

given in [10].

1.2.4 RNA bioinformatics

Due to the fact that predicting RNA secondary structures is relatively easy,

the first algorithms for doing so date back into the late 1970ies. In 1975,

Pipas and McMahon [104] published a set of programs to predict RNA sec-

ondary structure using thermodynamic data, which however was inefficient,

taking O(2n) in processor time. The first efficient O(n3) algorithm was de-

veloped by Nussinov in 1978 [97], and improved in 1980 [96]. In 1981, Zuker

and Stiegele [141] developed the dynamic programming algorithm which is

in principle used in this work. The computation of the partition function

was first published by John McCaskill in 1990 [84]. In 1994, the ViennaRNA

Package was created [52].

A new field of RNA bioinformatics is the identification of novel RNA genes.

Many non-coding RNA molecules found to be transcribed via high through-

put screens have no known function. As a consequence, there is a great need

for computational tools for identification and classification of RNA genes.

Identification of RNAs by sequence homology, essentially done by blasting, is

a widely distributed ansatz, but it obviously only works for known RNA fam-

ilies. Additionally, this approach neglects the importance of RNA structure.

Successful programs that take structure into account are e.g. tRNAscan-SE

by Lowe and Eddy [75] or the ERPIN web server [69].

Recently, algorithms to identify unknown RNA genes out of genomic data

have been published by Washietl [129] and Pedersen [102]. These programs

have already been successfully applied to search for non-coding RNAs in ver-
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tebrates [128], nematodes [89] and urochordata [88].

In this work, we provide enhanced versions of basic tools from which many

of these methods can profit. The RNA gene finding done by the RNAz pro-

gram [128], for example, is based on the consensus structure prediction pro-

gram RNAalifold, of which we created an improved version as well as a local

version.
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2 RNA structure

An RNA molecule can be characterized by the sequence of its bases. This,

also called the primary structure, is sufficient to distinguish RNAs. If the

sequence of the nucleotides is the same, so are two or more molecules. How-

ever, this information alone is not sufficient. As Neil Campbell wrote in his

textbook Biology [15]:

How a device works is correlated with its structure: Form fits function.

Applied to Biology, this theme is a guide to the anatomy of life at

its many structural levels, from molecule to organisms. Analyzing a

biological structure gives us clues about what it does and how it works.

Conversely, knowing the function of a structure provides insight about

its construction.

Accordingly, if we are interested in the function of RNA molecules within

living organisms, their structure is a good starting point. It must be said

that as it is comparatively easy to sequence RNA (or DNA) molecules, there

is a lot of RNA sequence data available. On the other hand, determining the

tertiary structure with X-ray crystallography or NMR is much harder, and

therefore there will always be more known sequences than structures [72].

We are settling here for a kind of compromise by working with the secondary

structure of RNA, which is easier to obtain than 3D structure but more

informative than sequence information alone.

2.1 RNA secondary structure

An RNA secondary structure is defined as a list of either Watson-Crick (G-

C, C-G, A-U, U-A) or wobble (G-U, U-G) base pairs with the following

properties: (for convenience, we use the following nomenclature: we will

write (i, j) to signify a base pair between positions i and j, and we will

always assume i < j if not stated otherwise.)
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Figure 5: Different Levels of RNA structure description. At the top, the nucleotide se-

quence of the S Domain of RNAse P of B. subtilis is shown. To the left, its secondary

structure is plotted

To the right the 3D structure is shown, where the surface of the molecule is transparent,

and the bonds within the molecule are shown in stick representation.

Both structures have been determined by NMR [63].
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• The base pair has to be either a wobble or Watson-Crick base pair

• Any base can take part in at most one base pair.

• If bases i, j form a base pair, there have to be at least 3 bases between

i and j

• Base pairs do not cross. (Knot-free condition)

Note that the knot-free condition also assures that there are only anti-parallel

stacks.

In a more formal definition, a secondary structure S is a set of base pairs on

sequence s. With xi the base on sequence position i, S satisfies the following

rules:

i (i, j) ∈ S ⇒ (xixj) ∈ {AU,UA,GC,CG,GU, UG}

ii if ((i, j) ∧ (k, l)) ∈ S ∧ i = k ⇒ j = l

iii if (i, j) ∈ S ⇒ i < j − 3

iv if ((i, j) ∧ (k, l)) ∈ S ∧ i < k ⇒ i < k < l < j ∨ i < j < k < l

It must be emphasized that violating these conditions is not physically impos-

sible. There are all possible kinds of non-standard base pairs in nature [39,73],

as well as pseudo-knots violating the knot-free condition and bases taking

part in more than one base pair [38,86,106]. However, somewhat arbitrarily

these things are not defined as secondary, but as tertiary structure. There

are several reasons for doing this:

The 6 base pairs included in the definition of secondary structure are the only

ones which mostly give energetically favored pi-system interactions. Most of

the free energy of an RNA molecule is contributed by these base pairs. This

is mostly due to the fact that they are almost exactly isosteric, which means

that at least the Watson-Crick base pairs can be exchanged without distort-

ing the three dimensional structure of the helix in any way. For GU base

pairs, the distortions are only minor [79].
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Furthermore, there is a kinetic hierarchy within the formation of the RNA

structure: usually, the secondary structure forms, and when these helices are

built, they interact to form the tertiary structure [13, 125].

These two facts show that the building of a tertiary structure is strongly in-

fluenced by the secondary structure. As a consequence, changes in secondary

structure as a result of the formation of a tertiary structure are rare. How-

ever, tertiary structures can show substantial similarities even though the

secondary structures are different [62,132]. This shows that while secondary

structure prediction is a powerful tool, it cannot entirely replace tertiary

structure prediction or experimental structure determination.

Pseudo-knots do occur frequently in biologically important RNA molecules

like tmRNA, RNAse P, telomerase and others. About 20% of the known

biologically relevant RNA structures contain pseudo-knots. Not including

them thus limits the accuracy that can possibly be achieved by secondary

structure prediction algorithms.

The other class of reasons are for convenience of the computation. It has been

shown that not using the knot-free condition will render the problem NP-

complete [76] if the more sophisticated energy evaluations are used. However,

several special classes of pseudo-knots can be computed in polynomial time,

with the fastest (and most restricted) algorithms running in O(n4) [107]. This

is still quite slow and makes computation infeasible for long RNA molecules.

Another inconvenient fact for dealing with pseudo-knots is that the energy

parameters for the Turner energy model (section 2.3) are not known and are

hard to quantify experimentally. The entropic corrections used by Isambert

and Siggia [57], on the other hand, are dependent on the length of the helices

and therefore not suited for dynamic programming.
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2.2 Visualization of RNA secondary structures

There are several approaches to the visualization of RNA secondary struc-

tures. A widely used approach is to draw the molecule. The created draw-

ings are very informative as long as the molecules do not get to large. When

comparing RNA molecules, it is easy for humans to find common patterns

or differences by visual inspection. However, for long RNA molecules, the

picture contains too much information, and different solutions are to be pre-

ferred. One such solution is the so called mountain-plot. Here, the sequence

is drawn at the abscissa. When a base is paired upstream (i.e. it is i in

a (i, j) pair), the value on the ordinate is increased by one (compared to

i − 1). For j, it is decreased by one. Still another representation draws the

sequence along a circle and then connects base pairs by secants. More formal

representations also exist: one is the so-called dot-plot, where in a matrix a

dot is drawn at point i, j if a base pair exists in the structure. This can be

expanded to show the mfe structure and the base pair probabilities at the

same time (as i, j and j, i correspond to the same base pair).

A very reduced version is the so-called “Vienna” or bracket dot represen-

tation. In this, unpaired bases get a “.”, bases paired upstream a “(“ and

downstream a “)”. Because of the knot-free condition, the decomposition

using standard mathematical rules will be unique and paired brackets will

always correspond to a base pair. (See Fig. 6).

Yet another possibility is to represent RNA secondary structures as ordered

trees (i.e. the children of a node cannot be exchanged). There are different

levels of abstraction that can be used to draw these trees. In the most de-

tailed case, every loop is represented by a node, and the bases are children (or

labels) of the respective node. In other, more abstract tree representations,

the stacks are contracted into one node, stacks and bulges are contracted,

and so on, until only the branching topology is represented (Fig. 7).
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Figure 6: Representations of RNA secondary structure. A yeast (Saccharomyces cere-

visiae) tRNA-Phe in different representations. The stems are colored to make comparison

easier.

Top: left: graph representation of secondary structure. right:Mountain plot.

Middle: left: dot plot right: circular graph representation.

Bottom: Dot bracket representation.
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Figure 7: Tree representations of RNA secondary structure. (the same tRNA molecule and

coloring as in Fig. 6) is used. 1 shows a representation containing all secondary structure

information. 2 Is an abstraction where the nodes, representing stacks (cycles) or unpaired

bases are labeled with the number of base pairs or free bases, resp. 3 is the most abstract

representation, where only the most basic topology can be seen.

2.3 The free energy of RNA secondary structures

An important assumption for computing the free energy of RNA secondary

structures is additivity. The structure can be decomposed into building

blocks, called loops. The assumption now is that the free energies of these

loops are additive. This means that the contributions of the different loops

are not dependent on other parts of the molecule. This enables us to use

e.g. dynamic programming approaches for free energy prediction. Naturally,

this simplification may lead to problems when trying to predict biologically

relevant RNA structures. However, it is a prerequisite for the usage of dy-

namic programming or SCFG algorithms (see below). As molecules adopting

the same secondary structure can have many different atomic configurations

(e.g. backbone atoms), the energy of an RNA secondary structure will always

contain entropic contributions. It is therefore always a free energy. However,

we will use the term “energy” here in the same sense, as it is cumbersome to

always use the correct term.
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2.3.1 Loop decomposition

The maybe easiest way to describe the loop decomposition of RNA secondary

structure is considering the secondary structure as an outer planar graph.

When doing this, the set of bases correspond to the vertices of the graph.

The phospho-diester bonds are in the set of edges E. They link base (vertex)

i with base i+ 1 (we will call them “outer edges”). Base pairs are also in E,

they connect vertices while fulfilling the secondary structure rules of 2.1, we

will call them “inner edges”. These rules lead to the following properties of

the graph:

• If ((i, j) ∈ E ⇒ i = j − 1 ∨ (xi, xj) ∈ AU,UA,GC,CG,GU, UG

• The maximal degree of a vertex is 3, all vertices except 1 and n have

at least degree 2.

• If ((i, j) ∈ E ⇒ i = j − 1 ∨ i < j − 3

• Edges do not cross, i.e. the graph is outer planar.

The loops are now the faces of the graph, i.e. the areas that are enclosed

by edges. These faces are differentiated by the number of “inner edges”

(base pairs) that enclose them. A face containing one base pair is called a

hairpin-loop. Loops containing two base pairs are interior-loops. These fall

into three different subclasses, depending on the number and distribution of

the outer edges. Interior-loops with 4 edges (two outer and two inner edges)

are called stacks, interior-loops where the shortest path between two base

pairs contains one outer edge (and that are not stacks) are called bulges, and

all others are actual interior-loops. Finally, faces containing more than two

base pairs are called multi-loops or branch loops (see Fig. 8). Sometimes,

the outer area of the graph, which is not surrounded by edges, is called the

exterior-loop. While this is contradictory to the definition of loops given
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1

Figure 8: An RNA secondary structure (left) and its loop decomposition (right). The

exterior-loop is shown black, the hairpin-loops blue, the interior-loops in shades of red

(stacks: bright red, bulge darker, interior-loop almost brown) and the multi-loop in green.

just in this paragraph, it enables us to decompose the whole RNA secondary

structure into loops.

2.4 Free energy of loops

The contribution of a single Loop to the free energy of a RNA secondary

structure can either be experimentally derived or computed from experimen-

tal data.

To get to the energy values experimentally, Turner and others use melting

experiments [81]. In these experiments, the “melting” (i. e. the phase tran-

sition between single and double stranded RNA) of small RNA molecules

is monitored against the Temperature. The Gibb’s free energy can then be

computed out of Absorbance/Temperature curves using the following formu-

las:

1 − f =
A(T ) −Ad(T )

As(T ) − Ad(T )
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where f is the fraction of molecules in double stranded state, A(T ) is the

Absorbance at temperature T and As(T ) and Ad(T ) are the absorbances for

single strand (upper baseline) and double strand (lower baseline) molecules

resp. at temperature T . with CT the total concentration of all single strands

and the equilibrium constant

K =
2f

(1 − f)2CT
= exp(

−∆G◦

RT
) = exp(

−∆H◦

RT
+

∆S◦

R
)

the Enthalpy −∆H◦ and the Entropy ∆S◦ can be computed for different

molecules.

For dimers, ∆HN , the enthalpy of the formation of a bi-molecular complex,

can be computed using [127]:

1

Tm
=

1

T ′
m

+
R

∆HN
log

c

c′

where Tm is the melting temperature at concentration c and T ′
m at c′. By

variation of the sequence and comparison of their energies, energy values can

be assigned to different loops. The reference point of the energy is always

the random coil of the open chain (i. e. a molecule without base pairs).

However, obtaining energies of bigger loops is difficult. This has two reasons:

Firstly, the combinatorial explosion one gets because the number of different

sequences is 4n. Secondly it must be ensured that no other base pair patterns

are possible for the molecule, or at least that these are negligible, because

otherwise the reference point (base line) will be shifted and the phase tran-

sitions are blurred. This makes the measurement of multi-loop energies very

hard for this technique. However, Mathews et al. did measure a few 3 way

and 4 way branched loops [83].

Even with the small structural motifs used, the error is about 10% [81,138],

where stacking parameters are less prone to errors than the different other

loop parameters.

A different, recent, approach to measure the contributions of different loop

types is using single molecule techniques [139]. While using melting curves

20



is of course an ensemble approach, these techniques can monitor structural

changes at a single molecule level. Furthermore, they can use optical tweez-

ers to actively pull at molecules, measuring the force necessary to break base

pairs or change structural motives. While these techniques are in principle

suitable to refine the energy parameters, up until now this has not happened.

Whatever technique is used for measuring the energy parameters, remember-

ing the big dependency on counter ions is crucially important. As mentioned

above, every phospho-diester bond carries a negative charge. In biological

environments, there is a multitude of different combinations of ions, and di-

valent cations, especially the abundant Mg2+, are known to change structural

preferences of RNA molecules. Usually, measurements are taken in 1 M NaCl

solution, which is buffered to pH 7.

Computation of loop energies uses the polymer ring closure works of Jacob-

son and Stockmayer [58]. These state that the entropy loss (which is the only

contribution used) rises logarithmically with the length of the loop. The en-

ergy of a hairpin i, j is taken to be dependent only on the base pair i, j, the

so-called mismatched bases i+1 and j−1 and on the length of the unpaired

stretch lhu = j− i− 1. The energy of a long interior-loop is dependent on the

type of the closing base pairs i, j and k, l, on the mismatches i+1, j−1, k−1

and l+ 1, on the total length of the interior-loop k+ j − i− l− 2 and on the

asymmetry of the loop |(k − i) − (j − l)|. Finally, in multi-loops the energy

is dependent on the number of stacks and the number of unpaired bases of

the multi-loop. The number of unpaired bases, however contributes linearly

to the energy, in contrast to the logarithmic rise computed by Stockmayer

and Jacobson. This is necessary to compute the multi-loop contributions in

O(n3) within dynamic programming algorithms.
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2.5 Predicting RNA secondary structures

2.5.1 Dynamic programming

Dynamic Programming is the reduction of a big problem to small sub-

problems, all of which are further reduced up to some sort of smallest pos-

sible problem, which is then solved and solutions of the bigger problems are

built up out of solutions to smaller problems. In the Dynamic Programming

Method of RNA folding, which is used in the ViennaRNA Package and thus

in all the programs developed in the course of this work, an RNA secondary

structure is decomposed like this: A stretch X of sequence s and length l is

built of a stretch X1 of length l − 1 and a base i. The base i can be

• unpaired, so the minimum free energy EX = EX1

• or paired with a base between 1..l − 1.

The dynamic programming approach uses the definitions of secondary struc-

ture as well as the assumption that the energies of parts of the molecule

are strictly additive and not context sensitive. For the maximum matching

“Nussinov” algorithm, which will shortly be explained, this is clearly the case.

It also is true for the more complicated “stacking” energy models. However,

this assumptions fails when looking at the actual data. The energy of say

an interior loop does change slightly depending on the surrounding loops.

This is probably one of the main reasons that even the best algorithms are

not perfect, see section 2.6 for details. The Nussinov algorithm [98] basically

maximizes the number of base pairs an RNA molecule can achieve, or the

number of hydrogen bonds between the bases. To maximize the number of

hydrogen bonds, a scoring is introduced where GC or CG pairs get score 3,

AU,UA score 2 and GU,UG score 1. The minimum free energy recursions

then look like this:

Ni,j = max

{

Ni−1,j

maxi<k≤j{Ni+1,k−1 +Nk+1,j + δ(i, k)}
(1)
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with the score δ(i, k) the score of the base pair i, k. For a sequence of length

l, the minimum free Energy of the Nussinov model is simply N1,l. For ease

of understanding, we use N(i, i) = N(i + 1, i) = 0. As can be easily seen,

this computation needs O(n3) processor time and O(n2) memory.

If the loop based energy model is used, the computations have to differentiate

between the different loop types. However, the energy gain of the secondary

structure is due to the stacking of the π-electron-systems of the bases. To

model this, the so-called Turner or nearest neighbor energy model is used.

It takes into account the stacking of base pairs – and single bases on base

pairs, see chapter 2.5.2.

If base pairs stack directly onto each other, the energy is stabilizing. All

possible WC and wobble base pair stack interaction energies have been tab-

ulated. If we have a bulge-loop, the free energy is dependent on the length

of the bulge as well as on the bases of the bulge lying next to the closing

base pairs – the so called mismatches. Usually the energy of a bulge-loop is

destabilizing. Only in bulges of size one, i.e. if there is only one base between

the base pairs, the stacking energy is used together with a penalty, so they

can be stabilizing, also.

For interior-loops, the energy is modeled as being dependent on the size of

the loop, i.e. how many bases are there between the two base pairs, the

asymmetry of the loop and the bases adjacent to the closing base pairs, the

mismatches. In the case of a hairpin-loop, the energy is either tabulated, as

is the case for most Tetraloops, i.e. loops with exactly 4 bases between the

closing base pairs, or it is modeled as dependent on the size of the loop and

the mismatches. For a multi-loop, a linear approximation is used, where the

energy is split in contributions of the unpaired bases in the loop, the number

of stacks in the loop, and a penalty for closing the multi-loop. All these

contributions are destabilizing.

In course of the recursions for the computation of the minimum free energy,

we will fill and use the following arrays:
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Fi,j The minimum free energy on a stretch between i and j

Bi,j The minimum free energy subject to the constraint that i and j form

a base pair (i, j)

Mi,j A multi-loop contribution where there is at least one stack somewhere

between i and j

M1
i,j A multi-loop contribution containing exactly one stack and base i is

paired.

Using these arrays, the recursion for the minimum free energy looks like this:

Fi,j = min

{

Fi+1,j , min
i<k≤j

Bi,k + Fk+1,j

}

Bi,j = min

{

H(i, j), min
i<p<q<j

I(ij, pq)Bp,q, min
i<k<j

α + β +Mi,k +M1
k+1,j−1

}

Mi,j = min
{

Mi+1,j + γ,min
k
Bi,k +Mk+1,j + β(i, j),M1

i,j

}

(2)

M1
i,j = min

{

M1
i,j−1 + γ,B(i, j) + β(i, j)

}

With α, β(i, j), γ the parameters for closing a multi-loop, extending it by

one base pair and by one unpaired base, resp. H(i, j) is the energy of a

hairpin-loop between sequence positions i and j, and I(ij, pq) the energy

of an interior-loop between the base pairs i, j and p, q. Remember that the

values of both H and I are dependent on the unpaired bases inside the loops

as well as on the closing base pairs. Again, we use F (i + 1, i) = F (i, i) = 0

as a kind of initialization to keep the formulas simple.

The seemingly complex multi-loop computation is done to ensure the unam-

biguousness of the decomposition, which means that there is only one way to

decompose every structure. This is of no import to the minimum free energy

computation, but is vital for the computation of the partition function we will

attempt shortly. The only problem of this approach lies in the computation

of Bi,j , namely in the interior-loop part thereof. The computation as written

down here is obviously O(n4). This drawback is circumvented by forbidding
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interior-loops with a length longer than a constant X. The recursion then

looks like this:

Bi,j = min















H(i, j)

mini<p<q<j;p+j−i−q−1<XI(ij, pq)Bp,q

mini<k<j α + β +Mi,k +M1
k+1,j−1

There are, however algorithms that compute full length interior-loops in

O(n3). See section 3 for a description.

2.5.2 Dangling ends

While these four loop types are all that is needed to decompose any secondary

structure following the definition in 2.1, the success of such an energy model

is fairly poor. In the early 1970ies [78, 127], it was realized that unpaired

bases adjacent to base pairs play a role in stabilizing secondary structures.

Recently, this effect was attributed to the exclusion of water from the hydro-

gen bonds of the closing pairs of a stack [56]. Alternatively, it can also be

due to a stacking of single bases onto a base pair and an interaction of the

π-electron-systems of the bases.

Whatever the physical principles behind the stabilizing effect, using this so-

called Dangling Bases with their measured energy contributions increases

the predictive power of the loop based energy model. The energy contribu-

tions are dependent on the type of base dangling and on what base(pair)

it dangles onto. It has to be noted that in general, stacking onto the 3’

end of a base pair is more stabilizing than on the 5’ end for RNA molecules

(average energy contribution of a 3’ dangle=∆∆G
o

3′ = −0.82 kcal/mol and

∆∆G
o

5′ = −0.22 kcal/mol for the 5’ dangle). For DNA molecules, the direc-

tional difference is less pronounced, and the 5’ dangle is the more stabilizing

(∆∆G
o

3′ = −0.30 kcal/mol and ∆∆G
o

5′ = −0.42 kcal/mol).

While we allow dangling energies only for the bases directly adjacent to a

base pair, recent results indicate that there is a stabilizing effect for stretches
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of up to 4 bases, with the difference of up to −∆∆Ḡo
3′ = 1.0 kcal/mol be-

tween 1 and 4 dangling bases [100]. However, it is not straightforward to

incorporate this long range effect into the folding algorithms.

There are different ways to treat dangling end contributions. We will explain

them in chapter 2.7 below.

2.6 Accuracy of dynamic programming RNA second-

ary structure prediction

The accuracy of predicting RNA secondary structures by physics-based dy-

namic programming as described above is dependent on the size of the

molecules. The bigger a molecule is, the worse these production gets. This

has several reasons, which we already shortly discussed:

• The different assumptions the model has to make

• The inaccuracy of the energy parameters

• The existence of pseudo-knots

The effect of these problems seems to pile up for longer molecules. Obviously,

the probability to get at least one pseudo-knot is proportional to the sequence

length. Of the different assumptions, the linearity of the multi-loop size

parameters may be affected strongest, because the probability to get big

multi-loops (in number of components as well as in number of free bases)

also rises with the size of the molecule. For the additivity of loop energies as

well as for the inaccuracy of the experimentally derived energy parameters,

one could hope that deviations cancel out each other, but evidently this

is not the case for most molecules. Finally, the length dependency of the

performance can also be due to the kinetics of the folding.

As reported in the paper of Mathews et al. [81] the mean percentage of

correctly predicted base pairs for the most advanced prediction methods is:
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RNA % base pairs correct

16S RNA 51.1

23S RNA 56.7

5S 77.7

Group I intron 69.9

Group II intron 88.2

RNAse P 54.5

SRP RNA 73.0

tRNA 83.0

Total 72.9

As can be seen, the algorithms perform best at short RNAs like tRNA (ap-

prox. 80 nt) or Group II introns (approx. 80 nt), and worst on 16S and

23S RNA, with lengths of 1600nt and 2900 nt, respectively. The fact that

RNAse P is also badly predicted is probably due to the large number of

pseudoknotted base pairs (14%, as opposed to e.g 0.2% at the 23S or 1.4%

at the 16S RNA).

It must be emphasized that using a Nussinov style algorithm with hydrogen

bond maximization, the average percentage of correctly predicted base-pairs

using the same test set is 20.5%.

However, in a more recent study, Doshi et al. [29] used a different, more

stringent definition of what correctly predicted means – while Mathews et al.

considered a base pair to be correctly predicted also if it was shifted by one,

i.e. if instead of the base pair (i, j) in the consensus structure the prediction

was e.g. (i + 1, j), Doshi et al. counted only base pairs as correct if both i

and j coincided in prediction and consensus structure. Doshi et al. got cor-

rectly predicted values of 71%, 45%, and 43% for 5S, 16S and 23 S rRNAs,

respectively. They also showed that the longer the contact distance of a base

pair, i.e. the higher j − i, the worse the predictions of the algorithms.
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2.7 Partition function

RNA molecules in physiological conditions are far away from being caged

into a rigid secondary structure. Because the stabilizing energies of base pair

formation are in the same energy range as the thermal energy, base pairs

open and close all the time. Of course, tertiary structure interactions as well

as interacting molecules can stabilize a certain secondary structure, but on

the whole, an RNA molecule will adopt many possible secondary structures.

Several approaches to use this to get more information about an RNA sec-

ondary structure exist. A possibility is the computation of a number of

suboptimal structures in addition to the mfe structure. Manfred Zuker’s al-

gorithm [140] computes the best secondary structure that contains the base

pair (i, j) for every base pair (i, j), while Stefan Wuchty’s algorithm [136]

predicts all secondary structures within a given energy band of the minimum

free energy. We follow McCaskill’s idea to compute the partition function of

the secondary structures of an RNA molecule [84].

We define an ensemble of secondary structures S(x) on a sequence x as the

set of all secondary structures x can form, following the rules of secondary

structure building 2.1. For every single one of these structures, there is an

energy E(s, x) of structure s ∈ S being adopted by sequence x. If we now

want to get the probability to find sequence x in structure s at a given time,

this is proportional to the Boltzmann coefficient:

p(s|x) ∝ e
−E(s,x)

kT (3)

where k is Boltzmann’s constant and T is the absolute Temperature. If we

use molar units for the energies, this will change to

p(s|x) ∝ e
−E(s,x)

RT (4)

with R the Gas constant.

Every sequence x has to take on some structure, so:
∑

s∈S

p(s|x) = 1 (5)
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we can now define the exact probability of p(s|x):

p(s|x) =
e

−E(s,x)
RT

∑

t∈S e
−E(t,x)

RT

(6)

∑

t∈S e
−E(t,x)

RT = Q is called the partition function of x. This partition

function has lots of applications in thermodynamics. -RT lnQ is the Gibb’s

free energy of the ensemble, the probability of a certain the mfe structure

being adopted is its Boltzmann weight divided by Q.

Generally, one can get the probability of any given feature by summing the

Boltzmann factors of all structures showing this feature and then dividing

by Q. How do these properties of the partition function help us with the

prediction of RNA secondary structures?

First, one can look at the probability of the mfe structure. If it is high,

then so is the confidence that it is at least close to the “real” structure.

However, if RNA molecules get long enough, the probability of the mfe

structure will always be very low. This is because the number of secondary

structures a sequence can adopt rises exponentially with the length of the

sequence(ψ(Sn) ≈ 1.855n) [54]. Note that the total number of possible

secondary structures of all sequences of length n also rises exponentially

(ψ(n) ≈ 2.289n) [54], but much slower than the number of possible sequences

(4n), hence there are always fewer structures than sequences.

It has to be remembered that the measured energy values deviate around

10% from the true values [81, 138]. Partition function folding gives us the

possibility to look at a bigger set of possible structures. What we will examine

are the probabilities of base pairs. If a RNA molecule is randomly chosen

out of the ensemble in thermodynamic equilibrium, what is the probability

to find a certain base pair i, j formed in this molecule.

As stated above, one can compute that by simply summing up all Boltzmann

weights for the structures containing i, j paired and dividing by Q. With this

information, one can get a nice overview over all probable structures in the

ensemble without generating them exhaustively. These pair probabilities are
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not independent. Trivially, the probability to get a certain base pair is much

higher if it can stack to an existing base pair. It is therefore not possible to

compute the probability of a structural feature using the pair probabilities

only.

Dangling ends

As explained above, dangling ends are unpaired bases that stack onto base

pairs. Similarly, helices can stack onto each other also, bringing the π-

electron-systems of their closing base pairs into interaction. This happens

e.g. in the t-RNA clover leaf, where two extended “helices” are formed by

stacking of one arm onto a neighboring one, respectively, thus creating two

extended stacks which then form the L-shaped tertiary fold. While this

“coaxial stacking” of helices can be viewed as a tertiary motif, it is still quite

easy to incorporate it into the mfe prediction algorithms. In the ViennaRNA

package, the dangling end energies are considered in four different ways, as

specified by the user.

The default for the mfe case is that bases stack onto at most one base pair

with minimum energy, i.e. if there are two stacks to choose, a base will dangle

onto the stack where the most energy is to be gained. Another possibility is

to let a base dangle onto every neighboring helix, regardless of what happens

on the other side of this base. This could also be viewed as trying to mimic

coaxial stacking. A full consideration of coaxial stacking is also implemented

in the mfe case. Finally there is the possibility to neglect dangling ends al-

together.

When computing the partition function, we use either no dangling ends or

the version where a dangling base dangles to every neighboring stack. In

case of “minimum energy” dangling or coaxial stacking, we would have to

differentiate between e.g. the structure where base i dangles 3’ and the struc-

ture where it dangles 5’. This would complicate matters and would also lack

elegance. As the definition of secondary structure does not include dangling

30



ends, we would treat two (or more) identical secondary structures as different

ones with slightly different energies, according to their dangles. We feel it is

better to neglect this more complicated dangling end contributions.

2.7.1 Computation of the partition function

As we have seen, the partition function is a quite powerful tool for the analysis

of the RNA secondary structure ensemble. It is very fortunate that it is quite

easy to implement its computation in dynamic programming algorithms.

Let us first take a look at the Nussinov algorithm. In the simplest case,

without any energy function, computing the partition function boils down

to counting the number of possible secondary structures. Again, we can

postulate that if we elongate a sequence by one base, this base is either paired

or not. Furthermore,a new base pair i, j splits the sequence into two parts –

an inner part and an outer part. With the energy contribution exp(i, j) for

a base pair i, j, we get:

Q(i, j) = Q(i− 1, j) +
∑

k

Q(i+ 1, k − 1) exp(i, k)Q(k + 1, j) (7)

As in the case of the mfe computation, Q(i + 1, i) and Q(i, i) are used as

initialization, only in the partition function case they are set to 1.

As can easily be seen by comparison, the only difference between the mfe

and the partition function algorithms is the usage of a sum whenever in the

mfe there is a min and a multiplication instead of a summation. Thus, com-

puting the partition function is computationally not more demanding than

computing the minimum free energy.

We have to stress that this is also the case for the loop based energy model.

However, the ease of the transition between the mfe and the partition func-

tion computation there is due to the fact that we made a unique multi-loop

decomposition. This has not been necessary for the mfe case, but is of vital

importance for getting the right partition function.
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Equation 10 shows the computation of the partition function as it is imple-

mented in the Vienna RNA package, including dangling end energies. We use

Q(i, j) as the partition function on the stretch i to j, QB(i, j) as the partition

function given i and j form a base pair, and QM and QM1 are the partition

function equivalents of the multi-loop contributions also used in equ. 2.

Q(i, j) = Q(i+ 1, j) +
∑

k

QB(i, k)ed(i−1,i;k+1,k)Q(k + 1, j)

QB(i, j) = H(i, j) +
∑

i<k<l<j;j+i−l−k>X

I(ij, kl)QB(k, l)ed(i,i+1;j,j−1) +

+
∑

i+5≤k≤j−5

QM(i, k)QM1(k + 1, j)ea(i,j) (8)

QM(i, j) = QM(i+ 1, j)ec + (9)

+
∑

i<k<l

QB(i, k)ed(i−1,i;k+1,k)eb(i,k)QM(k + 1, j) +QM1(i, j)

QM1(i, j) = QM1(i, j − 1)ec +QB(i, j)eb(i,j)ed(i−1,i;j+1,j)

with I(uv, xy) the exponent of the interior-loop energy between base pairs uv

and xy, H(i, j) the exponent of the hairpin energy of base pair i, j, d(u, v; x, y)

the energy of base u dangling on v and x dangling on y of base pair vy, a

the entropy penalty to close a multi-loop, b the penalty to extend a multi-

loop by one stack, and c the penalty to extend a multi-loop by an unpaired

base. Again, to keep the computation O(n3), the length of interior-loops is

restricted to ≤ X. The initializations Q(i, i) = 1 (corresponding to the open

chain) and QM (i, i) = QB(i, i) = QM1(i, i) = 0 are used.

As partition functions can get very large, precautions have to be taken not to

generate overflows. For that reason, a scaling is introduced. Every partition

function Q(i, k), and every QB(i, k), QM (i, k), QM1(i, k) etc. is multiplied

with a scaling factor f < 1 to the power of k − i + 1, the number of bases

that generate it. This ensures that when adding up or multiplying partition

functions, the result will be scaled correctly. At the end of the computation,

when the free energy is computed, the scaling is removed again:

F = −RT (lnQ+ n ln f) (10)
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The scaling factor f is chosen so that 1 ≈ Qfn. An estimate for f can be

derived for the minimum free energy. As the Gibb’s free energy is usually

dominated by this term, this approach is sufficient most of the times. How-

ever, checks within the ViennaRNA package ensure that f is small enough

and will put out a warning if it is not. It is then advisable to change f to a

smaller value, which can be conveniently done using a command line option.

2.7.2 Base pair probabilities

The probability to get a base pair i, j is a very good representation of the

partition function, which is fiendishly difficult to visualize otherwise. To

compute the pair probabilities, we have to sum up over all structures that

contain the base pair i, j and divide by the partition function. This can also

be formulated thus:

p(i, j) =
Q(i, j)

Q

with Q(i, j) the partition function of all structures containing the base pair

i, j. We can decompose this to

p(i, j) =
QB(i, j)Q̂B(i, j)

Q
,

with QB(i, j) and Q̂B(i, j) the partition functions over all structures inside

and outside i, j given that i, j pair, respectively. As QB(i, j) is already com-

puted in the course of the partition function algorithm, we are now concerned

only with Q̂B(i, j). To get this “outer” partition function, we again distin-

guish two main possibilities – either i, j is enclosed by another base pair k, l

with k < i < j < l or it is not. For the enclosed case, k, l can either close a

multi-loop or an interior-loop. The multi-loop contributions can be written

as parts where there is no base pair between k and i, a part where there is

no base pair between j and l, and a part where there are base pairs on both
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sides. Omitting dangles, this leads to

Q̂B(i, j) = Q(1, i− 1)Q(j + 1, n) +

+
∑

k<i,j<l

Q̂B(k, l)I(kl, ij) +

+Q̂B(k, l))ea(k,l)eb(i,j)
(

QM (k + 1, i− 1) +QM(j + 1, l − 1)
)

+Q̂B(k, l))ea(k,l)eb(i,j)QM(k + 1, i− 1)QM(j + 1, l − 1))

with the usual boundaries concerning the interior-loops. The multi-loop part

can be split to achieve O(n3) computation time:

QM
t (i, l) =

∑

k<i

ea(k,l)(1 +QM(k + 1, i− 1)Q̂B(k, l))

Q̂M(i, j) = eb(i,j)
∑

l>j

QM
t (i, l)(1 +QM(j + 1, l− 1) +QM(j + 1, l − 1)

To visualize the base pair probabilities, dot plots are used. The size of the dot

is proportional to the square root of the probabilities of the base pairs. In the

lower left triangle, the minimum free energy structure is depicted (Fig. 9).

34



AB0312131_22

G G U C C G G U A G U U C A G U U G G U U A G A A U G C C U G C C U G U C A C G C A G G A G G U C G C G G G U U C G A G U C C C G U C C G G A C C G

G G U C C G G U A G U U C A G U U G G U U A G A A U G C C U G C C U G U C A C G C A G G A G G U C G C G G G U U C G A G U C C C G U C C G G A C C GG
G

U
C

C
G

G
U

A
G

U
U

C
A

G
U

U
G

G
U

U
A

G
A

A
U

G
C

C
U

G
C

C
U

G
U

C
A

C
G

C
A

G
G

A
G

G
U

C
G

C
G

G
G

U
U

C
G

A
G

U
C

C
C

G
U

C
C

G
G

A
C

C
G

G
G

U
C

C
G

G
U

A
G

U
U

C
A

G
U

U
G

G
U

U
A

G
A

A
U

G
C

C
U

G
C

C
U

G
U

C
A

C
G

C
A

G
G

A
G

G
U

C
G

C
G

G
G

U
U

C
G

A
G

U
C

C
C

G
U

C
C

G
G

A
C

C
G

Figure 9: Dot plot showing the pair probabilities of a B. subtilis tRNA-Asp sequence.

In this example, the mfe structure (lower left triangle) does not show the typical clover

leaf shape, while the base pair probability plot (upper right triangle) shows that the stem

missing in the mfe structure is quite probable in the ensemble.
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2.8 Stochastic Context Free Grammars

In 1959, Noam Chomsky started to describe a formalization of grammars to

construct correct sentences in languages [17] . He developed a hierarchy of

increasingly complex grammars which can create increasingly complex sen-

tences. After this hierarchy was adopted by computer scientists to describe

programming languages and formalisms, in 1994 Eddy and Durbin [32] and

Sakakibara et al. [113, 114] began using one of these grammars types to de-

scribe RNA secondary structure. All of Chomsky’s grammar can be described

by three classes of objects [31]:

• Non-Terminals

• Terminals

• Production rules

A production rule takes one or more Non-Terminals and rewrites them into a

string of terminals (usually written as lower case letters) and Non-Terminals

(usually upper case letters). A production rule now would look like this:

S → aTb

The hierarchy of grammars is defined by the things that a production rule

can do. The more complex the production rule, the higher up the grammar.

In the simplest case, the so called “regular grammars”, only rules that take

one Non-Terminal and produce either one terminal or one terminal and one

Non-Terminal are allowed:

S → a

S → aT

for simplicity, this is usually abbreviated to:

S → a | aT

36



with this grammars, one could generate all possible RNA sequences e.g. with

these rules:

S → T

T → aT | cT | gT | uT | ǫ

Where the terminals a, c, g and u stand for the bases, ǫ is the terminator

and S is used as a start Non-Terminal.

While you can construct every RNA sequence using a regular grammar, con-

structing RNA secondary structures is not possible with this simple grammar

- there is more information than a regular grammar can deal with. The next

level of complexity are context free grammars. Here, all productions rules

that take one Non-Terminal and produce a string consisting of any number

of Non-Terminals and terminals are allowed. They are called context free

because (in contrast to more complex grammars), the production rules are

independent of the neighbors of the Non-Terminal.

With this class of grammars, it is possible to create all RNA secondary

structures. A very compact grammar is e. g. this one developed by Ivo

Hofacker [30]:

S → aS | aSa′S | ǫ

where a, a′ denote two pairing bases. This grammar can create all hairpin -,

interior- and multi-loops possible, but also allows too short hairpins. Addi-

tionally, taking stacking of bases into account is not possible with this easy

grammar. To include stacking, a more complex grammar like this one is

needed:

S → aP aa′

a′ | cS |Sc |SS | ǫ

P aa′

→ aP bb′a′ |S ,

where a, a′ and b, b′ are WC or wobble base pairs and c are unpaired bases.

While the production in the case of regular grammars follows a left to right

direction, the context free grammars built up secondary structures from the

inside to the outside. With one of these grammars, it is easily found out
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whether a secondary structure can be realized by a certain sequence – if it is

possible to create the structure by only using production rules of this gram-

mar, the sequence matches the secondary structure.

2.9 Stochastic grammars

The grammars described above can only distinguish between strings that can

be constructed using their rules and strings that can’t. When dealing with

RNA secondary structures, that means that they can tell whether a struc-

ture can be formed by a sequence, but all structures are equally plausible.

Obviously, it is not possible to compute minimum free energies using these

grammars. However, it is quite easy to create grammars that can distinguish

between solutions. Stochastic grammars assign a probability to every pro-

duction rule. For example, if stacking effects are to be taken into account, the

production of a GC-CG stack should be more probable than the production

of a GC-AU stack, because it has better energy.

There are several dynamic programming algorithms that deal with 3 different

problems for stochastic grammars [31]:

• Calculate the optimal alignment of a sequence to a parametrized sto-

chastic grammar. (Predict the mfe secondary structure)

• Calculate the probability of a sequence given a parametrized stochastic

grammar. (Predict probability of a structure in the ensemble).

• Given a set of example sequences/structures, estimate the optimal

probability parameters for an unparameterized stochastic grammar.

(Assign “energies” to structural features)

These algorithms do only work on the Chomsky normal form of the gram-

mars. In Chomsky normal form, there is a restriction on the production
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rules. Only productions of the form:

S1 → S2S3 or

S1 → a

are allowed. Every context free grammar can be cast into Chomsky nor-

mal form. However, the production rules are more numerous, therefore the

Chomsky normal form is not the usual way to write down a grammar.

2.9.1 Inside

The inside algorithm [70] calculates the probability or score of a sequence/-

structure pair with an SCFG (stochastic context free grammar). Let produc-

tions of the form Sx → SySz have probabilities tx(y, z) and Sx → a ex(a),

and the probability of a string i ... j to be generated by Sx is called α(i, j, x).

For initialization:

α(i, i, x) = ex(xi)

where xi is the base on position i. With M different non-terminals, the

iteration steps are:

α(i, j, x) =
M
∑

y=1

M
∑

z=1

j−1
∑

k=i

α(i, k, y)α(k + 1, j, z)tx(y, z)

The probability of a sequence x given an SCFG θ, is then

P (x, θ) = α(1, L, 1)

The algorithm is O(L3M3) in runtime and O(L2M) in memory.

2.9.2 Outside

While the inside algorithm computes the probability α(i, j, x) that the SCFG

was used for a string i...j of sequence x, the outside algorithm [70] computes

the probability β(i, j, x) of all possibilities outside i and j, i.e. it sums up all
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probabilities on the sequence 1...i− 1, j + 1...L. The outside algorithm uses

the inside probabilities α computed by the inside algorithm. As initialization

β(1, L, v) =

{

1 if v = 1

0 if 2 < v < M

as iterations, i is increased from 1 to L and j is decreased from L to j. The

calculations of β(i, j, v) are then performed like this:

β(i, j, v) =
∑

y,z

i−1
∑

k=1

α(k, i− 1, z)β(k, j, y)ty(z, v) +

+
∑

y,z

L
∑

k=j+1

α(j + 1, k, z)β(i, k, y)ty(v, z)

Termination for any i is:

P (x, θ) =
M
∑

v=1

β(i, i, v)evxi

Using the βs and αs of these two algorithms, probability parameters can be

estimated by expectation maximization.

2.9.3 CYK

The CYK (Cocke-Younger-Kasami) algorithm computes the most likely se-

ries of productions that generated a sequence, i.e. it can find the optimal free

energy structure of an RNA sequence. In principle, it is an inside algorithm

where the sums are replaced by max operations. In addition, a so-called

“traceback” variable is kept, which is used to find the optimal alignment (or

secondary structure).

2.9.4 Applications of SCFGs

There are several RNA-related applications of SCFGs. Besides alignment

algorithms, Rivas and Eddy developed QRNA [111], an early ncRNA finder,

and pknots [110], which can predict pseudo knotted structures. Bjarne Knud-

sens pfold [61] computes common structures for an alignment of RNA mole-

cules.
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2.9.5 Disadvantages and Advantages of SCFGs

SCFGs have certain drawbacks that are intrinsic to the approach. The log-

arithmic length dependence of a hairpin or interior-loop cannot easily be

modeled, as that would need production rules for every possible kind and

length of interior or hairpin-loop. Even if the length of the loops was re-

stricted, this would lead to so many rules that overfitting would make the

training of the SCFGs impossible. An advantage of SCFG approaches is the

fact that they do not rely on experimentally derived parameters. All the

parameters used can be fitted using molecular structure data.

2.10 CONTRAfold

While having been around since the early 90s, SCFG based algorithms for

RNA secondary structure related tasks have almost always been outper-

formed by physics-based algorithms using the Turner energy model. In 2006,

Do et al. [27] put forward a program, CONTRAfold, that augments the SCFG

approach by using CLLMs, conditional log-linear models. CLLMs generalize

upon SCFGs by removing some built in assumptions.

CLLM training employs the conditional maximum likelihood principle, which

focuses on finding parameters that give good predictive performance. As they

are a generalization of SCFGs, CLLMs can easily incorporate sophisticated

scoring schemes of thermodynamic methods, and can replace hard to mea-

sure scores by training. They e.g. score not only Watson-Crick and wobble,

but all possible base pairs.

Furthermore, they use the maximum expected accuracy approach to balance

between loss of specificity and gain of selectivity. These characteristics lets

CONTRAfold outperform even the thermodynamic methods, but the max-

imum expected accuracy approach can also lead to structures that, while

sharing a maximum of base pairs with the ?consensus structures, are defi-

nitely not the minimum free energy structure. (See Fig. 10).
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Figure 10: Possible caveat of the maximum expected accuracy approach. At the top, a

hypothetical riboswitch with two equally probable states is shown.

At the bottom, the possible prediction of a mea algorithm captures as many base pairs as

possible, but the structure is very improbable.
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3 Additions to RNAfold

In this section, refinements of the RNAfold algorithm which were done in

recent years and to which this work contributed to are introduced. The

computation of the partition function of canonical structures is a part of A.

F. Bompfünewerer’s most recent work [9].

3.1 Canonical structures

3.1.1 computing canonical structures

In the context of RNA secondary structure, a canonical structure is a struc-

ture where every base pair is stacked. While they do exist, see e.g. the B.

subtilis RNAse P structure in fig 5, these so called “lonely”, i.e., unstacked

base pairs are not common in nature. As there is no stacking energy, they

are stabilized by dangling bases exclusively.

We expanded the existing option for RNAfold to generate only canonical

structures to partition function folding. This had to be done with minimal

changes to the existing code, to keep the ViennaRNA package easily maintain-

able and the functions of the ViennaRNA library backward compatible. In

principle, we followed the approach taken in the mfe computation. The re-

cursion has to be changed as can be seen in the Feynman diagrams in Fig.12

The changes to the code are kept minimal. Instead of directly computing

the QB entries, we temporarily save the respective entries for i + 1 in QB∗.

QB∗(i, j) is a structure that is made canonical by a base pair (i − 1, j + 1).

QB is then filled with canonical structures only. In the case of stacking base

pairs, QB(i, j) is filled using QB∗(i + 1, j − 1), while the canonical QBs are

used for all other cases. For the computation of the base pair probabilities,

the same approach is used. The recursions, omitting dangles, now look like
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Figure 11: Performance of the canonical partition function computation compared to the

standard version.

this:

Q(i, j) = Q(i+ 1, j) +
∑

k

QB(i, k)Q(k + 1, j)

QB(i, j) = QB∗(i+ 1, j − 1)I(ij, i+ 1j − 1)

QB∗(i, j) = H(i, j) +
∑

i<k<l<j;j+i−l−k>X

I(ij, kl)QB(k, l) +

+
∑

i+5≤k≤j−5

M(i, k)M1(k + 1, j)ea(i,j) (11)

M(i, j) = M(i+ 1, j)ec +

+
∑

i<k<l

QB(i, k)eb(i,k)M(k + 1, j) +M1(i, j)

M1(i, j) = M1(i, j − 1)ec +QB(i, j)eb(i,j)

This assures that all structures are canonical, as the building blocks used

either already are canonical or are made canonical by the stacking base-pair.

When computing Q̂B(i, j), the same approach is used. Computing the base
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Figure 12: Feynman diagrams showing the difference between the computation of all (top)

and canonical secondary structures only. [9].
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Figure 13: Illustration of the overlapping computations of the p(i, j)s. At the top,

Q̂B(i, j)QB(i− 1, j +1) and Q̂B(i + 1, j − 1)QB(i, j) are shown. The overlapping interior-

loop contributions can be seen. The bottom just explains how Q̂B and QB are depicted

here.

pair probabilities is a little more tricky, as there are base pairs i, j, made

canonical by a neighboring base pair, where QB(i, j) = 0 or Q̂B(i, j) = 0.

We therefore have to use a post-processing step, where we construct the

probability p(i, j) of a base pair to appear in the ensemble out of:

p(i, j)Q =
Q̂B(i, j)QB(i− 1, j + 1)

I(i− 1j + 1, ij)
+

+
Q̂B(i+ 1, j − 1)QB(i, j)

I(ij, i + 1j − 1)
− Q̂B(i, j)QB(i, j)

That is, by using an overlap (see Fig. 13),

Q̂B(i, j)QB(i− 1, j + 1) and

Q̂B(i+ 1, j − 1)QB(i, j),

we assure that if there is a possibility to get a canonical base pair, we will

count it. As this strategy will add the stacking energy of i, j two times,

we have to divide by this energy again, e.g. by I(i − 1j + 1, ij). Finally,

structures in which (i, j) stacks both onto (i− 1, j + 1) and (i+ 1, j − 1) are

counted twice. Therefore, we subtract Q̂B(i, j)QB(i, j).

46



3.1.2 Performance

Some base pairs, namely the ones that can not stack in either direction (i.e.

where neither i − 1, j + 1 nor i + 1, j − 1 can pair) can never occur in a

canonical structure. These can be neglected in the computations, and thus,

the computation is a little faster than for the non-canonical structures (Fig

11). In some cases, using canonical structures can lead to better predictions

(see Fig 14). Alas, this is not generally the case. The statistics for a subset

of Rfam [42] structures provided by CONTRAfold [27] show no significant

difference between canonical and “normal” secondary structures (Wilcoxon

p-values of ≈0.9 to be of the same distribution).

Here, we use the comparison scheme developed by Gardner et al. [36] for their

BRALIBase I benchmark of structure prediction tools for the mfe structures.

This basically states that base pairs which do not contradict the consen-

sus structure (i.e. which can be formed in addition to all base pairs of the

consensus structure, but are not part of the consensus structure), are not

counted as false positives. For partition function and pair probability, we

simply added the probabilities of the base pairs which are in the reference

structures for the true positive rate. For the false positive rate, we added up

all pair probabilities for base pairs contradicting the reference structure.

In the case of the tRNA seed subset of Rfam, the results are a little bit

more promising (see table 1). When we compare the results for tRNAs to

the partition function versions, we can see an improvement of the MCC

results as well as for the partition function results. (all Wilcoxon p-values

were computed by using the R software package). This essentially means

that it is very probable that the partition function of canonical structures

gives better results than usual thermodynamic folding, at least for tRNA

structures, which are known not to contain lonely base pairs.
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Figure 14: Comparison of pair probability dot plots of a Streptococcus suis tRNA-Ala with

canonical (upper right triangle) and normal (lower left triangle) computation. As can be

seen, the clover leaf structure is better represented when using canonical structures [9].
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data method mean LP mean no LP Wilcoxon p-values

CONTRAfold mfe 68.81% 68.62% 0.90

CONTRAfold p-func TP 66.36% 66.87% 0.80

CONTRAfold p-func FP 115.72 115.54 0.93

tRNA mfe 61.8% 62.8% 0.36

tRNA p-func, TP 62.84% 63.78% 0.20

tRNA p-func, FP 41.08 39.35 0.07

Table 1: Performance of the canonical structure prediction compared to the usual predic-

tion of RNAfold. For the mfes, the values compared where the MCCs, for the partition

functions, see text for comparison strategy. TP = true positive, FP = false positive. no

LP = canonical structures. .

3.2 Interior-loops

3.2.1 Introducing a real O(n3) algorithm of interior-loop free en-

ergy computation

In the Turner energy model, the energy contributions of large interior-loops

are dependent on the size of the interior-loop, its asymmetry as well as on

the closing base-pairs, i.e.

I(i, j; k, l) = m(i, j; i+ 1, j − 1) +m(l, k; l + 1, k − 1) +

L(k − i− 1 + j − l − 1) + A(|(k − i− 1) − (j − l − 1)|),

where A(l) is the penalty for a loop with asymmetry l, L(l) is the length

dependent contribution and m(i, j; i + 1, j − 1) are mismatch energies for

the unpaired bases i + 1, j − 1 adjacent to the pair (i, j). Rune Lyngsø et

al. [77] used this fact to develop an algorithm for computation of interior-

loop contributions in O(n3). Essentially, they exploited that the asymmetry

of an interior-loop does not change if 1 nucleotide is added on each side of the

loop. For our partition function version, we introduce the quantity I(i, j, l)

as the partition function over all structures on the region i . . . j that end in

an interior loop of length l closed by (i, j), excluding the mismatch energy
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Figure 15: Illustration of the decomposition of an interior loop of size l into two bulges

and an interior loop of size l − 2.

m(i, j; i+ 1, j − 1) and the length dependent term L(l). In other words

I(i, j, l) =
∑

k,l

exp(−β(m(l, k; l + 1, k − 1) + A(|(k − i− 1) − (j − l − 1)|))),

with β = 1
RT

. The partition function over all inner interior-loops by (i, j)

can now be computed as

I(i, j) = e−βm(i,j,i+1,j−1)
∑

l

I(i, j, l)e−βL(l) (12)

The I(i, j, l) can be computed more efficiently by noting that an interior loop

of length l is either the extension of an interior loop of size l − 2 or a bulge

loop of size l (on either the left or right side), see also Fig. 15. We can

therefore compute the I values as

I(i, j, l) = I(i+ 1, j − 1, l − 2) +

+e−βA(l)e−βm(i+1,j−l−1;i+2,j−l−2)QB(i+ 1, j − l − 1) +

+e−βA(l)e−βm(i+l+1,j−1;i+l+2,j−2)QB(i+ l + 1, j − 1)

This leads to a folding algorithm that runs in O(n3) time without restricting

interior loop size.

As most interior-loops of sizes l ≤ 5 have tabulated experimentally derived

energies, and the energy functions A(l) and L(l) are not the same for interior-
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loops and bulges, the full implementation is even more complicated:

I(i, j) = It(i, j) + IL(i, j)

It(i, j) =
∑

(k−i−1)+(j−l−1)≤5

I(i, j; k, l)QB(k, l)

IL(i, j) = e−βm(i,j,i+1,j−1)
∑

5<l<j−i−5

I l(i, j, l)e−βL(l) +

+ e−βm(i,j,i+1,j−1)e−βLB(l)e−βAB(l)IB(i, j)

I l(i, j, l) = I l(i+ 1, j − 1, l − 2) +

+ e−βA(l−2)e−βm(i+2,j−l−2,i+3,j−l−3)QB(i+ 2, j − l − 2) +

+ e−βA(l−2)e−βm(i+l+2,j−2,i+l+3,j−3)QB(i+ l + 2, j − 2)

IB(i, j) = QB(i+ 1, j − l − 1)e−βm(i+1,j−l−1,i+2,j−l−2) +

+ QB(i+ l + 1, j − 1)e−βm(i+l+1,j−1,i+l+2,j−2)

where LB(l) and AB(l) are the length and asymmetry energy functions for

bulges, It(i, j) contains the tabulated entries, and IL(i, j) all other interior

loop energies.

3.2.2 Performance

In practice, the O(n3) algorithm is still slower than the restricted version

used currently in the ViennaRNA package. However, one can combine the

technique above with an upper bound for l in order gain performance, see

Fig. 16. Therefore, even when using the new O(n3) algorithm, we restrict

the size of interior-loops to 30 by default. As can be seen in Fig. 17, the

difference between a maximum loop size of 1000 and 30 is very small. This

indicates that for thermodynamic computations, it is not really necessary to

compute all interior loops – as their free energy rises fast with their length.

While large loops are rare in equilibrium or ground state, they may how-

ever occur as intermediates in folding pathways (Christoph Flamm, personal

communication). Recently, even faster algorithms for computing interior-

loop contributions have been developed [99]. These algorithms can compute

all possible interior-loops in O(M log2 n), where M < n2 is the number of
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Figure 16: Time requirements comparison between the original ViennaRNA implementation

(dashed) and the O(n3) implementation following Lyngsø et al. with different maximum

loop sizes.
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Figure 17: Histogram of the sum of the differences of all pair probabilities when computed

with maximum loop size 15 and 30 (black) and 30 and 1000 (red). 50 random sequences

of length 2000 and 50 random sequences of length 3000 were folded. As can be seen, the

differences between loop sizes 15 and 30 are significantly larger than in the 30 to 1000

example.
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possible base pairs. However, as they use branch and bound approaches, they

are only applicable for mfe computations. Furthermore, while this would ob-

viously lead to a speed-up, it must be emphasized that the folding algorithm

itself still stays O(n3) due to the multi-loop computations.
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4 Joint secondary structures of more than

one RNA molecule

4.1 Biology

Many functions of RNA in biological systems are governed by interactions

between several RNA molecules. In RNA interference and the miRNA and

piRNA pathway, a small RNA forms base pairs to a target mRNA. In at

least some RNA editing pathways, a small RNA is used to guide the editing

machinery to its targets. H/ACA and C/D box sno-RNAs interact with their

target rRNA. This seems to be an often used mechanism in more complex

cells. The protein machinery which catalyzes a certain function is guided

to its targets by small RNAs, which use base pairing to recognize these tar-

gets. By using this mechanisms, cells can avoid an explosion of the number

of proteins necessary for controlling gene expression, which appears to grow

quadratically with genome size in prokaryotes [22].

RNAs using this type of interactions also help to rectify the so-called G-value

paradox, the fact that the number of protein coding genes does not coincide

with biological complexity [122]. The number of transcripts which do not

code for protein in a eukariotic cell is very high. Up to 85% of the human

genome are transcribed, with a recently published reliable number of about

15% [105], while only about 3% code for proteins. Many of the described

transcripts can as of yet not be assigned to any known RNA family and it

seems possible that at least some of these act via RNA interactions.

In prokaryotes, there is also a number of RNA-interaction governed regu-

lations. Many of their regulatory RNAs (termed small RNAs – sRNAs or

regulatory RNAs – rRNAs), like e.g. RyhB, OxyS, DsrA or SgrS, base pair

with their target mRNAs with aid of the protein Hfq [40]. Roughly a third

of the known non coding RNAs of E. coli act in this way [40].
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4.2 Chemistry

When the building of a dimer or multimer out of two or more molecules is

to be computed, several physico-chemical properties of the dimerization/-

multimerization reaction have to be taken into account. First of all, the

binding of n molecules will result in a loss of degrees of freedom – instead

of the 3n degrees of freedom for translation, there are only 3, instead of the

3n degrees of freedom for rotation we have only 3. It is easy to see that this

results in a loss of entropy. For RNA molecules, this loss can be considered

to be independent of the nucleotide sequence of the molecules. In the Turner

energy model, its value, which we will call duplex initiation penalty ΘI , is 4.1

kcal/mol/binding. Another important feature of this type of reaction is that

it is obviously concentration dependent. The number of multimers that can

form is a function of the number of monomers – in a very dilute solution, you

do not expect many multimers. In the limit of very high concentrations, many

duplexes will form, and the bigger the concentrations the more multimers

will form, also. It will be seen that taking the computations beyond trimer

formation is, while possible, increasingly complicated. Therefor, we will first

stick to dimer formation, then describe how to compute trimers and how

to expand this to n-mers. The concentration of dimers (or multimers) and

monomers is connected by the equilibrium constant K via the mass action

law.

[AB] = [A][B]KAB

In other respects, there is little difference between intermolecular and in-

tramolecular base pairing. A base does not “know” whether its counterpart

in a base pair is linked to it via the backbone or not. The only differences

are of entropic and sterical nature.

4.3 Previous work

The idea to predict dimer secondary structures using dynamic programming

algorithms is not new. The first approaches to do this were to link the two
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sequences using “virtual” nucleotides and use mfold or RNAfold on the linked

sequence. As linkers, either short sequences that form very stable hairpins

(from here on called “hairpin linkers”) or nucleotides which are not allowed

to form base pairs (called “poly-N linkers”) were used. This idea has certain

merits, but it runs into some problems because of the energy model: In the

mfe case, the “hairpin linker” causes problems because

i The energy of the hairpin is added to the energy of the two molecules

– this will lead to an energy too low.

ii The base pairs of the hairpin’s stack can build stacks or interior-loops

and multi-loops with the rest of the molecules – this can lead to wrongly

predicted structures.

iii The bases of the hairpin can base pair with the rest of the molecule,

which leads to wrongly predicted structures.

While the energy contribution can easily be subtracted again, there is no

easy way to correct for the effect in ii. Nevertheless, this approach was used

by many researchers, e.g. [120]. For the partition function case, the effects

are even more pronounced. The bases of the linker can and will take part

in the suboptimal structures of the molecule. Even if you restrict the linker

bases to the hairpin structure of the linker – getting rid of problem iii – you

still get unwanted energy contributions which will distort your energy land-

scape. For partition function calculations, this approach simply will not do.

For the “poly-N linkers”, the situation is a little better, it was used e.g. in

the Oligowalk program by Mathews et al. [80]. Here, the hairpin will lead

to a wrong energy of the exterior-loop, which will also lead to wrongly pre-

dicted structures. The link between two bases which are not part of the same

molecule will also lead to exterior-loops being treated as interior-loops. How-

ever, Mathews et al. [80] went around these problems by treating the loop

containing the linker in a different way, applying an initiation penalty instead

of a loop penalty, which is in essence what the mfe version of RNAcofold does.

Recognizing these problems, algorithms not using linkers were put forward.
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Figure 18: Comparison of dimer minimum free energy structures predicted by different

means. The first molecule is drawn black, the second red. Linkers are drawn in cyan.

Top: Structure when using a “poly-N” linker.

Middle: Structure when using a typical linker sequence taken from [120], with constraints

forcing the linker to take a hairpin structure

Bottom: Structure from RNAcofold (described below).

While the two linked structures mostly show the same base pairs, RNAcofold gives a

different picture. The energy difference of the two structures is 0.1 kcal/mol, which is

only slightly above 1 % (-7.4 to -7.3 kcal/mol). This figure only illustrates that wrong

structures can arise.
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Figure 19: Comparison of pair probabil-

ity dot plots for hairpin linked (top left),

N-linked (top right) and cofolded (bottom

left) RNA molecules. As can be seen, es-

pecially the intermolecular base pair prob-

abilities (to be seen on the upper right rect-

angles) are different.
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Figure 20: Secondary structure of the fhlA and OxyS molecules (left) and their dimer

(right). There are two kissing hairpins formed, which can not be detected by sequence

concatenation, as they are intermolecular pseudoknots. Figure taken from [4]

Dimitrov and Zuker suggested an algorithm where the molecules could not

form intramolecular base pairs [23], and Andronescu et al. [3] wrote an al-

gorithm that in essence does the same as the mfe version of RNAcofold, but

can handle more than two molecules. They also designed a two molecule

version of Wuchty’s [137] RNAsubopt algorithm.

The concatenation of two molecules, however, is limited by the fact that com-

plicated structures, e.g. structures that have intermolecular pseudo knots,

can not be predicted. These structures do however occur in nature, e.g. in

snoRNA/rRNA duplexes or in the OxyS/mRNA duplex in bacteria (see Fig.

20). Because of this problem, other, more complicated approaches were in-

troduced. Alkan et al. proved that the RNA cofolding problem is NP-hard

even if there are no pseudoknots allowed intramolecularly [1] – the reason for

this is a structure called an entangler (Fig.21. They also proposed an algo-

rithm which covers many classes of possible structures, and uses heuristics

to reduce the considerable processor requirements of O(n3m3) and memory
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Figure 21: A minimal entangler structure. Intermolecular base pairs are arcs, intermolec-

ular are lines connecting the molecules. Both the red line (l, l′) and the black line (k, k′)

make this structure an entangler. If one of them was missing, this would be a structure

which could be predicted in polynomial time.

requirements of O(n2m2). Pervouchine developed IRIS [103], a O(n6) algo-

rithm which can deal with all types of intermolecular interactions except the

entanglers. He also takes the geometry of the backbone into account, i.e.

he uses the triangle inequality to eliminate some – but not all – sterically

impossible structures.

However, these programs are computationally very expansive, so we decided

on the one hand to enhance the concatenation techniques, and on the other

hand, we used the accessibility of possible binding sites to get intermolecular

structures [92]. This approach will be discussed in more detail in section

4.14.

4.4 Computation

In principle, computing a secondary structure for an RNA dimer is easy. The

concatenation of the two molecules is a simple way to use the well-established

folding algorithms. Two things have to be taken into account: Any loop

spanning the concatenation site is an exterior-loop, and if, and only if, there

exists at least one intermolecular base pair, the duplex initiation penalty EI
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has to be added to the free energy of the structure. For minimum free energy

folding, RNAcofold has been a part of the ViennaRNA package for quite some

time. However, the necessity of counting every possible structure exactly

once has made partition function calculation somewhat more difficult.

The solution of this problem is keeping track of the concatenation point –

we use a value we call “cut point” cp, which is the first nucleotide of the

second sequence – and check at all loop computations and dangling ends

contributions whether they span the concatenation point:

• Hairpins i, j: exterior-loop if i < cp ≤ j

• Interior-loops i, j; k, l: exterior-loop if i < cp ≤ k or l < cp ≤ j

• Multi-loops: If there is no base pair spanning cp − 1, c

• Dangles: 5’: dangling base 6= cp − 1, 3’: dangling base 6= cp

All these Loop cases are replaced by one exterior-loop case: when computing

the hairpins, we simply add Q(i+1, cp −1)Q(cp, j−1) to QB(i, j), which are

all possible structures between i + 1 and j − 1 without intermolecular base

pair. The full recursion of the partition function calculation then looks like

this:

Qij =Qi+1,j +
∑

i<k≤j

QP
i,kd̂

E
ikQk+1,j

QP
ij =

{

Ĥ(i, j)

Qi+1,n1Qn1+1,j−1d̂
I
ij

+

{

∑

i<k<l<j Q
P
kl Î(i, j; k, l)

0

+ d̂I
i,jâ

∑

i<u<j

QM
i+1,uQ

M1
u+1,j−1

QM
ij =

{

QM
i+1,j ĉ+QM1

i,j +
∑

i<k<j Q
P
i,kd̂

E
ikQ

M
k+1,j b̂

0 if i = n1 + 1 ∨ j = n1

QM1
ij =

{

QP
ij d̂

E
ij +QM1

i,j−1ĉ

0 if i = n1 + 1 ∨ j = n1

(13)
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Figure 22: Loops with cuts have to be scored differently. Top row: hairpins and interior-

loops containing the cut between n1 (black ball) and n1 + 1 (white ball).

Below: multi-loops containing the cut. Neither M1 nor M components must start at

n1 + 1 or stop at n1. Note that the construction of ZM out of ZM and ZM1 ensures that

the cut is not inside the loop part of ZM either.

Upper alternatives refer to regular loops, lower alternatives to the loop con-

taining the cutpoint. We have used the abbreviations

Ĥ(i, j) = exp(−H(i, j)/RT ),

and equivalently Î, d̂, â, b̂, ĉ, for the Boltzmann factors of the energy contri-

butions.

Now we must apply EI to all really dimeric structures, i.e. structures with

intermolecular base pairs. Instead of doing that during the recursion, which

would lead to the necessity to compute connected structures only, we can

add this term in a post-processing step. The problem is to find all the

intermolecular paired structures. This can be done by finding all struc-

tures that do not form intermolecular base pairs, and then subtract their

contribution from the total partition function Q(1, n). The structures that

do not form intermolecular base pairs are combinations of structures of the

two monomers. Their partition functions are Q(1, cp − 1) and Q(cp, n), so
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Q(1, n)−Q(1, cp − 1) ∗Q(cp, n) is the partition function of all “true” dimers,

i.e. of all structures having at least one intermolecular base pair. Thus,

applying the initiation penalty boils down to:

Q∗ = (Q(1, n)−Q(1, cp − 1) ∗Q(cp, n)) exp
−EI
kT +Q(1, cp − 1) ∗Q(cp, n) (14)

4.5 Minimum free energy computation

The algorithm to compute the minimum free energy structure of two RNA

molecules has been developed by Ivo Hofacker in [52]. However, the initia-

tion penalty was not included. We changed the algorithm to incorporate this

penalty, by using the approach described above – we added the penalty if

there was at least one intermolecular base pair in the minimum free energy

structure. This makes it possible that the “minimum” free energy structure

is actually higher than the energy of the two disconnected minimum free en-

ergy structures, so we have to compare the result with this energy to get the

real minimum.

Another problem may occur when computing homo-dimeric structures. If

the “mfe” structure is symmetric, a penalty of kT log 2 has to be added (see

below). To ensure that no asymmetric structure has lower energy than this

corrected structure, one possibility is to compute all suboptimal structures

with ǫ = kT log 2 using RNAsubopt [137] and use the best asymmetric struc-

ture if it is within this energy band.

4.6 Suboptimal structures

Wuchty et al. [137] developed an algorithm to construct all possible secondary

structures within a given energy band of the minimum free energy structure.

We extended this algorithm to be able to create all possible secondary struc-

tures for two molecules. As we did not want to keep track about whether a

substructure already has an intermolecular base pair or not, which is neces-

sary to include the duplex initiation penalty, we again used a post processing

step to add it. Basically, whenever a structure/energy pair is committed to
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memory or put out, a small routine which adds the duplex initiation penalty

if intermolecular base pairs are present is invoked.

4.7 Kinetics

In a biological system, it is reasonable to assume that the two molecules we

are cofolding are not built simultaneously and/or at the same location. It is

highly likely that they will have folded into intramolecular secondary struc-

tures before they get into contact with each other. Hence, the probability

for them to get trapped in local intramolecular folding minima is big. On

the other hand, if we consider kissing hairpin duplexes, these structures can

act as “docking” structures, where the initial contact leads to a substantial

refolding of the two molecules as the hairpins unzip and and intermolecular

base pairs are built. The kissing hairpin duplexes are thus, while essential

for the folding, not necessarily visible in the thermodynamic ensemble.

If we consider a basic move set containing only opening and closing of base

pairs, as it is implemented e.g. in Kinfold [35], it would be reasonable to use

the two mfe structures as starting structures for dimer kinetics. Thus, we

need suboptimal structures with energies a little higher than the sum of the

two mfes (the first intermolecular base pair can not take part in a stack, and

the duplex initiation penalty has to be paid). These structures can in theory

be computed using RNAsubopt. While this has been done for complexes

of two small molecules (Christoph Flamm, personal communication), bigger

molecules are difficult to deal with. There are simply too many suboptimal

structures to compute. Thus, a different approach, limiting the number of

computed structures while containing all necessary structures, is needed.

4.8 Testing the algorithms

To ensure that our algorithm produces the right results within our model,

we used a two-fold approach. We used Wuchty’s RNAsubopt to generate all

possible secondary structures of the two molecules connected with a ploy-N
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linker. The energy of these structures, after cutting out the linker, were then

reevaluated according to our energy rules (including the initiation penalty).

The result of this can be directly compared to the suboptimal cofold algo-

rithm.

For small molecules (≈ n ≤ 30), all possible substructures can be created

using Wuchty’s algorithm. We added up their Boltzmann factors to get

the partition functions of these molecules, and compared them to the par-

tition function version of RNAcofold. To check the pair probabilities, the

Boltzmann weights for all structures containing base pair i, j were added up,

divided by the partition function and the compared to the RNAcofold pair

probabilities. It must be emphasized that while this approach does only work

for small molecules, these molecules are big enough to be able to form all

possible secondary structure elements (Loops) of our model, as the smallest

possible molecule that can build a multi-loop is only 12 nucleotides long:

{ ((...)(...)) }.

For longer molecules, the only thing that can be done is using the equality

Q(A,B) = Q(B,A), so we swapped the molecules and compared the results

of the Gibbs’ free energy computation as well as the base pair probabilities.

4.9 Base pairing probabilities

McCaskill’s algorithm [84] computes the base pairing probabilities from the

partition functions of sub-sequences. It seems easier to first perform the

backtracking recursions on the “raw” partition functions that do not take

into account the initiation contribution and then use post processing steps

for this contribution. This yields pairing probabilities Pkl for an ensemble of

structures that does not distinguish between true dimers and isolated struc-

tures for A and B and ignores the initiation energy. McCaskill’s backwards

recursions are formally almost identical to the case of folding a single linear

sequence. We only have to exclude multi-loop contributions in which the

cut-point u between components coincides with the cut point c. All other
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Figure 23: Dot plot (left) and mfe structure representation (right) of the cofolding struc-

ture of the two RNA molecules AUGAAGAUGA (red) and CUGUCUGUCUUGAGACA (blue).

Dot Plot: Upper right: Partition function. The area of the squares is proportional to the

corresponding pair probabilities. Lower left: Minimum free energy structure. The two

lines forming a cross indicate the cut point, intermolecular base pairs are depicted in the

green upper right (partition function) and lower left (mfe) rectangle.
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cases are already taken care of in the forward recursion. Thus:

Pkl =
Q1,k−1Q

P
k,lQ

l+1,n

Q1,n

+
∑

p<k;q>l

Ppq

QP
k,l

QP
p,q

{

Î(p, q, k, l)

+QM
p+1,k−1âĉ

q−l−1

+QM
l+1,q−1âĉ

k−p−1

+QM
p+1,k−1Q

M
l+1,q−1â

}

(15)

The “raw” values of Pij, which are computed without the initiation term,

have to be corrected for this effect now. To this end, we separately run the

backward recursion starting from Q1,n and from Qn1+1,n1+n2 to obtain the

base pairing probability matrices PA
ij and PB

n1+i,n1+j for the isolated molecules.

Note that equivalently, we could compute PA
ij and PB

ij directly using the

partition function version of RNAfold.

In solution, the probability of an intermolecular base pair is proportional

to the (concentration dependent) probability that a dimer is formed at all.

Thus, it makes sense to consider the conditional pair probabilities given that

a dimer is formed, or not. The fraction of structures without intermolecular

pairs in our partition function Q (i.e. in the cofold model without initiation

contributions) is QAQB/Q, and hence the fraction of true dimers is

p∗ = 1 −
QAQB

Q
. (16)

If we now consider a base pair (i, j), it can either arise from the dimeric or

the monomeric state. If i ∈ A and j ∈ B, it must arise from the dimeric

state. If i, j ∈ A or i, j ∈ B, however, it arises from the dimeric state

with probability p∗ and from the monomeric state with probability 1 − p∗.

Thus the conditional pairing probabilities in the dimeric complexes can be
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computed as

P ′
ij =

1

p∗















Pij − (1 − p∗)PA
ij if i, j ∈ A

Pij − (1 − p∗)PB
ij if i, j ∈ B

Pij otherwise

(17)

The fraction of monomeric and dimeric structures, however, cannot be di-

rectly computed from the above model. As we shall see below, the solution

of this problem requires that we explicitly take the concentrations of RNAs

into account.

4.10 Concentration dependence of RNA-RNA hybrid-

ization

As pointed out by Dimitrov and Zuker [23], the concentration of the two

interacting RNAs as well as the possibility to form homo-dimers plays an

important role and cannot be neglected when quantitative predictions on

RNA-RNA binding are required. In our implementation of RNAcofold we

therefore follow their approach and explicitly compute the concentration de-

pendencies of the equilibrium ensemble in a mixture of two partially hybridiz-

ing RNA species.

If we consider a (dilute) solution of two nucleic acid sequences A and B with

concentrations a and b, respectively, hybridization will yield a distribution

of five molecular species: the two monomers A and B, the two homo-dimers

AA and BB, and the heterodimer AB. In principle, of course, more complex

oligomers might also arise, we will, however, neglect them in this approach.

Considering higher order oligomers will complicate this computation signifi-

cantly, and we will shortly get into it later on.

The presentation in this section closely follows a recent paper by Dimitrov

[23], albeit slightly different definitions of the partitions functions are used

here. The partition functions of the secondary structures of the monomeric

states are QA and QB, respectively, as introduced in the previous section.
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In contrast to [23], we include the unfolded states in these partition func-

tions. The partition functions QAA, QBB, and QAB, which are the output of

the RNAcofold algorithm (denoted Q in the previous section), include those

states in which each monomer forms base-pairs only within itself as well as

the unfolded monomers. We can now define

Q=
AA = QAA − (QA)2 ,

Q=
BB = QBB − (QB)2 , (18)

Q=
AB = QAB − (QAQB)

as the partition functions restricted to the true dimer states, but neglecting

the initiation energies ΘI . An additional symmetry correction is needed in

the case of the homo-dimers: A structure of a homo-dimer is symmetric if for

any base pair (i, j) there exists a pair (i′, j′), where i′ (j′) denotes the equiva-

lent of position i in the other copy of the molecule. Such symmetric structures

have a two-fold rotational symmetry that reduces their conformation space

by a factor of 2, resulting in an entropic penalty of ∆Gsym = RT ln 2. On

the other hand, since the recursion for the partition functions equ. 13 as-

sumes two distinguishable molecules A and B, any asymmetric structures

of a homo-dimer are in fact counted twice by the recursion. Leading to the

same correction as for symmetric structures.

Since both the initiation energy ΘI and the symmetry correction ∆Gsym are

independent of the sequence length and composition, the thermodynamically

correct partition functions for the three dimer species are given by

Q′
AA = Q=

AA exp(−ΘI/RT )/2 ,

Q′
BB = Q=

BB exp(−ΘI/RT )/2 , (19)

Q′
AB = Q=

AB exp(−ΘI/RT ) .

From the partition functions we get the free energies of the dimer species, such

as FAB = −RT lnQ′
AB, and the free energy of binding ∆F = FAB−FA−FB.

We assume that pressure and volume are constant and that the solution is

sufficiently dilute so that excluded volume effects can be neglected. The
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many particle partition function for this system is therefore [23]

Q = V n a!b!

nA!nB! 2nAA! 2nBB!nAB!
×

(Q′A)nA(Q′AA)nAA(Q′AB)nAB(Q′BB)nBB(Q′B)nB

(20)

where a = nA + 2nAA + nAB is the total number of molecules of type A put

into the solution (equivalently for b); nA, nB, nAA, nBB, nAB are the particle

numbers for the five different monomer and dimer species, V is the volume

and n is the sum of the particle numbers. Eq 20 sums over all possibilities

to arrange our A- and B-type molecules (of which we have a and b many,

respectively) in our five molecular species and, within these, in all possible

secondary structure states with Boltzmann weights.

The system now minimizes the free energy −kT lnQ, i.e., it maximizes Q,

by choosing the particle numbers optimally.

Following the discussion in [23], we use a saddle point approximation to

evaluate Q, i.e., we replace the sum by its largest term. Taking logarithms

and Sterling’s approximation lnn! = n lnn− n for the factorials we obtain

lnQ ≈a ln a− a+ b ln b− b

− nA lnnA + nA + nA lnZ ′A

− nB lnnB + nB + nB lnZ ′B

− nAB lnnAB + nAB + nAB lnZ ′AB

− nAA lnnAA + nAA + nAA lnZ ′AA

− nBB lnnBB + nBB + nBB lnZ ′BB

+ L(nA + 2nAA + nAB − a)

+M(nB + 2nBB + nAB − b)

(21)

after introducing the two Lagrange multipliers L and M to represent the

two constraints on the particle numbers. The saddle point equations for this
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system read

0 = ln(Z ′A/nA) + L

0 = ln(Z ′AA/nAA) + 2L

0 = ln(Z ′AB/nAB) + L+M

0 = ln(Z ′BB/nBB) + 2M

(22)

and reduce to three balance equations

(Z ′A)2/n2
A = Z ′AA/nAA

(Z ′B)2/n2
B = Z ′BB/nBB

Q′A/nA ×Q′B/nB = Q′AB/nAB

(23)

by eliminating the Lagrange multipliers L and M . Introducing the equilib-

rium constants

As in [23], the dimer concentrations are therefore determined by the mass

action equilibria:

[AA] = KAA [A]2

[BB] = KBB [B]2

[AB] = KAB [A] [B]

(24)

with

KAA =
Z ′AA

(QA)2
=

(QAA − (QA)2)e−ΘI/RT /2

(ZA)2

=
1

2
e−ΘI/RT

(

QAA

(QA)2
− 1

)

KBB =
1

2
e−ΘI/RT

(

QBB

(QB)2
− 1

)

KAB = e−ΘI/RT

(

QAB

QAQB
− 1

)

(25)

Concentrations in equ.(24) are in mol/l.

Note, however, that the equilibrium constants in equ.(25) are computed from

a different microscopic model than in [23], which in particular also includes

internal base pairs within the dimers.

71



1 10
total siRNA concentration b [nmol]

0

10

20
co

nc
en

tr
at

io
n 

[n
m

ol
]

A.si
A.A
A
si
A’.si’
A’.A’
A’
si’

Binding energies: ∆F (A) = −24.53kcal/mol
∆F (A′) = −11.76kcal/mol.

Binding energies: ∆F (A) = −24.53kcal/mol

∆F (A′) = −11.76kcal/mol.

Figure 24: Example for the concentration dependency for two mRNA-siRNA binding

experiments. In [116], Schubert et al. designed several mRNAs with identical target sites

for an siRNA si, which are located in different secondary structures. In variant A, the

VR1 straight mRNA, the binding site is unpaired, while in the mutant mRNA VR1 HP5-

11, A′, only 11 bases remain unpaired. We assume an mRNA concentration of a = 10

nmol/l for both experiments. Despite the similar binding pattern, the binding energies

(∆F = FAB−FA−FB) differ dramatically. In [116], the authors observed 10% expression

for VR1 straight, and 30% expression for the HP5-11 mutant. Our calculation shows that

even if siRNA is added in excess, a large fraction of the VR1 HP5-11 mRNA remains

unbound.
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Together with the constraints on particle numbers, equ.(24) forms a complete

set of equations to determine x = [A] and y = [B] from a and b by solving

the resulting quadratic equation in two variables:

0 = f(x, y) := x+KABxy + 2KAAx
2 − a

0 = g(x, y) := y +KABxy + 2KBBy
2 − b

(26)

The Jacobian

J(x, y) =

(

∂f/∂x ∂f/∂y

∂g/∂x ∂g/∂y

)

=

(

1 +KABy + 4KAAx KABx

KABy 1 +KABx+ 4KBBy

) (27)

of this system is strictly positive and diagonally dominated, and hence invert-

ible on R
+ ×R

+. Furthermore f and g are thrice continuously differentiable

on B = [0, a] × [0, b] and we know (because of mass conservation and the

finiteness of the equilibrium constants) that the solution (x̂, ŷ) is contained

in the interior of the rectangle B. Newton’s iteration method

x′ = x+
g(x, y)∂yf(x, y) − f(x, y)∂yg(x, y)

∆

y′ = y +
f(x, y)∂xg(x, y)− g(x, y)∂xf(x, y)

∆

∆ = ∂xf(x, y)∂yg(x, y)− ∂yf(x, y)∂xg(x, y)

= detJ

(28)

thus converges (at least) quadratically [118, 5.4.2]. We use (a, b) as initial

values for the iteration.

4.11 Implementation and performance

The algorithm is implemented in ANSI C, and is distributed as part of the

of the Vienna RNA package. The resource requirements of RNAcofold and

RNAfold are theoretically the same: both require O(n3) CPU time and O(n2)

memory. In practice, however, keeping track of the cut makes the evalua-

tion of the loop energies much more expensive and increases the CPU time
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Figure 25: Performance Comparison of RNAcofold and RNAfold. 2 random molecules

and their concatenation were folded. The two RNAcofold variants a and b correspond to

two molecules of equal length and one molecule of length 20nt and a big one, resp. As

can be seen, while RNAfold is always faster than RNAcofold, the worst results are seen in

partition function folding (including pair probability computation) if two molecules share

equal length.

requirements by a significant number. This can be illustrated by the fact

that when the cut is and the end of the molecule, e.g. in the case where a

miRNA is folded together with its target mRNA, RNAcofold is significantly

faster compared to folding the same number of nucleotides in two molecules

of equal length: there are much more loops containing the cut in the second

case (Fig 25).

The base pairing probabilities are represented as a dot plot in which squares

with an area proportional to Pij represent the raw pairing probabilities, see

Fig. 23. The dot plot is provided as Postscript file which is structured in

such a way that the raw data can be easily recovered explicitly. RNAcofold

also computes a table of monomer and dimer concentrations dependent on

a set of user supplied initial conditions. This feature can readily be used

to investigate the concentration dependence of RNA-RNA hybridization, see

Fig. 24 for an example.
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4.12 DNA

Like RNAfold, RNAcofold can be used to compute DNA dimers by replacing

the RNA parameter set by a suitable set of DNA parameters. At present, the

computation of DNA-RNA heterodimers is not supported. This would not

only require a complete set of DNA-RNA parameters (stacking energies are

available [135], but we are not aware of a complete set of loop energies) but

also further complicate the evaluation of the loop energy contributions since

pure RNA and pure DNA loops will have to be distinguished from mixed

RNA-DNA loops.

Basically, there are two approaches to do that. The conceptionally easiest,

and also more versatile way is to distinguish between RNA and DNA bases

inside the algorithm by assigning different symbols/numbers. Instead of the

6 different base pairs, we would have 24. If we use ⊣, ⌋, },⊔ as DNA bases,

the set of possible base pairs B is:

B = {AU,GU,GC,CG,UA, UG, at, gt, gc, cg, tg, ta,

aU, gU, gC, tA, CtG, cG,At,Gt,Gc, Ua, Ug, Cg}

This makes the parameter files and the memory needed to store energy con-

tributions bigger, but the effort is negligible compared to the memory re-

quirements of the program as a whole. An advantage of this approach would

be the possibility to compute the secondary structure of co-polymers of DNA

and RNA nucleotides.

The second approach is to always use two different molecule types, and sim-

ply assign all bases smaller than c to be RNA bases and all others DNA

bases. When evaluating the energies of the loops, if i < c ≤ j the mixed

terms are used, if j < c the RNA terms and if c ≤ i the DNA terms. While

this approach is not as versatile, as co-polymers cannot be handled, it does

not need as many different parameters. While the memory requirements for

storing parameters are negligible, they must be somehow measured before

we can use them. If less parameters are needed, this is cheaper and faster to

do.
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For both approaches, the changes to the algorithm would mainly apply to

the energy evaluation parts and the setting of parameters, while the main

routines do not have to be changed.

4.13 Applications

Intermolecular binding of RNA molecules is important in a broad spectrum

of cases, ranging from mRNA accessibility to siRNA or miRNA binding,

RNA probe design, or designing RNA openers [44]. An important question

that arises repeatedly is to explain differences in RNA-RNA binding between

seemingly very similar or even identical binding sites. As demonstrated e.g.

in [24, 25, 85, 92], different RNA secondary structure of the target molecule

can have dramatic effects on binding affinities even if the sequence of the

binding site is identical.

Since the comparison of base pairing patterns is a crucial step in such in-

vestigations we provide a tool for graphically comparing two dot plots, see

Fig. 26. It is written in Perl-Tk and takes two dot plot files and, option-

ally, an alignment file as input. The differences between the two dot plots

are displayed in color-code, the dot plot is zoomable and the identity and

probability(-difference) of a base pair is displayed when a box is clicked. A

non interactive version where the probability differences are also color-coded

is shown here and used henceforth in this chapter. As an example for the

applicability of RNAcofold, we re-evaluate here parts of a recent study by

Doench and Sharp [28]. In this work, the influence of GU base pairs on

the effectivity of translation attenuation by miRNAs is assayed by mutating

binding sites and comparing attenuation effectivity to wild type binding sites.

They used a construct containing 4 binding sites, where the inner two were

mutated and the outer two always stayed wild type binding sites. We focus

here on mutations that introduced GU base pairs. There were 3 sites within

the binding site where a mutation of A to U was performed. on the mRNA.
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Figure 26: Difference dot Plot of native and mutated secondary structure of a 3GU mu-

tation of the CXCR4 siRNA gene.

The color of the dots encodes the difference of the pair probabilities in the two molecules.

For example, red squares denote pairs much more probable in the second molecule, and

green ones base pairs that have a much higher probability in the first molecule (see color

bar).

The area of the dots is proportional to the larger of the two pair probabilities.
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Figure 27: Repression of different GU constructs, figure taken from [28]

The resulting constructs did not repress translation as well as the wild type

constructs, although the binding energy stayed almost the same. The worst

repression was seen when all 3 mutations where made simultaneously. Their

results are shown in Fig. 27

While Doench and Sharp concluded that miRNA binding sites are not func-

tional because of the GU base pairs, testing the dimers with RNAcofold shows

that there is also a significant difference in the cofolding structure that might

account for the activity difference without invoking sequence specificities: Be-

cause of the secondary structure of the target, the binding at the 5’ end of the

miRNA is weaker than in the wild type, Fig. 28. The figures were computed

in the following way: as we cannot compute pentamers using RNAcofold, we

decided to “mask” the wild type binding sites by using constrained folding,

i.e. we did not permit any base pairing for these sites, thus mimicking al-

ready bound miRNAs.

When comparing the mutated to the wild type binding, one can first say that
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the binding energy is a little lower for the mutated cases, (∆G = −12.9 in the

wild type case, ∆G = −12.3 in case 4, ∆G = −11.3 in case 3, ∆G = −10.7

in case 6 and ∆G = −10.31 in case 346, all in kcal/mol). This can indeed not

explain the different behavior. However, if we look at the binding pattern,

we see that, while the “best” GU mutations (4,6) retain the binding of the

wild type, the worse ones (3,346) show a significantly lower binding of the 5’

part of the miRNA. So, while we are not able to fully explain the differences

in function using binding pattern and energy, we can at least explain why

some GU mutations are even worse than others.

In a similar experimental setting, Brennecke et al. [12] tried to figure out

the minimum requirements for miRNA-target recognition. They expressed a

miRNA targeting EGFP with various target sites at its 3’ UTR. Their results

indicate that introducing GU base pairs destroys function, much as Doench’s

do (Fig. 29).

We computed the cofolded structures of the dimers and again found that

while we cannot explain the diminished functions, we can easily explain the

loss of function by introduced GU pairs through a very different binding

pattern at the 5’ part of the miRNA.

4.14 The RNAup approach

Because RNAcofold can not predict intermolecular pseudo knots, additional

approaches are needed. An algorithm including pseudo knots (without so-

called entanglers, which make the problem NP-hard) was presented by Per-

vouchin [103]. While this algorithm can predict almost all possible secondary

structures, it is O(n3m3)? in processor time (with n the length of the first

and m the length of the second molecule). It is thus not suited for predicting

structures for long molecules.

A different approach was taken in RNAup [92]. Here, the building of a dimer

is split into two steps: the first is the opening of a binding site, which

costs energy, the second is the formation of the dimer, where energy is

gained. At the moment, this is only implemented for cases where a smaller
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Figure 28: Difference dot plots of the 4 GU mutants of [28] against the original binding

site.

Top: left: 346 mutant. right: zoom into the binding site, as can be seen, an extended

stem in the mRNA inhibits binding of the 5’ end of the miRNA.

Middle: 3 mutant, binding site. The situation is similar to the 346 mutant

Bottom: left 6 mutant, right 4 mutant, binding sites.

80



UllimiR278_27.UlliNmiR278_30

A G C G G C C G C A U A G G C C A C U A G U G G A U C U G G A U C G C C U A G G C G A U C C U C U A G A C A A C A A A A U C A C U A U A A C U U C C U A A A C G G A C G A A A A A A C C C A C C G A A G C U A G A U C A U A A U C A G C C A U A C C A C A U U U G U A G A G G U U U U A C U U G C U U U A A A A A A C C U C C C A C A C C U C C C C C U G A A C C U G A A A C A U A A A A U G A A U G C A A U U G U U G U U G U U A A C U U G U U U A U U G C A G C U U A U A A U G G U U A C A A A U A A A G C A A U A G C A U C A C A A A U U U C A C A A A U A A A G C A U U U U U U U C A C U G C U C G G U G G G A C U U U C G U C C G U U U

A G C G G C C G C A U A G G C C A C U A G U G G A U C U G G A U C G C C U A G G C G A U C C U C U A G A C A A C A A A A U C A C U A U A A C U U C C U A A A C G G A C G A A A A A A C C C A C C G A A G C U A G A U C A U A A U C A G C C A U A C C A C A U U U G U A G A G G U U U U A C U U G C U U U A A A A A A C C U C C C A C A C C U C C C C C U G A A C C U G A A A C A U A A A A U G A A U G C A A U U G U U G U U G U U A A C U U G U U U A U U G C A G C U U A U A A U G G U U A C A A A U A A A G C A A U A G C A U C A C A A A U U U C A C A A A U A A A G C A U U U U U U U C A C U G C U C G G U G G G A C U U U C G U C C G U U UA
G

C
G

G
C

C
G

C
A

U
A

G
G

C
C

A
C

U
A

G
U

G
G

A
U

C
U

G
G

A
U

C
G

C
C

U
A

G
G

C
G

A
U

C
C

U
C

U
A

G
A

C
A

A
C

A
A

A
A

U
C

A
C

U
A

U
A

A
C

U
U

C
C

U
A

A
A

C
G

G
A

C
G

A
A

A
A

A
A

C
C

C
A

C
C

G
A

A
G

C
U

A
G

A
U

C
A

U
A

A
U

C
A

G
C

C
A

U
A

C
C

A
C

A
U

U
U

G
U

A
G

A
G

G
U

U
U

U
A

C
U

U
G

C
U

U
U

A
A

A
A

A
A

C
C

U
C

C
C

A
C

A
C

C
U

C
C

C
C

C
U

G
A

A
C

C
U

G
A

A
A

C
A

U
A

A
A

A
U

G
A

A
U

G
C

A
A

U
U

G
U

U
G

U
U

G
U

U
A

A
C

U
U

G
U

U
U

A
U

U
G

C
A

G
C

U
U

A
U

A
A

U
G

G
U

U
A

C
A

A
A

U
A

A
A

G
C

A
A

U
A

G
C

A
U

C
A

C
A

A
A

U
U

U
C

A
C

A
A

A
U

A
A

A
G

C
A

U
U

U
U

U
U

U
C

A
C

U
G

C
U

C
G

G
U

G
G

G
A

C
U

U
U

C
G

U
C

C
G

U
U

U

A
G

C
G

G
C

C
G

C
A

U
A

G
G

C
C

A
C

U
A

G
U

G
G

A
U

C
U

G
G

A
U

C
G

C
C

U
A

G
G

C
G

A
U

C
C

U
C

U
A

G
A

C
A

A
C

A
A

A
A

U
C

A
C

U
A

U
A

A
C

U
U

C
C

U
A

A
A

C
G

G
A

C
G

A
A

A
A

A
A

C
C

C
A

C
C

G
A

A
G

C
U

A
G

A
U

C
A

U
A

A
U

C
A

G
C

C
A

U
A

C
C

A
C

A
U

U
U

G
U

A
G

A
G

G
U

U
U

U
A

C
U

U
G

C
U

U
U

A
A

A
A

A
A

C
C

U
C

C
C

A
C

A
C

C
U

C
C

C
C

C
U

G
A

A
C

C
U

G
A

A
A

C
A

U
A

A
A

A
U

G
A

A
U

G
C

A
A

U
U

G
U

U
G

U
U

G
U

U
A

A
C

U
U

G
U

U
U

A
U

U
G

C
A

G
C

U
U

A
U

A
A

U
G

G
U

U
A

C
A

A
A

U
A

A
A

G
C

A
A

U
A

G
C

A
U

C
A

C
A

A
A

U
U

U
C

A
C

A
A

A
U

A
A

A
G

C
A

U
U

U
U

U
U

U
C

A
C

U
G

C
U

C
G

G
U

G
G

G
A

C
U

U
U

C
G

U
C

C
G

U
U

U

-1 0 1

U C G G U G G G A C U U U C G U C C G U U U

U C G G U G G G A C U U U C G U C C G U U UU
A

A
A

C
G

G
A

C
G

A
A

A
A

A
A

C
C

C
A

C
C

G
A

A
G

C
U

A
G

A
U

C
A

U
A

A
U

C
A

G
C

C
A

U
A

C
C

A
C

A
U

U
U

G
U

A
G

A
G

G
U

U
U

U
A

C
U

U
G

C
U

U
U

A
A

A
A

A
A

C
C

U
C

C
C

A
C

A
C

C
U

C
C

C
C

C
U

G
A

A
C

C
U

G

U
A

A
A

C
G

G
A

C
G

A
A

A
A

A
A

C
C

C
A

C
C

G
A

A
G

C
U

A
G

A
U

C
A

U
A

A
U

C
A

G
C

C
A

U
A

C
C

A
C

A
U

U
U

G
U

A
G

A
G

G
U

U
U

U
A

C
U

U
G

C
U

U
U

A
A

A
A

A
A

C
C

U
C

C
C

A
C

A
C

C
U

C
C

C
C

C
U

G
A

A
C

C
U

G

Figure 29: Results of target 3’UTR mutations to get GU base pairs, top Fig. taken

from [12]. Attenuation of EGFP results in the black stripes in the center of the pictures.

The bigger the black area, the better the miRNA function. From left to right, more GU

mutations were introduced.

Bottom: Difference dot plot of the 3GU mutation against the zero GU version. On the

left the whole dot plot, on the right a detailed view of the binding site (boxed) is shown.

As can be seen, the seed region of the siRNA does bind much weaker in the 3 GU mutant,

and a different binding site is populated.
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molecule binds to a bigger one, as it was mainly designed for the analysis

of miRNA(siRNA)/mRNA interactions. However, the application of the ap-

proach to two molecules of arbitrary size is possible.

The program uses the ViennaRNA library to compute the probability of a

stretch of s bases to be unpaired in the ensemble, where s is usually cho-

sen a little larger (typically 10 nt) than the smaller molecule. This restricts

the maximal length of the binding site to s. It then computes the partition

function of an intermolecular duplex in this stretch and combines all this

information. The output is the probability that there is an intermolecular

duplex at a certain stretch in the longer molecule, given that there exists a

duplex. (i.e. if a duplex is formed, where will the intermolecular basepairs

be).

To get the probability that a stretch of s bases is unpaired, we have to

compute the respective partition function. We again split the computation,

into contributions where s is enclosed by a base pair and contributions where

it is not enclosed by a basepair. If s starts at nucleotide xs, the probability

that s is unpaired and not included by a basepair is

pu
e (xs, s) =

Q(1, xs − 1)Q(xs + s− 1, n)

Q(1, n)
, (29)

the product of the partition functions outside s. As the partition function

for s to be unpaired is 1, we neglect this term here. To get the terms where

s is included by a base pair i, j, we have to sum up the partition functions

that i, j closes a hairpin-loop, interior-loop or a multi-loop up over all i < xs

and xs + s ≤ j.

pu
h(xs, s) =

1

Q(1, n)

∑

i<xs,xs+s≤j

Q̂B(i, j) (30)

Without invoking the limitation of the loop size, the interior-loop contribu-
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tions look like this:

pu
i (xs, s) =

1

Q(1, n)

∑

i<xs,xs+s≤j

Q̂B(i, j)
∑

i<k<l<xs
QB(k, l) +

+
∑

xs+s≤k<l<j QB(k, l)

For the multi-loop contributions, we have to compute QM2(i, j), the partition

function that there are at least 2 components of a multi-loop between i and

j.

QM2(i, j) =
∑

i<k<j

QM(i, k)QM1(k + 1, j) (31)

with this, we can compute

pu
m(xs, s)s =

1

Q(1, n)

∑

i<xs,xs+s≤j

Q̂B(i, j)
(

QM2(i+ 1, xs − 1)+

+ QM2(xs + s− 1, j − 1) +

+ QM (i+ 1, xs − 1)QM(xs + s− 1, j − 1)
)

,

the probabilities that s is 5’ of all components, 3’ of all components or be-

tween the components of the multi-loop, respectively. Combination of these

terms then lead to the total probability that a stretch s is unpaired. As

there may be different affinities for binding into multi-loops, interior-loops,

hairpin-loops and exterior-loops, the single terms can be accessed separately.

This approach can deal with intermolecular pseudoknots that bind into a

hairpin, interior-loop or multi-loop. However, the strictly additive model

used for the energy computation of pseudo knots is probably too simplifying.

Sterical considerations have to be taken into account, e.g. whether it is possi-

ble to have an intermolecular base pair directly neighboring an intramolecular

one. Another question is as the binding leads to a helical formation, how long

the helical intermolecular part can be before building such a substructure is

either sterically impossible or would at least require the molecules to first

unfold themselves substantially, which is kinetically unfavorable.
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The drawback of this approach is that binding sites can not be split, and the

base pair probabilities are not computed (which is possible in principle). As

the intermolecular pseudo knots are not included in the RNAcofold approach,

but split binding sites are, and RNAup is O(n)3s2, the combination of the two

approaches is an obvious approach to get better results.

4.15 Combination of RNAcofold and RNAup

RNAup uses the arrays created by the partition function version of RNAfold

to compute the probabilities to be unpaired (pu). There are two main possi-

bilities if we consider whether a stretch of s bases (from v to w) is unpaired

in a secondary structure. The first possibility is that no base pair i, j spans

vw, i.e. if i, j ∈ B ⇒ j < v ∨ i > w. As these cases do not lead to a pseudo-

knotted structure, they are already taken into account by RNAcofold, so

they will not concern us here. The other possibility is that some basepair i, j

encloses vw. If a base between v and w takes part in an intermolecular base

pair, this will lead to a pseudoknot. These are the cases we have to add to

the RNAcofold approach.

If we consider the innermost base pair that encloses vw, this base pair can

either close a hairpin, an interior- or a multi-loop. The hairpin case does not

split up any further, while in the interior-loop case, the unpaired stretch vw

can either be 5’ of the interior base pair k, l (i < w < k < j) or 3’ of it.

Accordingly, there are 3 cases for multi-loops: either the unpaired stretch is

5’ of all “inner” base pairs of the multi-loop (i,e, there is no component 5’

of vw, it is 3’ of all components or it is in between components.In section

5, the exact computations of the unpaired probabilities (or their partition

functions) is explained. For now, it is sufficient to know that almost all we

need to compute these is computed by RNAcofold already. The only arrays

needed additionally are outer partition functions of single molecules, which

are computed separately in exactly the way they are in RNAfold. To unify

RNAcofold with RNAup, a stepwise approach is used:

1. Compute partition function version of RNAcofold
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2. Compute outer partition functions for long molecules

3. Compute duplex partition functions

4. Integrate duplex energies with QBs

5. Compute pseudo knotted partition function

6. Compute total partition function as sum off the pseudo knotted and

the RNAcofold partition functions.

7. Compute the outer partition functions given a duplex creating a pseu-

doknot.

8. Update pair probabilities for base pairs

The duplex partition functions are computed analogous to RNAup. The values

computed, qd(i, j), are partition functions subject to the constraint that there

is at least one intermolecular base pair between a base of the sub-sequence

i...j of the first molecule and the second molecule. For computational conve-

nience, the partition function of the second (smaller) molecule will be totally

included into this term. The duplex analogons of the usual arrays are then

computed using these qds. The Feynman diagrams (Fig. 31)show the forward

recursion of QB
d (i, j), the partition function between i and j given that i, j

form a base pair and there are intermolecular base pairs somewhere between

i and j.

The recursion for the pseudo knotted partition function Qd then looks like

this:

Qd(i, j) = Qd(i+ 1, j) +
∑

k

QB
d (i, k)Q(k+ 1, j) +QB(i, k)Qd(k+ 1, j) (32)

The outer partition functions Q̂B
d are computed in the same way.

Preliminary results

As the explained algorithm is expansive to compute, it is preferable to com-

pute RNAcofold for most purposes. In most cases, the usage of the unified
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Figure 31: Feynman diagrams of the recursion to compute QB

d
(i, j). Note that in the last

row, i and j have to be the outermost bases that pair intramolecularly.
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Figure 32: Histogram of the relative differences of the Gibbs’ free energies of RNAcofold

and Unified computed dimers. The mean relative difference is 0.029. As data set, 12403

mRNA/siRNA pairs generated by Novartis were used.

algorithm is not really necessary, as the differences of the results are small

(Fig. 32). However, sometimes there are big differences in the probabilities

of the base pairs.

4.16 Folding more than two molecules

We have described here an algorithm to compute the partition function of

the secondary structure of RNA dimers and to model in detail the thermody-

namics of a mixture of two RNA species. At present, RNAcofold implements

the most sophisticated method for modeling the interactions of two (large)

RNAs. Because the no-pseudoknot condition is enforced to limit computa-

tional costs, our approach disregards certain interaction structures that are

known to be important, including e.g. kissing hairpin complexes.

The second limitation, which is of potential importance in particular in histo-

chemical applications, is the restriction to dimeric complexes. More complex

oligomers are likely to form in reality. The generalization of the present ap-
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proach to trimers or tetramers is complicated by the fact that for more than

two molecules the results of the calculation are not independent of the order

of the concatenation any more, so that for M-mers (M − 1)! permutations

have to be considered separately. This also leads to bookkeeping problems

since every secondary structure still has to be counted exactly once. However,

Dirks et al. [26] have elegantly solved that problem of computing only fully

connected substructures. They also gave a proof by induction for the prob-

lem of the permutations, i.e. that no secondary structure must be counted

twice when appearing in two permutations. As a matter of fact, for fully

connected structures (i.e. there is no molecule which is not connected to

any other) this can not happen: For three molecules A,B,C the argument

can be clarified like this: If the molecules are fully connected, there has to

be either base pairs iA, jB and kB, lC (we will call that case 1) or iA, jC and

kB, lC (case 2). It can easily be seen that for the concatenated molecule, the

inequality

iA < jB < kB < lC

must hold. If molecules B and C are now swapped (to get the only different

circular permutation for three molecules), then the inequality is

iA < lC < jB < kB,

which means there is a pseudoknot. For case two, the inequality is

iA < kB < lC < jC

and the swapped one is

iA < lC < jC < kB

which is again a pseudoknot. Since there are no other possibilities to fully

connect three molecules, and this is also the case in principle for n molecules,

there cannot be two fully connected structures in two different permutations

that have the same secondary structure.

As opposed to Dirks et al., we compute all possible secondary structures for

all permutations (i.e. also not fully connected ones), and then proceed to
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subtract all not fully connected ones that appear more than once. As these

are post-processing steps rather than changes in the algorithm, they can be

neglected as far as the performance is concerned. The only changes in the

algorithm described above first concern the fact that there is more than one

cut point, so we introduce an array of cut points as well as an array that

holds on which molecule a certain base is situated. The second difference is

in the computation of the exterior-loop contribution to QB(i, j), where we

had:

QB(i, j)+ = Q(i+ 1, cp − 1)Q(cp, j − 1)

for two molecules. This has to be replaced by the sum over all contributions

where there is at least one cut point not spanned by an intermolecular base

pair. To compute this, we have to use the following ansatz:

We denote Q<
k (i, j) the set of all structures between i and j that have at

least k unspanned cut points. These sets can be computed by dividing the

partition functions into k + 1 parts, i.e. for k = 2, we have to compute all

possibilities to use two cut points out of a set of cut points C(ij) between

i and j. As an example, for 4 cut points, the partition function will be

computed as follows:

Q<
k (i, j) =

∑

ci≤a≤cj−3

∑

a<b≤cj−2

∑

b<d≤cj−1

∑

d<e≤cj

Q(i, a)Q(a, b)Q(b, d)Q(d, e)Q(e, j)

However, these computations will count all structures with more than k cut

points multiple times. If we want to correct for that, we will have to consider

how often a structure with l cut points is counted by computing Q<
k (i, j). It

is easy to see that this will be the case exactly
(

l
k

)

times. If we use

∑

1≤k≤n

(−1)k+1
(

n
k

)

= 1,

we can then compute the partition function Qg(i, j) that there is at least one

unspanned cut point between i and j by:

Qg(i, j) =
∑

1≤k≤m

(−1)k+1Q<
k (i, j)
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Figure 33: Trimeric structure of human U4, U5 and U6 spliceosomal RNAs.

The mfe secondary structure shown on the left has the order U4 (blue) U5 (green) U6

(red). Its mfe is -114.3 kcal/mol. (As opposed to -105.9 kcal/mol for the other order).

At the right, the dot plot is shown. (Free Energy:-123.8 kcal/mol, equilibrium constants:

KABC = 5 · 1013, KAB = 1.4 · 1010, KBC = 2.8 · 106, KAC = 1.1 · 108

where m is the number of cut points between i and j. This computations

are O((n − 1)n−1) for n the number of strands, but for small n, this is still

feasible. So, the recursion for n molecules looks like:

The above strategy can also be used for the computation of all “true” n-mers.

It gets increasingly complicated, however, so that we will instead implement

the connected structures only variant of the algorithm.
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5 The importance of folding local, RNAplfold

5.1 Local RNA secondary structures

There are two main reasons why one wants to compute a secondary structure

for smaller parts of an RNA molecule. The first one is that the computation

is faster. If you restrict the maximum span of a base pair (i.e. the maximum

number of bases lying between the paired bases) to a number x, the time

complexity of folding is reduced to O(nx2), while the memory requirements

reduce to O(n + x2). This enables us to compute local substructures for

chromosome length molecules, as time complexity and memory consumption

are linear with respect to the length of the molecule.

The second reason is motivated by nature. It splits up in two parts: There are

many structural motifs which are substructures of long molecules having an

ill-defined secondary structure. Examples for this are the Internal Ribosome

Entry Site (IRES), the Iron Response Element (IRE) or the SElenoCysteine

Insertion Sequence (SECIS), which are all part of mature mRNAs. Viral

examples are 5’SL and 3’SL structures in tick-borne encephalitis virus or HC

structures at the 5’ end of HCV.

Moreover, in many cases, like e.g. in micro RNAs, the exact boundaries of

the transcript are not known, which makes it necessary to find local sub-

structures. Indeed, the independence of the miRNA precursor structure of

the exact boundaries of the transcript has been successfully used by Sewer

et al. to identify new miRNAs [119].

A fact that makes computing local secondary structures useful is that not

only is prediction accuracy inversely proportional to the base pair span (i.e.

to j − i), but even in big molecules like 23 S RNA, the vast majority of base

pairs has a span below 100 [29].

An algorithm to predict the local minimum free energy secondary structure of

an RNA molecule is included in theViennaRNA package [53]. In this program,

RNALfold, the first and most important step is to restrict the maximum base
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pair span to some l. This step leads to a performance gain from O(n3) to

O(nl2). Then, using the usual recursions, an array EL(i) holding the en-

ergy of the sequence 3’ of i is computed. To get locally stable structures, a

backtrack is started whenever EL(i − 1) ≥ EL(i) ∧ EL(i) < EL(i+ 1), i. e.

adding another base 5’ will not lead to a better energy while adding i did.

As i can only be paired with bases j ≤ i+ l, the backtrack can be restricted

to a stretch of the molecule of length l.

Computing the partition function of a locally folded RNA has been neglected

up to now, however, in [53], Hofacker et al. gave a short introduction about

how this could be done using the Nussinov Model.

When predicting base pair probabilities, we have the problem to define what

exactly we mean by a “local pair probability”. To do this, we first have to

look at the so called sliding window approach.

5.2 Sliding windows

The favorite way to predict local structural features is using “windows” of a

certain length that “slide” over a longer sequence. This means that you do

your computations for small, overlapping parts of a molecule. An approach

like this is used e.g. in RNAz [129], where alignments are split into over-

lapping blocks. The speed-up you can get is dependent on the overlap - the

bigger it is, the slower the program will run. Furthermore, the computation

time needed is dependent on the size of the “window” used. Again, the big-

ger the window, the smaller the performance gain.

The drawback of this approach is that you will loose any information that

is not contained in one of the windows. This also applies to small structures

if they are situated between windows — to get all possible information, the

overlap will have to be maximal, the step-size (the distance between single

windows) has to be 1. However, this will slow down the procedure, so that

usually bigger step-sizes are used. (Default values of RNAz are window size:

120, step-size: 40).
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5.3 Local pair probabilities

We define a local pair probability as the average probability of a base pair,

where the averaging is done over all windows that can contain the base pair.

To get maximum accuracy, we are forced to use a step-size of one (or maxi-

mum overlap).

Computing all possible windows may appear to be costly, but this is not the

case. Because of the dynamic programming approach, we can simply add one

base, say 3’, and subtract one base on the other end (5’) to get the partition

function of the next window.

Q(i, j) = Q(i, j − 1) +
∑

k

Qb(k, j)Q(i, k − 1)

We call the probability of a base pair appearing in a window of size L,

starting at position u, pu,L. The computation of these probabilities is O(nL3).

However, what we are interested in are the average pair probabilities πL(i, j)

to get the base pair i, j within a window of length L.

πL(i, j) =
1

L− (j − i) + 1

i
∑

u=j−L

pu,L(i, j) . (33)

For i + L > n and j − L < 1, the edges of the molecule, there are fewer se-

quence windows, and the factor in equ. (33) has to be modified accordingly.

As we will see below, we do not have to explicitly calculate the pu,Ls to com-

pute the πLs. Therefore, the computation can be done in O(nL2).

We divide the computation of the pair probabilities, using the “inner” prob-

abilities QB(i, j), which are independent of the window considered – as long

as the base pair in question is part of that window. For the outer part, we

distinguish the two cases that the base pair is enclosed by another one or

that it is not. If it is not enclosed by another base pair, then we simply add

up for all windows:

pu,L
o (i, j) =

Q(u, i− 1)QB(i, j)Q(j + 1, u+ L)

Qu,L(u, u+ L)
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with Qu,L the partition function for a window of size L, starting at u.

If the base pair is enclosed by another one, we get:

pu,L
e (i, j) =

∑

u<k<i,j<l≤u+L

pu,L(k, l)

L− (l − k) + 1

(

I(kl, ij) +M(k + 1, i− 1)

QB(k, l)

+
M(j + 1, l − 1)

QB(k, l)

+
M(k + 1, i− 1)M(j + 1, l − 1)

QB(k, l)

)

the average pair probability then is:

πL(i, j) =
1

L− (j − i) + 1

i
∑

j−L≤u

pu,L
o (i, j) + pu,L

e (i, j) =

=
1

L− (j − i) + 1

i
∑

j−L≤u

Q(u, i− 1)QB(i, j)Q(j + 1, u+ L)

Qu,L(u, u+ L)
+

+
∑

u<k<i,j<l≤u+L

pu,L(k, l)

L− (l − k) + 1

I(kl, ij)

QB(k, l)

+
∑

u<k<i,j<l≤u+L

pu,L(k, l)

L− (l − k) + 1

M(k + 1, i− 1) +M(j + 1, l − 1)

QB(k, l)

+
∑

u<k<i,j<l≤u+L

pu,L(k, l)

L− (l − k) + 1

M(k + 1, i− 1)M(j + 1, l− 1)

QB(k, l)

we can now use the fact that

∑

j−L≤u

pu,L(k, l)

(L− (l − k) + 1)
= π(k, l)

to get to

πL(i, j) =
1

L− (j − i) + 1

i
∑

j−L≤u

pu,L
o (i, j) +

+
∑

u<k<i, j<l≤u+L

π(k, l)(I(kl, ij) +M(k + 1, i− 1) +M(j + 1, l − 1))

QB(k, l)

+
∑

u<k<i, j<l≤u+L

π(k, l)M(k + 1, i− 1)M(j + 1, l − 1)

QB(k, l)

The algorithm is O(nw2) in processor time (see Fig. 34) and O(n+ w2).
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Figure 34: The performance of RNAplfold on a Pentium 4 3.2 GHz confirms the theoretical

scaling of the CPU time as O(nL2)
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Figure 35: Local pair probabilities (L=100, W=120) in a 740 nt region of the human X

chromosome containing five miRNAs annotated in miRBase 7.1 [41]

5.3.1 Visualization of local pair probabilities

The default way to visualize pair probabilities is the dot plot. If we now

locally fold a very long molecule, our dot plots will get very big squares. In

addition to that, the information content of these dot plots is very small,

as only a band of width l along the diagonal can contains base pairs. We

therefore decided to show only this small band of the dot plot, and turn

it by 45 degrees. What we get is a trapeze with the sequence written on

its baseline, angles of 45 degrees. The two lines parallel to the two sides

of the trapeze connect any given point with its corresponding bases. Using

this approach makes it possible to add local pair probabilities to genome

browsers.

5.3.2 Caveats when working with local pair probabilities

Because the π(i, j)s are averages over different intervals, they can not be

easily compared with each other. For example, the probabilities for one base
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to be paired do not add up to one. If you e.g. have one base pair i−w, i and

one i, i + w, the average pair probabilities can both be close to one, so the

“probability” of i to be paired can be close to 2. Therefore, we are unable

to directly compute properties like the probability of one base not to be

paired or the local Shannon Entropy S =
∑

p ln p. In case this information

is needed, the following approach can be used: We multiply the average pair

probabilities by the number of windows the base pair can appear in and

divide the result by the number of windows the base can appear in. Doing

this, we get as the probability that base i is paired:

p(i) =
∑

j<i

π(i, j)(L− (j − i) + 1)

L
+
∑

i<j

π(j, i)(L− (i− j) + 1)

L

In this approach, short range base pairs have a higher weight than long range

ones. This is equivalent to adding up the probabilities for every window

separately and then divide by the number of windows.

5.4 Locally unpaired probability

When looking for possible binding sites for RNA interactions (e.g. miRNA-

mRNA binding), it can be crucial to know the probability that a possible

binding site – or at least a certain part of it – is unpaired. This question

is obviously closely related to the pair probabilities. Therefor, we can also

compute the mean probability that a given stretch of bases is unpaired in all

windows it occurs in. We closely follow the computation of the “probability

of being unpaired” in [92], but again use mean pair probabilities. In the case

of no enclosing base pairs or enclosing interior-loops, this is straightforward:

For a multi-loop containing an unpaired region, we need to compute

QMM(i, j), which is the partition function of multi-loop contributions with at

least 2 stems (elements). QMM can be computed like multi-loop contributions

without closing base-pair:

QMM(i, j) =
∑

k

QM(i, k − 1)QM1(k, j)
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We can then use the QM and theQMM arrays to compute the probability that

a certain stretch between i and j is in the unpaired region of a multi-loop:

p =
∑

p<i,q>j

π(p, q)b
QMM(p+ 1, i− 1)a(q − i+ 1)

Qbp, q
+

+ π(p, q)b
QMM(j + 1, q − 1)a(j − p+ 1)

Qbp, q
+

+ π(p, q)b
QM(p+ 1, i− 1)QM(j + 1, q − 1)a(j − i+ 1)

Qbp, q

The three terms represent the distinct cases where the unpaired region is

right of, left of or between two multi-loop components, resp.

5.5 Parameter issues

We want to avoid averaging over a small number of values, so we also have

to choose a maximum base pair span well lower than the window size. In

the RNAplfold program, there are three important parameters that can be

changed by the user. These are the window size W , the maximum base pair

span L and, if it is computed, the length of the unpaired region u.

As can be expected, variation of these parameters leads to changes in the

results while retaining their general shape. In Fig 36 and 37, we visualize

the effect of varying different values while the others stay constant. The

parameters have to be carefully chosen for different problems (see Fig 38),

and may have to be adapted to e.g. GC content or kingdom, as recent

unpublished results show.

5.6 Applications

RNAplfold can be used to predict local base pairing probabilities for large

sequences - whole chromosomes and even genomes. Future versions of the

UCSC genome browser will contain RNAplfold information (M. Höchsmann,

personal communication).
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Figure 36: Effect of vari-

ation of RNAplfold pa-

rameters on probability

to be unpaired.

top: Variation of L,

W = 100, u = 8.

middle: Variation of W ,

L = 80, u = 8.

bottom: variation of u,

W = 100, L = 80, detail.

As can be seen, the gen-

eral shape, i.e. the loca-

tion of the peaks, of the

two upper curves stays

the same, but the am-

plitudes can vary a lot

– with unpredictable di-

rections, as there is no

correlation like increas-

ing W will lower un-

paired probabilities. Ob-

viously, for varying u

(bottom), there is a di-

rect size/probability cor-

relation.

In this example, a part

of homo sapiens trans-

membrane protein 63B

mRNA (NM 018426) was

used.
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Figure 37: effect of varying W on pair probabilities. Probability differences between

W = 100 and W = 240 in a detail of a difference dot plot, with green higher probability

in w = 100 and red higher probability in W = 240.
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Figure 38: Change of discriminative power of RNAplfold for the prediction of the quality

of siRNAs. The u parameter was varied (for W = 40, L = 30) between 4 and 19. A data-

set of working and nonworking siRNAs was compared concerning target site accessibility,

and the separation of yellow (non working) and orange (working) siRNAs was depicted.

Figure taken from [121]
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5.7 Further improvements

Almost any RNA molecule will have some kind of secondary structure. The

pair probabilities alone are not enough to identify non-coding RNAs. The

free energy alone is also not a good indicator of whether a structure belongs

to a non-coding RNA. However, combining this information would lead to

more useful data, especially if we could incorporate the energy z-score.

Plotting the Gibbs free energy of every window is simple – it is computed

in course of the computations already. What we rather would like to have

is information on how the energy compares to the energy we would expect

from a random sequence. As the energy model considers loops and dangling

bases only, we would need sequences with the same dinucleotide content as

random sample. For this purpose, machine learning approaches seem to be

well suited. RNAz has used a support vector machine to compute the energy

z-score of RNA structures, but does not take into account their dinucleotide

content. The energy z-score is a measure of how good an energy is.

The energy of random sequences is extreme value distributed, and the z-

sore is the difference between the mean of this distribution and the energy

score of the molecule of interest, described in units of the standard deviation.

The problem lies in the definition of the random sequences. Obviously, the

sequences should have the same base content, but because of the nature of the

energy function, it is the dinucleotide content that is mostly responsible for

the energy of the secondary structures of random sequences. It is possible to

compute energy z-scores that include dinucleotide content, but the training

of the SVM is not as trivial as for the mononucleotide case used in RNAz.

5.7.1 Local cofolding

The sliding window approach used in RNAplfold can, alas, not be converted

to the prediction of dimeric structures. The reason for this lies in the fact

that in the RNAcofold approach, the two molecules are concatenated. This

means that instead of replacing or adding one base at the end of the molecule,

we would have to replace or add a base between the molecules, which means
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in the middle of the molecule because of the concatenation.

However, if we add or replace a base at the center of a given loop, the energy

of the loop will change, as it is dependent on its size. This effect can only be

taken into account if all respective loops are evaluated again, as the contribu-

tion of an unpaired base is different for different loop types and sizes. As the

base added (or replaced) is the one closest to the cut c, it can only be part

of an exterior-loop if it is not paired, which means that it has no influence

on the energy at all. If, however, the base happens to be paired, every single

loop containing such a base pair has to be re-evaluated. This is in essence as

expansive as simply computing the whole structure from scratch, leading to

a time consumption of at least O(nl3)

An approach that seems to be better is a combination of a fast duplex struc-

ture computation program like RNAhybrid [65] or the even faster RNAplex,

which has been programmed by Tafer in Vienna [121] and the unpaired ver-

sion of RNAplfold. This would in principal correspond to a local version of

RNAup. The combination of these two approaches has lead to promising re-

sults in miRNA target prediction and siRNA target evaluation (Hakim Tafer,

personal communication).
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6 Using covariance information for RNA sec-

ondary structure prediction

6.1 Motivation

RNA secondary structure prediction using dynamic programming and the

Turner energy model is not accurate to the satisfaction of Bioinformaticians.

Therefore, ways to improve the predictive power of secondary structure pre-

diction have been sought. One approach to do that is to take evolution into

account. Assume we know that a certain function of an RNA is conserved in

evolution. If we can relate that function to the structure (and not to sequence

motifs, which is the other main possibility), we can do two things. Firstly,

we can try to find the best structure different molecules have in common, i.e.

a structure that has low energy and can be adopted at least in the majority

of molecules. Secondly, we can try to find so called compensatory or con-

sistent mutations. These are mutations that, while changing the primary

sequence of the RNA molecule, leave the structure intact. A consistent mu-

tation would change a GU base pair to a GC or an AU base pair, while in a

compensatory mutation, both bases are changed to keep the pairing facility.

Within the ViennaRNA package, this consensus structure prediction is done

by the program RNAalifold [51]. A problem not yet tackled in RNAalifold

is the question of how to quantify the contributions of compensatory and

consistent mutations. At the moment, the values chosen are arbitrary.

6.2 Implementation

There are different approaches to get to a consensus structure of RNA mole-

cules. The first way, which is done by RNAalifold, is first to get an alignment

of the molecules and then predicting a secondary structure for that alignment.

The second one is to start with a secondary structure and align the sequences

to it. The last one is to do the folding and alignment in the same step. An
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algorithm to do that has been proposed by Sankoff [115]. Implementations

of his algorithm include Dynalign [82], Foldalign 2 [46], PMcomp [50], Stem-

loc [55] or LocARNA [133].

In principle, the approach of RNAalifold is a generalization of the normal

RNA secondary structure prediction algorithm to alignments. But before

the algorithm can be used, a multiple alignment of the sequences in question

has to be generated. If the pairwise sequence identity is high enough (over

about 0.75 [134]) simple sequence based tools like Clustalw [124] will suffice.

In other cases, the more elaborate Sankoff based algorithms can be used.

The scoring function optimized by RNAalifold consists of two parts, a ther-

modynamic score and a covariance score. The role of the covariance score

is to favor structures that contain compensatory or consistent mutations as

well as penalize structures that can not be realized by all sequences. To get

the covariance score, every possible base pair between every column i and j

of the multiple alignment is looked at. The types of base pairs between the

positions (here, position means the base in column i of sequence number x)

are evaluated. The number of different base pairs as well as the number of

counter examples (i.e. sequences where the bases i and j are not allowed to

form a base pair) is counted. Out of these numbers the covariance score is

computed, which is lower (better) if there are many different base pairs and

no counter examples, and higher if there are only a few possible base pairs

and many counter examples. Usually, a base pair with over 50% counter

examples is not considered as an allowed base pair in the folding algorithm.

Note that the score used is not a mutual information score. This first step

replaces the part of the folding algorithm where the type of base pair is as-

signed for every pair of bases.

With this information, we turn to the computation of the energies of the

different loops. We compute here the average energy of a given loop for

all sequences of the alignment. Therefore, every energy evaluation is made

not once, but m times, where m is the number of sequences in the multiple
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alignment. In the Nussinov case, this leads to:

Ni,j = min

{

Ni+1,j,

mini<k≤j Ni+1,k−1 + Fk+1,j + σ(i, k)

}

→

→ Fi,j = min

{

Ni+1,j,

mini<k≤j N(k+1,j) +Ni+1,k−1 + ccp(i, j)
∑m

n=1 σ(i, k)n

}

with ccp(i, j) the co-variation score of columns i and j. As can be seen, this

is at most m times slower than the single sequence folding algorithm.

For the Turner model, computing a consensus secondary structure leads to

the following recursions, where Fi,j, Bi,j,Mi,j andM1
i,j have the same meaning

as in equ. 2:

Fi,j = min

{

Fi+1,j , min
i<k≤j

Bi,k + Fk+1,j

}

Bi,j = min















∑m
n=1 H(i, j)n + ccp(i, j),

mini<p<q<j Bp,q

∑

n I(ij, pq)n + ccp(i, j),

mini<k<j α+ β +Mi,k +M1
k+1,j−1 + ccp(i, j)

Mi,j = min

{

Mi+1,j +mγ,min
k
Bi,k +Mk+1,j +

∑

n

β(i, k)n,M
1
i,j

}

M1
i,j = min

{

M1
i,j−1 +mγ,B(i, j) +

∑

n

β(i, j)n

}

The differences to equ. 2 are minor. Because β(i.j) is dependent on the type

of base pair, a sum over all sequences has to be made there also. Again, this

is at most m times slower than the single sequence case. For the partition

function case, the energy contributions have to be added up, in a general

example where E denotes the energy function (i.e. either H(i, j) or I(ij, kl))

E = e
P

m Em

= Πme
Em

To speed up the computation, the exponential functions are computed only

once for every possible case and kept in memory.
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6.3 Extensions of RNAalifold

There are two main problems we addressed concerning the computation

of consensus secondary structures introduced above. The first is sequence

weighting, the second is energy evaluation.

6.3.1 Sequence weighting

For the case of sequence weighting, there are several pathological cases where

the unweighted algorithm will lead to results which are not meaningful or

wrong. These are cases where

i One sequence shows up more than once in an alignment

ii There are several closely related sequences and only one (or some few)

outliers.

iii The alignment used is erroneous.

In the first two cases, the RNAalifold output will be biased to one (class) of

sequences, when what you want to see is a structure which can be formed by

all sequences. These problems also turn up in multiple alignment programs,

and sequence weighting is a common way to solve this problem. In the

third case the outcome is unpredictable, in the best case simply neglecting a

wrongly aligned sequence altogether.

As has been indicated, one way to address this is to weight the sequences and

their contribution to the energy of the consensus structure. We do that by

considering a sequence tree, which can in principle be made by any convenient

way of sequence tree design.

Most of these trees, however, will have weighted edges, so we need a way to

get weights for the sequences out of these trees. Here, we follow the approach

used by Clustalw [124]. The first step is to (re)root the tree (if it is unrooted,

create a root, if not then re-root it). Because the rooting described in [124] is

not unambiguous in all cases, we decided to use the midpoint method. The
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root vertex is set to be in the center of the longest branch of the tree, i. e.

the longest distance between two leafs.

The weight Wn of the sequences n, using li as the weight of an edge i and oi

its order, i.e. the number of leafs which share edge i on the path to the root

is computed by summing over all edges in the path P from the leaf to the

root:

Ws =
∑

i∈P

li
oi

Basically, these two steps divide the tree into two sub-trees of equal weight.

That means if you have an outlier or a smaller and a bigger group, the struc-

ture computed will over proportionally reflect the smaller group. The caveat

is of course that this will lead to meaningless results if the two groups of

molecules do not share a common fold.

How does weighting help in the case of a misalignment? Obviously, instead

of the 50% of sequences cutoff for allowing base pairs a cutoff based on the

weights (50% weights) has to be used. If one sequence is misaligned, this

usually means that the alignment does not share a common fold. While this

would be neglected in the normal RNAalifold algorithm, it will lead to a

majority of base pairs being disallowed in the case of a weight based cut-

off, because wrongly aligned sequences tend to be outliers. So the generated

consensus structure will be of bad quality, which should lead to careful ex-

amination of the alignment used.

Including sequence weights into RNAalifold is algorithmically straightfor-

ward. Whenever energy is evaluated, you multiply the energy contribution
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of sequence m by its weight wm:

Fi,j = min

{

Fi+1,j, min
i<k≤j

Bi,k + Fk+1,j

}

Bi,j = min















∑m
n=1 H(i, j)nwn + ccp(i, j)

mini<p<q<j Bp,q

∑

n I(ij, pq)mwm + ccp(i, j)

mini<k<j α + β +Mi,k +M1
k+1,j−1 + ccp(i, j)

Mi,j = min

{

Mi+1,j +
∑

n

wnγ,min
k
Bi,k +Mk+1,j +

∑

n

wnβ(i, k)n,M
1
i,j

}

M1
i,j = min

{

M1
i,j−1 +

∑

n

wnγ,B(i, j) +
∑

n

wnβ(i, j)n

}

The transition to the partition function case works similarly to that of single

molecules, but for a little inconvenience when computing the energy contri-

butions. As we want to avoid extensive use of the exponent function for

performance reasons, using

Πm exp Ewm

is not convenient. Instead, we first compute the sum over all energies

∑

m

Ewm

and then have to compute only one exponential function per energy evalua-

tion. We do not pre-compute all possible energy contributions, as is done in

the unweighted case, because there are too many different ones.

6.3.2 Energy evaluation

The previous version of RNAalifold did only score alignment columns. When

doing that, you will get spurious results for every energy evaluation where a

gap is scored as a sequence character. This problem is illustrated in Fig 39. It

can lead to structures that e.g. are considered to be bulge loops even though

in the respective sequence (but not in the alignment!) the bases directly stack

onto each other. As most alignments will include gaps, we decided to use the
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           ************   *   *************
sequence_2 AGCGUUCUUGCGC--GUGUUUUUGCGCUUGCU    30
sequence_3 AGCGUUCUUGCGC--GU--UUUUGCGCUUGCU    28
sequence_1 AGCGUUCUUGCGAUAGCGUUUUUGCGCUUGCU    32

old (((((....(((....)))....))))).... -5.95
new ((((.....((((..(......))))).)))) -5.83

1

G
C
G

A
U A

G
C
G
U

2
G
C
G

C G
C
G
U

3

G C G C  G C  
 

UUU
UGCGC

4

G C G C G
U U

UU
UGCGC

Figure 39: Difference in energy evaluation between the new and the old RNAalifold

versions. The artificial alignment in the middle is scored. The old RNAalifold version

gives the first, the new the second structure. The hairpin structure in red, which is

predicted by the old version, cannot be adopted by two of the three sequences. While the

old RNAalifold treats all three sequences as shown in 1, the real situation for 2 sequences

can be seen in 2 – the hairpin is too short, the structure not possible. The hairpin predicted

by the new RNAalifold version (cyan) is treated like the bulged structure in 3 by the old

version, while it looks more like 4 in two sequences, where the stem is 5 bp long.
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real sequences, instead of the sequences including gaps, for energy evaluation.

In terms of the algorithm this is again quite straightforward. We only have to

keep track of which sequence position i∗m corresponds to alignment position i

and sequence m. This is done by including auxiliary arrays Sm(i) = i∗m that

hold this information. To get things like dangles right, we also included two

arrays holding the next base 5’ (S5) or the next base 3’ (S3) of an alignment

position i in sequence m, as well as arrays holding the gap-free sequences.

For the minimum free energy case, the recursions now look like this:

Fi,j = min

{

Fi+1,j, min
i<k≤j

Bi,k + Fk+1,j

}

Bi,j = min















∑

m H(Sm(i), Sm(j)) + ccp(i, j),

mini<p<q<j Bp,q

∑

m I(Sm(i)Sm(j), Sm(p)Sm(q)) + ccp(i, j),

mini<k<j α + β +Mi,k +M1
k+1,j−1 + ccp(i, j)

Mi,j = min

{

Mi+1,j +mγ,min
k
Bi,k +Mk+1,j +

∑

m

β(Sm(i), Sm(k)),M1
i,j

}

M1
i,j = min

{

M1
i,j−1 +mγ,B(i, j) +

∑

m

β(Sm(i), Sm(j))

}

Of course, this will mean trying to evaluate “impossible” structures. This

happens when there are so many gaps in a hairpin-loop that the distance in

sequence terms between columns i and j gets smaller than 4. Because of the

necessary “backwards compatibility”, we have to treat this cases outside the

energy evaluation function (as it is used by all programs of the ViennaRNA

package). The energy evaluation function returns “forbidden” in this case,

which basically means a very high number. This will make it impossible

for such base pairs to form even if there was only one counter example, in

the worst case having only one base-pair less in a stack. Thus, we assign a

penalty instead. This penalty, equal to the value assigned to a non WC or

wobble base pair, while severe, guarantees that such pathological cases will

not render the computation useless.

Intuitively, applying these changes makes RNAalifold a program which pre-

dicts better structures. However, the results have been somewhat disap-
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pointing, especially in terms of recognizing ncRNAs from random controls.

While the SCI, used by RNAz [129] as one descriptor, rises, it seems to do

so for the “natural” as well as the shuffled “random” sequences. This is

not surprising by itself: the new energy evaluation functions will usually not

produce higher energies, because the only contribution that leads to higher

energies is the “hairpin too short” penalty mentioned above. All other dif-

ferences, i.e. shorter interior-loops and dangling of real bases will stabilize

the secondary structure. Because the SCI uses the energy calculated by

RNAalifold (SCI=
δGalifold

Ḡfold
), it will almost always be higher for the new en-

ergy evaluation. However, it is unfortunate that this effect is equally big

in random and real sequences, as it can thus not be used to help RNAz in

classification.

6.3.3 Results of weighting and evaluating

Changing the code to include weighting and the new energy evaluation slows

down RNAalifold. However, we did not want to duplicate the alifold func-

tions, but used and changed the existing functions. Therefor, even when you

do not want to use the new variant, RNAalifold still performs worse than

before, considering processor time. Table 2 shows how much slower the new

RNAalifold is. As one can see, the factor it is slower varies between 4.5 and

1.5 where the higher factors affect very small alignments, where even this

quite high factor does not really matter.

While there are many more elaborate ways of designing phylogenetic trees

out of sequence data, we used the sequence tree as constructed by Clustalw

[124], which is a neighbor joining tree. Note that this does not mean the tree

Clustalw uses as guide tree for aligning the sequences, but the tree gener-

ated from the final alignment. When looking at the quality of the predicted

secondary structures, it can be seen that in “pathological” cases, the en-

hancement of RNAalifold works well:

We folded two molecules which had very gapped alignments, and compared

the results of the two RNAalifold versions. In both cases, the new version
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length 2 factor mfe 2 factor pf 5 mfe 5 pf 9 mfe 9 pf

73 5.9 2.95 3.125 2.56 4.15 2.37

385 1.73 2.48 1.63 2.48 1.78 1.75

1554 1.48 1.80 1.55 1.67 1.70 1.67

2952 1.41 1.52 1.55 1.49 2.07 1.72

Table 2: Performance loss with the new RNAalifold version. The factor that RNAalifold

performs worse than before is shown for 4 different sequence length for alignments of 2, 5

and 9 molecules, resp. The performance loss is quite severe, but it seems manageable.

New Old

tRNA 95.43 94.92

g2 intron 95.35 91.82

rRNA 78.63 78.98

U5 87.09 86.15

Table 3: Performance of the weighted new RNAalifold. Mean MCCs approximate corre-

lations of the 4 different classes of molecules of BRALIbase II ( [37]). As can be seen, the

new version outperforms the old one in all but one molecule class. However, the gains are

rather small. Only in the g2 intron, the rise in performance seems significant.

outperformed the old one (see Fig 40). As for the ability to distinguish be-

tween random alignments and ncRNAs, in a case where one outlier was intro-

duced into an alignment of 4 sequences, the new RNAalifold also did better

than the old one (Fig 41). However, as can be seen using the BRALIbase

I [36] and BRALIbase II [37] alignments( Tables 43) the new RNAalifold

sometimes performs worse than the old one. A reason for this may be that

the outliers, which are weighted more strongly, are the molecules where the

alignment is more likely to contain errors. Therefore, RNAalifold gets more

sensitive to alignment errors. However, while the losses in MCC are only

small, there are bigger gains in other molecules.
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Figure 40: Predictive power of the new RNAalifold. Two alignments have been folded

using both alifold versions, and the results have been compared to the consensus structure

of these molecules. Color code: blue: both wrong, red: both right, green: new right, cyan:

old right, yellow/orange: both wrong, but prediction impossible.

The top molecule is telomerase, the structure contains a pseudo knot, so the part of the

molecule where the yellow bases are could not be predicted correctly even in theory using

RNAalifold. As can be seen, the new version of our program can predict an additional

stem and gets at least the overall structure right where it possibly can.

The bottom molecule is folded from the seed alignment of nuclear RNAse P from Rfam

[42, 43]. Again, additional stems are predicted by the new version of RNAalifold, but a

small stem is lost, also. The orange bases correspond to base pairs that are part of the

consensus structure, but can not be adopted by more than 70% of the molecules in the

seed, as they either have gaps or non-WC base-pairs there. Note that many unpaired

bases, mostly containing gaps, have been cut out from the interior-loops to get the figure

to be concise.
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Figure 41: Predictive power of the new RNAalifold. In this artificial case, a sequence was

added to 4 sequences with mean pairwise identity of 0.95 to get a mean pairwise identity

of 0.6. The possibility of the SCI to distinguish between shuffled alignments and ncRNA

alignments was measured. The new RNAalifold (weighted:blue, unweighted: ocher) fares

better than the old one (black) in this example. However, in more “normal” cases the

differences are much smaller.
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Sequence sens select MCC

LSU M Old 57.0 63.6 60.3

New 54.6 62.9 58.8

Weight 57.4 62.0 59.7

LSU.H 51.1 54.6 52.9

New 51.6 54.9 53.2

Weight 56.3 61.2 58.7

SSU.M 81.8 85.7 83.8

New 82.7 86.2 84.4

Weight 81.8 85.7 83.8

SSU.H 67.1 68.4 67.8

New 69.0 69.9 69.5

Weight 73.1 74.5 73.8

RNaseP.H.O. 72.7 72.1 72.4

New 70.9 70.3 70.6

Weight 72.7 72.1 72.4

RNaseP.M.O 80.0 88.0 84.0

New 73.6 75.0 74.3

Weight 80.0 87.1 83.6

Table 4: Performance of the new RNAalifold on the BRALIbase I molecules. Red: the

old version outperforms the new one, green: the new version is better. H and M denote

high and low sequence conservation, resp. The computation of sensitivity, selectivity and

MCC were performed as described in [36]
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6.4 Predicting locally conserved structures

The folding of blocks of large alignment is e. g. used in RNAz, a program to

predict conserved non coding RNAs. A sliding windows approach as men-

tioned above is used with an overlap usually about a third of the window

size. RNAz uses the structural conservation index (SCI) for the training of

the underlying support vector machine. This value is computed out of the

consensus minimum free energy and the single minimum free energies:

SCI =
EA

Ē

with EA the RNAalifold minimum free energy and Ē the mean over all

free energies of the single sequences [129]. Because it is possible that con-

served structures are lying outside all used windows, an approach similar

to RNAplfold or RNALfold may increase the performance of the program.

However, it is not straightforward to incorporate these into RNAz.

The same approach used in RNAalifold [51] can also be applied to local

prediction. Only the energy evaluations have to be changed. We combined

the local variants of RNAalifold to RNALalifold, and used the option “-p”

for the RNAplfold analogon.

We applied this to an alignment of the human miR cluster shown in Fig.

35 with 3 other mammalian species. As the results in Fig. 42 show, this

approach can significantly reduce noise, as the pre-miRNAs are the only

secondary structures which show high conservation.
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Figure 42: Local pair probabilities of a homologue miR cluster of 4 different mammalian

species and of their alignment. From top to bottom: human, mouse, dog, opossum,

alignment. The green boxes correspond to miRs annotated in miRBase [41], the red

dashed boxes are miRNAs not annotated in miRBase. The alignment has significantly

less noise, while the 5 miRNAs are the only long stems that can be seen [19]
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7 Conclusion and outlook

We presented here valuable additions for different fields of RNA bioinformat-

ics. All programs and modifications of programs are or will soon be part of

the ViennaRNA software package. The essential functions are also part of the

ViennaRNA C library and can be used by bioinformaticians to develop their

own programs.

The modifications of the RNAfold program lead to a minor speed-up of the

fastest thermodynamic RNA folding program freely available. Furthermore,

they open up the possibility for partition function calculations of canoni-

cal structures. This, as we have shown, can be an asset for the prediction

of the secondary structures of certain families of RNA molecules, e.g. tRNAs.

Our RNAcofold algorithm can give a good approximation to the structure of

RNA dimers. It can also be used for predicting equilibrium concentrations

of monomers and dimers in solution. Its applications include the study of

miRNA or siRNA binding, where the structural effects of mutations can be

predicted in silico. This can provide explanations for the phenotypic effect

of these mutations. As there are many different non coding RNAs that es-

sentially work by base pairing and dimerization, RNAcofold could as well be

a valuable tool for the analysis of their functional mechanisms.

There are two main ways we are planning to expand the RNAcofold program.

Firstly, we will merge this approach with RNAup to be able to incorporate

special cases of intermolecular pseudo knots into the algorithm. We have

described how this can be done. Secondly, we will use the slightly different

approach by Dirks et al. [26] to incorporate higher order multimers into our

computations.

With RNAplfold, we provide a tool that can be used for partition function

computations at a genomic scale. By including the unpaired option, we also

provide a fast tool for accessibility prediction of putative target sites. Target
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site accessibility has only recently been identified as an important determi-

nant for the efficacy of miRNA and siRNA function [2, 74]. One important

asset of our program is that the results of the computations can easily be

stored for later use. This means that once you have computed the accessibil-

ity of say all human 3’UTRs, you can then simply look up the accessibility

at any target site of interest. Also, if e.g. a new RNA is found, you can

immediately get a first idea about its local secondary structure.

Future work we are planning concerning RNAplfold is to identify unusually

stable structures by use of an energy z-score. Structural stability has been

identified as an useful criterion for the identification of functional RNAs.

Furthermore, we plan to develop specialized tools e.g. for miRNA target

prediction that combine accessibility calculations using RNAplfold with do-

main specific knowledge. The local pair probabilities created by RNAplfold

can also be used as a basis for structural alignment tools like LocARNA as

well as homology search tools.

We introduced sequence weighting as well as a more elaborate energy eval-

uation in the RNAalifold program. While this helps to get better results

in very special cases of consensus structure prediction, the performance gain

was not as big as we hoped for. However, we think that using alignments of

better quality, e.g. by identifying misaligned sequences and realigning them,

will lead to better results. A more elaborate sequence weighting will also

increase the performance. As the weighting itself is a pre-processing step,

more sophisticated weighting schemes can be introduced with ease.

We also introduced RNALalifold, combining local folding with consensus

structure prediction. Local pair probabilities of alignments are considerably

less noisy than single predictions are. This can be used to identify impor-

tant structures in conserved non coding RNAs. Furthermore, RNAz is using a

sliding window approach on alignments to find conserved non coding RNAs.

While we did not yet succeed in replacing this with RNALalifold, the usage

of our maximum overlap approach should enhance the sensitivity of RNAz.
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To further improve RNAalifold, an important step will be to put the rather

ad hoc balance between the energy score and the consensus score on a prob-

abilistic basis. This could entail pre-processing steps to compute optimal

penalties and bonuses that are now just constants.
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[9] Athanasius F. Bompfünewerer, Rolf Backofen, Stephan H. Berhart,

Jana Hertel, , Ivo L. Hofacker, Peter F. Stadler, and Sebastian Will.

121



Variations on RNA folding and alignment: Lessons from benasque. J.

Math. Biol., 2007. in press.

[10] Athanasius F. Bompfünewerer, Christoph Flamm, Claudia Fried,

Guido Fritzsch, Ivo L. Hofacker, Jörg Lehmann, Kristin Missal, Axel

Mosig, Bettina Müller, Sonja J. Prohaska, Bärbel M. R. Stadler, Pe-

ter F. Stadler, Andrea Tanzer, Stefan Washietl, and Christina Witwer.

Evolutionary patterns of non-coding RNAs. Th. Biosci., 123:301–369,

2005.

[11] Jean Brachet. La localisation des acides pentosenucliques dans les tissus

animaux et les oeligufs d’amphibiens en voie de l’eveloppment. Arch.

Biol. (Lige), 53, 1941.

[12] J. Brennecke, A. Stark, R.B. Russell, and S.M. Cohen. Principles of

microRNA-target recognition. PLoS Biol, 3(3):e85, 2005.

[13] P. Brion and E. Westhof. Hierarchy and dynamics of RNA folding.

Annu Rev Biophys Biomol Struct, 26:113–37, 1997.

[14] Guerrier-Takada C., Gardiner K., Marsh T., Pace N, and Altman S.

The RNA moiety of ribonuclease p is the catalytic subunit of the en-

zyme. Cell, 35:849–57, Dec 1983.

[15] Neil A. Campbell. Biology, chapter 1. Benjamin-Cummings Pub Co, 4

edition, 1996.

[16] T. Caspersson. Studien ber den eiweiumsatz der zelle. Naturwis-

senschaften, 29, 1941.

[17] Noam Chomsky. On certain formal properties of grammars. Inform.

Cont., 2:137–167, 1959.

[18] Supratim Choudhuri. The path from nuclein to human genome: A brief

history of DNA with a note on human gen sequencing and its impact

122



on future research in biology. Bulletin of Science Technology Society,

23:360–367, 2003.
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