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We consider a simple model for catalyzed replication. Computer simulations show that
a finite population moves in sequence space by diffusion analgous to the behavior of a
quasispecies on a flat fitness landscape. The diffusion constant depends linearly on the
per position mutation rate and the ratio of sequence length and population size.
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1. Introduction

The dynamics of finite haploid populations can be described by Eigen’s quasispecies
model [3]. The underlying replication mechanism is

I, — 21 (1)

with mutation. In this model, diffusion can be observed in flat fitness landscapes
[1] as well as in fitness landscapes that correspond to neutral nets [8,5]. The corre-
sponding diffusion constant is proportional to the per position mutation rate p.

Much less is known about an analogous model for second-order replicator equa-
tions, i.e., in the case of catalyzed replication. Despite the fact that there exist
quite a few computer simulations [5,4,9], the question of how and under which
circumstances the population diffuses, has not been answered so far.

Serva and Peliti [12] as well as Higgs and Derrida [7] studied the limiting case
of infinitely long sequences and therefore vanishing per digit mutation rate. In
the context of molecular evolution, however, one is interested in the case of small
populations and small chain lengths. We show here that the behavior is qualitatively
different. In particular we find a diffusive motion of the sequences which is analogous
to the behavior of a quasispecies population.
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2. The Model

We consider a stochastic version of a second order replicator equation [11] with
mutation, i.e., a replication mechanism of the form

]Ik+ﬂj—)]ll+ﬂk+]lj (2)

with a replication rate Ay;. The probability to obtain an offspring of type I; from a
parent of type I is Q. The deterministic version leads to the selection-mutation
equation

g =k | Y Azy— > Agmizy | + Y (QuAyzim — QuArzrr;)  (3)
J i,J

L,j

for the relative concentration of species Iy, [13].

We simulate a population of N sequences of length n that are composed from
an alphabet A consisting of & = |A| letters. These sequences replicate according
to the mechanism (2). As in Eigen’s quasispecies model [2] we model mutation as
independent event at each sequence position, i.e.,

D » d(k,l)
— n— 5
Qru=(1-p) (ﬁ) (4)
where d(k,l) denotes the Hamming distance of I, and I;, and p is the single digit
mutation frequency, also known as error rate. The replication rate A; depends on
the mutual relationships of the two sequences I, and I;. For simplicity we assume
that Ag;, like Qp, depends only on the Hamming distance: Ax; = 1 —d(k, j)/n.

In order to save computer resources we use an approximate simulation scheme
instead of an exact simulation, e.g. using the Gillespie algorithm [6]: Two out of
the IV sequences are chosen randomly from a tank reactor at each time step. The
first sequence I acts as a template and gets replicated with probability Ay;. The
second sequence I; acts as catalyst, i.e., it determines the rate constant. Then each
sequence position is mutated independently with probability p. After each successful
replication event a randomly chosen sequence is removed from the tank in order to
keep the number of sequences constant.

3. Simulations

Let P(0) = {P*¥(¢)|k = 1,...,N} be the population of strings at timestep t. We
write P¥ for the ith sequence position of string k in the population. Initially, the
tank reactor is initialized with a random population P(0).

The diversity of the population P is defined as the average pairwise difference
of the sequences in the tank reactor:

5:ﬁzdmk,ﬂﬂ):ﬁzz(l_a(mf,m)) (5)

k<l 2/ k<l i=1
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Fig. 1. Time-development of the diversity (1.h.s.) and displacement of the profile g(7), equ.(8), on
the r.h.s. for 10 independent simulations with N = 80 individuals, n = 80, p = 0.032. Individual
simulations are shown in grey, the mean value as black line. The diffusion constant D is the slope
of the averaged g(7) curve. A transient period of 10° steps was removed for the computation of

9(7).

At t = 0 the diversity equals the average distance between two random sequences,
ie,d0=1-— é After a transient period the diversity sharply drops to almost zero
when the population collapses to a mutant cloud surrounding a single “master”
sequence, Fig. 1.

The papers [12,7] consider the limit of infinite sequence length n — oo and large
populations N. Therefore, they describe only the behavior before the population
collapses around a single sequence, the waiting time for which event diverges with
population size.

The tank profile p is the a X n vector that lists the frequency of each letter at
each sequence position:

N
Pate1y-1(®) = 5 D 6(BE(1),2) (6)
k=1

It describes the composition of the population separately for each position. This is
justified since the contribution of the individual sequence positions to the Hamming
distance, and hence to Qg and Ay, is independent.

The diffusion constant of the population at timestep ¢ is then defined as

D — 1 I+ ) — DO -

7—0 T

where || .|| denotes the Euclidean norm. In practice, of course, D is determined as
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Fig. 2. (a) Diffusion coefficient D as a function of the mutation rate for N = 10,20, 30, 40, 80
and n = 10,20, 30,40, 80 such that N/n = 1 after equilibration for 10° timesteps. Linear fitness
matrix.

(b) Dependence of the ratio D/p on N/n.

the slope of

Ts
e 2 I+ - (Ol (8)

over a suitable measurement interval [Ty, T5].

For the diffusion coefficients one finds empirically that the ratio D/p depends
only on the ratio of N/n, see Figure 2a. Hence we plot the slope D/p as a function
of N/n in Figure 2b. The data are consistent with an ansatz D o p(N/n)~1-5%0-1,
Our time unit is one simulation step. A physically more meaningful time unit would
be the generation time in which on average every member of the population has
been picked once for an attempt to replicate, i.e., 7/ = 7/N. Hence the “physical”
diffusion coefficient would be D' = ND.

4. Discussion

We have shown that in our model with a simple interaction matrix, the dynamics
exhibits a quasispecies-like behavior. The simulations of Lindgren and Forst [5,9]
suggest that the qualitative picture stays the same even with more complicated
interaction matrices. Interactions where the fintess values a; are falling with dis-
tance, show the same qualitative result. (Data not shown). It would be interesting
to look at the case of an RNA model. There, the phenotypes are equivalence classes
of genotypes with parameters ay; = ®(f(I), f(I;)), where f(I) is the fitness of the
phenotype belonging to sequence I}, and the map from genotypes to phenotypes is
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many to one. A natural framework for such simulations is the RNA folding model
[10].
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