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ABSTRACT. RNA secondary structures provide a unique computer model
for investigating the most important aspects of structural and evolutionary
biology. The existence of efficient algorithms for solving the folding problem,
i.e., for predicting the secondary structure given only the sequence, allows the
construction of realistic computer simulations. The notion of a “landscape”
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underlies both the structure formation (folding) and the (in wvitro) evolution
of RNA.

Evolutionary adaptation may be seen as hill climbing process on a fitness
landscape which is determined by the phenotype of the RNA molecule (within
the model this is its secondary structure) and the selection constraints acting
on the molecules. We find that a substantial fraction of point mutations do not
change an RNA secondary structure. On the other hand, a comparable fraction
of mutations leads to very different structures. This interplay of smoothness
and ruggedness (or robustness and sensitivity) is a generic feature of both RNA
and protein sequence-structure maps. Its consequences, “shape space covering”
and “neutral networks” are inherited by the fitness landscapes and determine
the dynamics of RNA evolution. Punctuated equilibria at phenotype level and a
diffusion like evolution of the underlying genotypes are a characteristic feature
of such models. As a practical application of these theoretical findings we
have designed an algorithm that finds conserved (and therefore potentially
functional) substructures of RNA virus genomes from sparse data sets.

The folding dynamics of particular RNA molecule can also be studied suc-
cessfully based on secondary structures. Given an RNA sequence, we con-
sider the energy landscape formed by all possible conformations (secondary
structures). A straight forward implementation of the Metropolis algorithm
is sufficient to produce a quite realistic folding kinetics, allowing to identify
meta-stable states and folding pathways. Just as in the protein case there are
good and bad folders which can be distinguished by the properties of their
energy landscapes.

KEYWORDS: RNA Secondary Structures, Fitness Landscapes, Energy Land-
scapes, Molecular Evolution, Punctuated Equilibria, Folding Kinetics, Folding
Pathways.

1. Introduction

The relationships between the sequence and the (three-dimensional) structure
of a biopolymer is a core issue in biochemistry and molecular biology. While
most of the research on biopolymer folding is concerned with protein folding,
the same questions can be posed for RNA molecules (Draper, 1996). An impor-
tant advantage of RNA is that, on the level of secondary structure, the structure
prediction problem can be solved with reasonable accuracy. Based on this obser-
vation, it is possible to construct detailed computer models of different aspects
of the sequence-structure-function relationships ranging all the way from wn vitro
evolution to folding kinetics.

RNA secondary structures provide a discrete, coarse grained concept of struc-
ture similar in complexity to lattice models of proteins. In contrast to the latter,
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RNA secondary structures are a faithful coarse graining of the 3D structures. It
should be noted, however, that there are examples of RNA molecules with sig-
nificantly different secondary structure which exhibit similar 3D structures and
the same function (Uhlenbeck, 1998). Secondary structures are routinely used to
display, organize, and interpret experimental findings, they are oftentimes con-
served over evolutionary times scales, and in wvitro selection experiments with
RNA more often than not yield families of selected sequences that share distinc-
tive secondary structure features.

In this contribution we (briefly) review three aspects of the “computational
biology of RNA secondary structures”: (1) the solutions to the folding problem
and its variants, (2) the generic properties of the sequence structure relations
and their implications for the dynamics of RNA evolution, (3) the properties of
the conformational energy function and its implications for the kinetics of RNA
folding. The notion of a landscape plays a key role in our investigations.

2. RNA Secondary Structures and Their Prediction

We begin our discussion with the formal definition of a secondary structure:
A secondary structure on a sequence is a list of base pairs [, j] with ¢ < j such
that for any two base pairs [i, j] and [k, ] with ¢ < k holds:

(i) i =k if and ouly if j =, and
(ii) k£ < j impliesi < k <1 < j.

The first condition simply means that each nucleotide can take part in at most
one base pair. The second condition forbids knots and pseudo-knots. Secondary
structures form a special type of graphs. In particular, a secondary structure
graph is outer-planar, which means that it can be drawn in the plane in such a
way that all vertices (which represent the nucleotides) are arranged on a circle,
and all edges (which represent the bases pairs) lie inside the circle and do not
intersect. While pseudo-knots are important in many natural RNAs (Westhof
and Jaeger, 1992), they can be considered part of the tertiary structure for our
purposes. The restriction to knot-free structures is necessary for efficient compu-
tation by dynamic programming algorithms. The recent algorithm by Rivas and
Eddy (1999) is able to deal with a large class of pseudo-knotted structures, but is
extremely costly. Moreover, the information about the energetics of pseudo-knots
is still very limited (Gultyaev et al., 1999).

Regarding secondary structures as special types of outer-planar graphs paves
the way for a mathematical investigation of the structures. For instance, one
can count the number of possible distinct secondary structures for a given chain
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Figure 1. RNA secondary structure elements. Any secondary structure can be uniquely
decomposed into these types of loops.

length n or the number of all secondary structures that can be formed by a partic-
ular sequence (Waterman, 1995; Hofacker et al., 1998). For instance, the number
of secondary structures with minimal stack length s = 2 grows like 1.86™. If the
most common types of pseudo-knots are included, there are about 2.35" differ-
ent structures (Haslinger and Stadler, 1999). Consequently, there are many more
sequences, 4™, than secondary structures. Before we explore the consequences of
this observations, however, we consider the structure prediction problem.

Secondary structures can be uniquely decomposed into loops as shown in Fig-
ure 1 (note that a stacked base pair is considered a loop of size zero). The energy
of an RNA secondary structure is assumed to be the sum of the energy contribu-
tions of all loops. Energy parameters for the contribution of individual loops have
been determined experimentally, see, e.g., (Freier et al., 1986; Jaeger et al., 1989;
Walter et al., 1994) and depend on the loop type, loop size, and partly on its
sequence. Usually, only Watson-Crick (AU, UA, CG and GC) and GU and
UG pairs are allowed in computational approaches since non-standard base-pairs
have in general context-dependent energy contributions that do not fit into the
“nearest-neighbor model”. It turns out that this standard energy model has a
solid graph theoretical foundation (Leydold and Stadler, 1998): the loops form
the unique minimal cycle basis of the secondary structure graph.
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Figure 2. Density of states of the yeast tRNAPPe, Top: Complete Density of States
computed with an energy resolution of 0.1 kcal/mol, computed using the Density of state
algorithm. The total number of structures is 14,995, 224, 405,213, 184. Less than 2 million
structures have negative energy, the reference state being the open structure. The lower
figure shows the density of states and the density of local minima in the region above the
native state at higher resolution. For this plot all structures within 15kcal/mol the ground
state were generated by suboptimal folding and tested for being local minima. The tRNA
sequence with modified bases used here displays only a few suboptimal structures within a
few kKT above the native state.

The additive form of the energy model allows for an elegant solution of the min-
imum energy folding problem by means of a dynamic programming scheme that
is similar to sequence alignment. This similarity was first realized and exploited
by Waterman 1978, see also (Waterman and Smith, 1978), the first dynamic pro-
gramming solution was proposed by Nussinov and Jacobson (1980), originally for
the “maximum matching” problem of finding the structure with the maximum
number of base pairs (Nussinov et al., 1978). Zuker and coworkers (1981; 1984)
formulated the algorithm for the minimum energy problem using the now stan-
dard energy model. Since then several variations have been developed: Michael
Zuker (1989) devised a modified algorithm that can generate a subset of subop-
timal structures within a prescribed increment of the minimum energy, see also
(Schmitz and Steger, 1992). The algorithm will find any structure v that is opti-
mal in the sense that there is no other structure ¢’ with lower energy containing
all base pairs that are present in . John McCaskill (1990) noted that the par-
tition function over all secondary structures @ = 3, exp(~AG(¢)/kT) can be
calculated by dynamic programming as well. In addition his algorithm can calcu-
late the frequency with which each base pair occurs in the Boltzmann weighted
ensemble of all possible structures, which can be conveniently represented in a
“dot-plot”, see Figure 7.

The memory and CPU requirements of these algorithms scale with sequence
length n as O(n?) and O(n3), respectively, making structure prediction feasible
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even for large RNAs of about 10000 nucleotides, such as the genomes of RNA
viruses (Hofacker et al., 1996; Huynen et al., 1996a).

McCaskill’s work was extended in our group to yield an algorithm that com-
putes the complete density of states of an RNA sequence at predefined energy
resolution (Cupal et al., 1996; Cupal, 1997). Another method for calculating the
density of states, based on enumeration of structures, was proposed earlier by
Higgs (1993). However, his algorithm is restricted to subset of structures contain-
ing no helices shorter than three and uses a simplified energy model. Still, our
algorithm is rather demanding as it needs to store O(n?m) entries and O(n®*m?)
operations to compute them, where m is the number of energy bins used. Thus
it is applicable only to sequences up to some 100 nucleotides.

Most recently, a program has been designed by the Vienna group that can
generate all secondary structures within some interval of the minimum energy
based on dynamic programming and multiple backtracking (Wuchty et al., 1999;
Wuchty, 1998). The performance of the algorithm depends mainly on the number
of structures found. Since the number of possible structures grows exponentially
with chain length, the energy range that can be considered shrinks with increas-
ing chain length. In practice, suboptimal folding can handle about a few million
structures, corresponding, e.g., to an energy range of, say, 12 kcal/mol at a chain
length of 100 bases. An example application is shown in Figure 2.

Most of these algorithms are part of the Vienna RNA Package (Hofacker et al.,
1994), which is freely available from http://www.tbi.univie.ac.at/.

Another approach to RNA structure prediction is to take into account the dy-
namics of the folding process. Such kinetic folding algorithms are the topic of sec-
tion 5. In the case of functional RNAs, and provided a sufficient number of related
sequences is available, the structure can be inferred from co-variations. This phy-
logenetic approach is beyond the scope of this review, but see e.g. (Gutell, 1993).

3. The Sequence-Structure Map

We have already mentioned above that there are many more sequences than
structures. Hence, many sequences must fold into the same secondary structure.
Moreover, extensive computer simulations have shown that there are only few
common secondary structures and many rare ones, see Figure 3.

A structure 1 is common if it is formed by more sequences than the average
structure. Data from both large samples of long sequences (n > 30) (Schus-
ter et al., 1994; Schuster, 1995) and from exhaustive folding of all short se-
quences (Griiner et al., 1996a; 1996b) support two important observations: (i)
the common structures represent only a small fraction of all structures and this
fraction decreases with increasing chain length; (ii) the fraction of sequences
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Figure 3. Zipf’s law for coarse grained RNA secondary structures. The structures of 100,000
random sequences are ranked according to their frequencies. The ranking yields a distribution
which follows a generalized Zipf’s law f(r) = a(r + b)~¢, where r and f(r) are the rank and
the frequency of the corresponding structure, respectively. The constant a is a normalization
factor, b can be interpreted as the number of “very frequent” structures. The constant ¢
determines the slope of the tail of the distribution. We found distributions following this form
of generalized Zipf’s law for all algorithms, parameter sets, and alphabets. Full line:
Minimum energy structures computed with the an up-to-date parameter set. Dash-dotted
line: Minimum energy structures computed with an older parameter set. Dashed line:
Deterministic kinetic folding algorithm. L.h.s.: AUGC alphabet, r.h.s.: GC alphabet. For
the details of the coarse graining procedure and the parameter sets see (Tacker et al., 1996).

folding into common structures increases with chain length and approaches
100% in the limit of long chains. Thus, for sufficiently long chains almost all
RNA sequences fold into a small fraction of the secondary structures. The ef-
fective ratio of sequences to structures is therefore even larger than the com-
binatorial estimate. Furthermore, only common structures are likely to play
a role in natural evolution and in evolutionary biotechnology (Schuster, 1995;
Bacher and Ellington, 1998). RNA and proteins, despite their different chem-
istry, apparently share fundamental properties of their sequence-structure maps:
the repertoire of stable native folds seems to be highly restricted or even vanish-
ingly small (Chothia, 1992).

Naturally, we ask how sequences folding into the same (common) secondary
structure are distributed in sequence space. In the following we review the results
for minimum energy folding, i.e., we assume that the folding map assigns to each
sequence the most stable secondary structure. The results reported below, how-
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ever, have been shown to depend very little on the choice of algorithm (including
various approaches to kinetic folding) and parameter sets (Tacker et al., 1996).

Some notation is in order here: We call the set S(%)) of all sequences (geno-
types) folding into phenotype 1 the neutral set of . (For a mathematician S is
the pre-image of 9 w.r.t. the folding map f).

Inverse folding can be used to determine S(v). Naturally, a sequence x can
fold into a given secondary structure v only if each pair of sequence positions
that is paired in 1 is realized by one of the six possible base pairs. The set of
all such sequences forms C(1)), the set of compatible sequences. Clearly, we have
S(y) C C(¢). Note that many sequences in C'(¢) will not have 1 as their most
stable or kinetically most accessible structure. Thus the neutral set of ¢ (for a
particular folding map) will in general be only a small subset of the compatible
set.

For RNA secondary structures an efficient inverse folding algorithm is available
(Hofacker et al., 1994). It was used to show that sequences folding into the same
structure are (almost) randomly distributed within the set C (1) of compatible
sequences. A similar result was obtained for “protein space” (Babajide et al.,
1997) using so-called potentials of mean force (Sippl, 1990; 1993a;1993b).

The shape or topology of neutral sets has important implications for the
evolution of both nucleic acids and proteins and for de novo design: For ex-
ample, it has frequently been observed that seemingly unrelated protein se-
quences have essentially the same fold (Holm and Sander, 1997; Murzin, 1994;
Murzin, 1996). Similarly, the genomic sequences of closely related RNA viruses
show a large degree of sequence variation while sharing many conserved fea-
tures in their secondary structures (Hofacker et al., 1996; Rauscher et al., 1997;
Mandl et al., 1998; Hofacker et al., 1998).

Another well known example is the clover leaf secondary structure of tRNAs:
The sequences of different tRNAs have little sequence homology (Eigen et al.,
1988) but nevertheless fold into the same secondary structure motif. Whether
similar structures with distant sequences may have originated from a common
ancestor, or whether they must be the result of convergent evolution, depends
on the geometry of the neutral sets S(¢) in sequence space.

The local properties of the sequence-structure map can be investigated by
considering pairs of RNA sequences that differ only by a single point mutation.
A variety of methods is available to compare secondary structures and to quantify
their differences by a (metric) distance, from counting the number of differing
base pairs, to sophisticated alignment-like procedure such as tree editing.

It was noticed already in early work on RNA secondary structures (Fontana
and Schuster, 1987) that a substantial fraction of point mutations are neutral,
i.e., that many sequences differing only in a single position fold into the same sec-
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Figure 4. Distribution of structure distances between RNA sequences differing by a single
point mutation, n = 200. Full line: natural GCAU alphabet, dotted line: GC alphabet.
About 30% of the sequence pairs fold into the same structure. This high degree of neutrality
implies the existence of connected neutral networks. On the other hand, a substantial fraction
of point mutations leads to structure distances comparable to the structure distances between
random sequences (mean and one standard deviation are indicated by circles). The structure
distance is defined as edit distance on the tree representations of secondary structure graphs,
see (Fontana et al., 1993a) and (Hofacker et al., 1994) for details.

ondary structure, see Figure 4. On the other hand, a comparable fraction of point
mutants folds into secondary structures that have at best a vague resemblance
with their parents’ structures.

A simple mathematical model (based on random graph theory) of the sequence-
structure map can be built on the following three observations: (i) inverse folded
sequences are randomly distributed in C(v), (ii) there is a large fraction A of
neutral mutations, (iii) non-neutral mutations often yield very different struc-
tures (Reidys et al., 1997; Reidys, 1997). This model makes two rather surprising
predictions:

(1) The connectivity of neutral sets changes drastically when A\ passes the
threshold value:
1

Aer(@) = 1 — 7§ o (3.1)

where « is the size of the alphabet. Neutral sets consist of a single compo-
nent that span the sequence space if A > A, and below threshold, A < A,



10 C. Flamm, I.L. Hofacker, P.F. Stadler

the network is partitioned into a large number of components, in general, a
giant component and many small ones. In the first case we refer to S(v) as
the neutral network of y. For RNA it is necessary to split the random graph
into two factors corresponding to unpaired bases and base pairs and to use
a different value of X\ for each factor. For « = 2 we find A, = 0.5. For nat-
ural RNA sequences we have a = 4 for the unpaired regions and a = 6 for
the paired regions. The critical values are A..(4) =~ 0.37 and A.-(6) =~ 0.301,
respectively. The fraction of neutral neighbors is much larger than these
critical values for common RNA secondary structures, hence the neutral
sets S(1) form connected neutral networks within the sets C(¢) of com-
patible sequences (Reidys et al., 1997). The situation appears to be similar
for proteins (Babajide et al., 1997).

(2) There is shape space covering, that is, in a moderate size ball centered at
any position in sequence space there is a sequence z that folds into any
prescribed secondary structure . The radius of such a sphere, called the
covering radius r.o,, can be estimated from simple probability arguments
(Schuster, 1995)

Teov A~ min{h | B(h)>S,}, (3.2)

with B(h) being the number of sequences contained in a ball of radius
h. The covering radius is approximately 10-15% of the diameter of the se-
quence space. The covering sphere represents only a small connected subset
of all sequences but contains, nevertheless, all common structures and forms
an evolutionary representative part of shape space.

Extensive sample statistics (Schuster et al., 1994) and exhaustive folding of all
GC-sequences with given chain length n < 30 (Griiner et al., 1996b) have so far
been in excellent agreement with the random graph theory.

The existence of extensive neutral networks meets a claim raised by Maynard-
Smith (Maynard-Smith, 1970) for protein spaces that are suitable for efficient
evolution. The evolutionary implications of neutral networks are explored in
detail in (Huynen et al., 1996b; Huynen, 1996) and will be reviewed in the
following section. Empirical evidence for a large degree of functional neutrality in
protein space was presented recently by Wain-Hobson and co-workers (Martinez
et al., 1996).

4. Fitness Landscapes and Evolutionary Dynamics

Since Sewall Wright’s seminal paper (Wright, 1932) the notion of a fitness
landscape underlying the dynamics of evolutionary optimization has proved to
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be one of the most powerful concepts in evolutionary theory. Implicit in this
idea is a collection of genotypes arranged in an abstract metric space, with
each genotype next to those other genotypes which can be reached by a single
mutation, as well as a fitness value assigned to each genotype.

It has been known since Eigen’s pioneering work on the molecular quasi-species
(Eigen, 1971; Eigen and Schuster, 1977; Eigen et al., 1989) that the dynamics
of evolutionary adaptation (optimization) on a landscape depends crucially on
the detailed structure of the landscapes itself. Extensive computer simulations
(Fontana and Schuster, 1987; Fontana et al., 1989) have made it very clear that a
complete understanding of the dynamics is impossible without a thorough inves-
tigation of the underlying landscape. Landscapes derived from well-known com-
binatorial optimization problems such as the Traveling Salesman Problem TSP
(Lawler et al., 1985), the Graph Bipartitioning Problem GBP (Fu and Anderson,
1986), or the Graph Matching Problem GMP have been investigated in some detail,
see (Stadler, 1996) and the references therein. A detailed survey of a variety of
model landscapes obtained by folding RNA molecules into their secondary struc-
tures has been performed during the last decade, see (Schuster and Stadler, 1994;
Schuster et al., 1997; Schuster, 1997a) and the references therein. While the use
of (computationally simple) landscapes derived from spin-glasses or combinato-
rial optimization problems, or of the closely related Nk model (Kauffman, 1993)
is certainly appealing, it is by no means clear that these models will capture
the salient features of biochemically relevant landscapes. Indeed, we know now
that landscapes derived from folding biopolymers into their spatial structures
are quite different from spin-glass-like landscapes (Hordijk and Stadler, 1998).

One of the most important characteristics of a landscape is its ruggedness, a no-
tion that is closely related to the hardness of the optimization problem for heuris-
tic algorithms (Manderick et al., 1991). Three distinct approaches haven been
proposed to measure and quantify ruggedness and to subsequently compare dif-
ferent landscapes. Sorkin (1988), Eigen et al. (1989) and Weinberger (1990) used
pair correlation functions. Kauffman and Levin (1987) proposed adaptive walks,
and Palmer (1991) based his discussion on the number of meta-stable states
(local optima). The relationship between correlation measures and local op-
tima is discussed in detail by Garcia-Pelayo and Stadler (1997). A mathematical
framework for studying landscapes is developed in (Stadler, 1995; Stadler, 1996;
Stadler and Happel, 1999).

Not surprisingly, landscapes based on sequence-structure maps (Figure 5) in-
herit their ruggedness even if the map from structures to fitness values is smooth
or even linear, since shape space covering implies that a substantial fraction of
point mutations lead to unrelated structures. On the other hand, a completely
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Figure 5. Landscapes based on genotype mappings can be viewed as compositions p(f(g)),
where f : Sequence Space — Shape Space represents folding and p : Shape Space —+ R
encodes the evaluation of the structure by the environment.

random assignment of fitness values to structures cannot undo the correlation
introduced by neutrality (Stadler, 1999).

Simplifying the detailed mechanisms of replication and mutation one may
represent the dynamics of an infinite population by a reaction-diffusion equation
of the form (Kimura, 1983; Ebeling et al., 1984; Feistel and Ebeling, 1982)

5r00,0) = D 26(2.0) + 6(2.1) Pz ) - 2(0)). (4.)
where ¢(z,t) denotes the fraction of genotypes x at time ¢, ®(t) = Y F(=z, @) is
an unspecific dilution term ensuring conservation of probability, and D is a diffu-
sion coefficient. The discrete Laplace operator A describes diffusion in sequence
space and is a key ingredient in the mathematical theory of fitness landscapes
(Stadler, 1996). In general F(z,$) will be a non-linear function of the genotype
frequencies describing the interactions between different species as well as their

autonomous growth (Hofbauer and Sigmund, 1988). Within the context of this

—,

contribution F(z,¢) = F(z) is the fitness landscape. The diffusion constant D
is determined by the mutation rate p which is conveniently measured in units
of mutation events per nucleotide and per generation. While this equation is
not suitable for a detailed quantitative prediction of a particular model, it is a
valuable qualitative heuristic for explaining some of the most important effects.
One should keep in mind, however, that it is a mean field equation that does not
correctly describe some important effects even in the limit of large populations.
For an instructive example see (Tsimring et al., 1996). In the absence of muta-
tion, i.e., for D = 0 we are left with a system of coupled ordinary differential
equation that in the usual way describe the population dynamics (Hofbauer and
Sigmund, 1988).

Evolutionary dynamics on rugged landscapes without neutrality, such as the
spin-glass like models is considered for instance in (Eigen, 1971; Ebeling et al.,
1984; Eigen et al., 1989). For small mutation rates p a population is likely to
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get stuck in local optima for very long times. Populations form localized quasi-
species around a “master sequence”. There is a critical mutation rate pe; at
which diffusion outweighs selection and the population begins to drift in sequence
space — the genetic information is lost (Eigen, 1971; Eigen et al., 1989). As an
order of magnitude estimate one finds pe; &~ o /n where the “superiority” o is a
measure of the fitness advantage of the master sequence. Eigen’s error threshold
is a phenomenon that should be distinguished (Wagner and Krall, 1993) from
Muller’s ratchet. The latter refers to the loss of the optimal genotype in a finite
population in the limit of very large genotypes. There the probability of reversing
a deleterious mutation becomes zero. The error-threshold, on the other hand,
appears also in a infinite population for relatively short sequence lengths.

On a flat fitness landscape, F(z) = 1 for all z € V, the selection term dis-
appears and we are left with a pure diffusion equation. A stochastic descrip-
tion can be found in (Derrida and Peliti, 1991). The situation on landscapes
with a large degree of neutrality is much closer to the flat landscape than a
non-neutral rugged one. There is no stationary master species surrounded by
a mutant cloud, since Eigen’s superiority parameter o is so small in the pres-
ence of a large number of neutral mutants that reasonable values of p exceed
the (genotypic) error-threshold by many orders of magnitude. For small values
of p the neutral network of the fittest structure, S(1), dominates the dynam-
ics. Populations migrate by a diffusion-like mechanism (Derrida and Peliti, 1991;
Huynen et al., 1996b) on S(¢)) just like on a flat landscape with the single modifi-
cation that the effective diffusion constant is smaller by the factor A, the fraction
of neutral mutations.

Random drift is continued until the population reaches an area in sequence
space where some fitness values are higher than that of the currently predom-
inating neutral network. Then a period of Darwinian evolution sets in, leading
to the selection of the locally fittest structure. Evolutionary adaptation thus
appears as a stepwise process: phases of increasing mean fitness (transitions be-
tween different structures) are interrupted by periods of apparent stagnation
with mean fitness values fluctuating around a constant (diffusion on a neutral
network) (Huynen et al., 1996b), Figure 6. A detailed analysis of evolutionary
trajectories in terms of likely structural adaptations can be found in (Fontana
and Schuster, 1998b; Fontana and Schuster, 1998a). When the fittest structure is
common its neutral network extends through the entire sequence space allowing
the population to eventually find the global fitness optimum. A population is
not a single localized quasi-species in sequence space (Eigen et al., 1989), but
rather a collection of different quasi-species since population splits into well sep-
arated clusters (Huynen et al., 1996b) on a single neutral network. Each cluster
undergoes independent diffusion, while all share the same dominant phenotype.
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Adaptive Walks without Selective Neutrality
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Figure 6. The role of neutral networks in evolution (Schuster, 1997b). Optimization occurs
through adaptive walks and random drift. Adaptive walks allow to choose the next step
arbitrarily from all directions where fitness is (locally) non-decreasing. Populations can bridge
over narrow valleys with widths of a few point mutations. In the absence of selective
neutrality (spin-glass-like landscape, above) they are, however, unable to span larger
Hamming distances and thus will approach only the next major fitness peak. Populations on
rugged landscapes with extended neutral networks evolve along the networks by a
combination of adaptive walks and random drift at constant fitness (below). In this manner,
populations bridge over large valleys and may eventually reach the global maximum of the

fitness landscape.
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It is not surprising hence that there are abundant examples of both RNA and
protein structures that have been conserved over evolutionary time scales while
the underlying sequences have lost (almost) all homology.

For larger mutation rates p the diffusion term dominates the dynamics and
the population is not confined to the neutral network any more. The phenotypic
error threshold (Forst et al., 1995; Huynen et al., 1996b; Reidys et al., 1999) is
the mutation rate at which the dominating phenotype is lost.

Diffusion in sequence space, the existence of phenotypic error threshold, and a
close connection (Huynen et al., 1996b) with Kimura’s neutral theory (Kimura,
1983) which we have not discussed here, are consequences of the existence of
neutral networks. Shape space covering implies a constant rate of innovation
(Huynen, 1996): While diffusing along a neutral network, a population constantly
produces non-neutral mutants folding into different structures. Shape space cov-
ering implies that almost all structures can be found somewhere near the current
neutral network.

Hence the population keeps discovering structures that it has never encoun-
tered. When a superior structure is produced, Darwinian selection becomes the
dominating effect and the population “jumps” onto the neutral network of the
novel structure while the old network is abandoned. Figure 6 sketches the differ-
ence between evolutionary adaptation on spin-glass-like landscapes and on the
highly neutral landscapes arising from biopolymer structures.

Neutral evolution, arising as a consequence of the high degree of neutrality
observed in genotype-phenotype mappings of biopolymers, therefore, is not a
dispensable addendum to evolutionary theory (as it has often been suggested).
On the contrary, neutral networks, provide a powerful mechanism through which
evolution can become truly efficient.

The evolution of sequences on neutral networks can be observed very clearly in
RNA viruses. Our simulations show that sequence differences of as little as 10%
lead almost surely to unrelated structures if the mutated sequence positions are
chosen randomly (Fontana et al., 1993b). The presence of conserved secondary
structure elements such as the TAR or RRE region in HIV, the IRES region of pi-
corna viruses, or the stem loop structure at the 3’ terminus of flavivirus genomes,
which show a significant sequence variation between different virus strains (only
about 80% average pairwise sequence identity), must therefore be regarded as
the result of stabilizing selection acting on the secondary structure. This effect
can be used to design an algorithm that reliably detects conserved, and there-
fore most likely functional, RNA secondary structure elements in viral genomes
based on a combination of secondary structure prediction and comparative se-
quence analysis (Hofacker et al., 1998; Hofacker and Stadler, 1999). Evolution
on neutral networks leads to an increased level of robustness against mutation
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since a diffusing population prefers the denser regions of the neutral network
(van Nimwegen et al., 1999). The effect can be observed by comparing conserved
and non-conserved sub-structures in the rapidly evolving genomic sequences of
RNA and retroviruses (Wagner and Stadler, 1999).

5. Energy Landscapes and Folding Kinetics

The energy landscape of an RNA molecule is, for our purposes, defined on the
set of all secondary structures that are compatible with its sequence. Concep-
tually, this energy landscape is closely related to the potential energy surfaces
(PES) which constitute one of the most important issues of theoretical chemistry
(Mezey, 1987; Heidrich et al., 1991). As a consequence of the validity of the Born-
Oppenheimer approximation, the PES provides the potential energy U (R) of a
molecule as a function of its nuclear geometry R. PES are therefore defined on a
high-dimensional continuous space and they are assumed to be smooth (usually
twice continuously differentiable almost everywhere). The (global) analysis of
PES thus makes extensive use of differential topology. In contrast, our notion of
energy landscapes is discrete. Their analysis is therefore similar to the analysis
of fitness landscapes.

A crucial ingredient for the simulation of RNA folding kinetics is the choice
of a “move set” for inter-converting secondary structures. This move-set defines
the topology of the energy landscape by defining which secondary structures are
neighbors of each other and encodes the set of structural changes that RNAs can
undergo with moderate activation energies. It is the basis of all kinetic algorithms
for RNA folding.

The assumptions that an RNA molecule folds into its thermodynamic ground
state may well be wrong even for moderately long sequences (Morgan and Higgs,
1996). Consequently, several groups have designed kinetic folding algorithms for
RNA secondary structures, mostly in an attempt to get more accurate predictions
or in order to include pseudo-knots, see e.g. (Martinez, 1984; Mironov et al., 1985;
Abrahams et al., 1990; Gultyaev, 1991; Tacker et al., 1994). Only a few papers
have attempted to reconstruct folding pathways (Higgs, 1995; Gultyaev et al.,
1995; Suvernev and Frantsuzov, 1995). These algorithms generally operate on a
list of all possible helices and consequently use move-sets that destroy or form
entire helices in a single move. Such a move-set can introduce large structural
changes in a single move and furthermore, ad hoc assumptions have to made
about the rates of helix formation and disruption. A more local move-set is,
therefore, preferable if one hopes to observe realistic folding trajectories.

The most elementary move-set, on the level of secondary structures, consists
of removal and insertion of single base pairs (while making sure that one does
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Figure 7. Base pair probabilities for an phenylalanine tRNA with and without modified
bases. The equilibrium frequency p of a pair [, j] is represented by a square of area p in
position %, j and j,¢ of the matrix. Lower left: only base pairs contained in the ground state
occur with significant frequency for the sequence with modified bases. Upper right: The
unmodified sequence displays a large number of base pairs from suboptimal structures,
although the ground state remains unchanged.

not introduce knots or pseudo-knots). The simulations reported below are de-
scribed in detail in Christoph Flamm’s PhD thesis (Flamm, 1998) and (Flamm
et al., 1999). Either this simple move-set or, as in the data shown below, base pair
insertion and deletions together with base pair “shifts” (in which a base pair [4, j]
is converted into a new pair [i, k]) are used. These shift moves facilitate sliding of
the two strands of helix, which is assumed to be an important effect in dynamics
of RNA molecules. The dynamics itself is simulated by an algorithm designed
for stochastic chemical reactions by Gillespie (1976). The time scale is fixed us-
ing the measured hairpin formation of the oligonucleotide AAAAAACCCCCCUUUUUU
(Porschke, 1974). For the rates constants a symmetrical rule k ~ exp(—AG/2kT)
independent of the sign of AG has been assumed (Kawasaki, 1966) instead of the
usual Metropolis rule. Additional simulations using the Metropolis rule showed
qualitatively similar results.

Local minima are of particular importance for the folding dynamics, since they
can trap the molecule in a misfolded state. For a given sequence the low-energy
local minima can be constructed with reasonable effort: Structures within some
interval of the ground state are generated through complete suboptimal folding
(Wuchty et al., 1999), for each structure all neighboring structures are generated
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Figure 8. Energy as a function of time for a representative simulation of the modified
tRNA. A few intermediate structures are shown at the top, the last one being the native
clover-leaf structure. The stem closing the multi-loop forms last in most simulations.

and their energies compared to the reference structure. Figure 2 shows the density
of local minima within 15 kcal /mol of the ground state for the tRNAPhe,

By an extension of the above procedure one can even determine the height
of the energy barriers and the structures of the saddle points (transition states)
connecting local minima. This analysis yields a tree with the local minima as
leaves and the transition states as internal nodes; the branch lengths represent
the height of the energy barriers. An example of such a tree is shown Figure 11.

Transfer RNA molecules from most organisms contain several modified bases,
particularly methylations. These modified bases occur mostly in unpaired regions
and often the modifications are such that base pairing is made impossible. Hence,
one might speculate that the modified bases help to stabilize the correct fold.

The phenylalanine tRNA from yeast used in the following contains six modifi-
cations which prohibit base pairing its 76 nucleotides. As can be seen in Figure 7
the modifications have a strong effect on the equilibrium ensemble of structures.
The frequency of the correct fold in the thermodynamic ensemble rises from 4.4%
to 28% and suboptimal folding shows that the lowest six suboptimal structure
are prohibited by the modifications and consequently the energy gap from the
ground state to the next possible structures increases from 0.4 to 0.9 kcal/mol.
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Figure 9. Thermodynamic stability and “foldability”. The fraction of folded sequences p(t)
(thick lines) as a function of time and folding times (thin lines) for two artificial sequences
designed to fold into the tRNA clover-leaf structure are derived from 1000 independent runs.
Inset: dot plots showing the equilibrium base pair probabilities (upper right) as obtained
from McCaskill’s algorithm and the contact map of the tRNA structure (lower left). L.h.s: a
randomly chosen sequence with tRNA structure shows many alternative foldings in the dot
plot but nevertheless folds efficiently. R.h.s: A sequence designed to be thermodynamically
stable (see inset) folds only in less than 50% of the simulations.

The modified sequence exhibits very few local minima in the low energy region,
there are only 10 local minima within 5 kcal/mol of the ground state compared
to 173 for the unmodified sequence (Hofacker, 1998).

To study the kinetic effect of the modifications, the folding of modified and
unmodified tRNA sequence has been simulated (Flamm, 1998). The resulting
trajectories were then analyzed for the existence of typical folding pathways,
Figure 8. In this particular run the RNA folds somewhat slower than average, but
nevertheless shows features common to all trajectories. A rapid collapse leads to
a structure with almost as many base pairs as the native state but little overlap.
Folding then proceeds through a series of local minima that have more and more
structural elements in common with the ground state. The waiting times in the
local minima increase with decreasing energy. Many trajectories visit the same
low energy intermediates, in particular, the stem closing the multi-loop forms last
in almost all simulations. Interestingly, the correct hairpins closest to the 5’-end
are often formed first, which might support efficient folding during transcription.

As a measure of foldability we recorded the folding times, i.e., the time after
which the ground state appears in the simulation for the first time. We consider
in particular the fraction p(¢) of molecules that have reached the ground state
at time ¢. The resulting distribution can be seen in Figure 9. For the modi-
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Figure 10. Folding kinetics of two different RNA molecules. L.h.s.: The (artificial) molecule
whose pathway is described in detail in figure 11. The curve shows two distinct peaks
corresponding to two different dominating folding pathways. A less prominent folding
pathway is indicated by the shoulder on the right hand side of the first peak (indicated by an
arrow). R.h.s.: The kinetic signature of the modified tRNA shows only a single peak. The
time scale of folding is set by the closing of the multi-loop, see Figure 8.

fied sequence the ground state was found in all simulations. This is consistent
with recent analysis by Thirumalai and Woodson (1996) of experimental data,
suggesting a directed pathway to the native state for tRNAs. The unmodified
sequence folds much more slowly and only 46% of runs reach the ground state
within the simulation time. The fraction of folded sequences is still rising at
that point and longer simulations will be needed to decide whether the curve
saturates at less than unity.

In the case of phenylalanine tRNA the modified bases improved both thermo-
dynamic stability, conferred by a large energy gap between native and misfolded
states, and foldability. The same link has been claimed for lattice protein models
by Sali et al. (1994b). To test this hypothesis we have designed two artificial
sequences with the tRNA structure as ground state using the RNAinverse pro-
gram from the Vienna RNA Package. The thermodynamic properties of the first
sequence are typical for sequences of this size: the frequency of the ground state
in the ensemble is about 7% and several alternative foldings can be seen in the
base pair probability matrix, see the inset on the l.h.s. of Figure 9. The other
sequence was designed to be particularly stable: its ground state dominates the
ensemble with a frequency of 96% and no alternative foldings are discernible in
the dot plot. We than ran 1000 folding simulations for each sequence; the results
are summarized in Figure 9. Surprisingly, the thermodynamically more stable
sequence folds poorly in this example.
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Figure 11. Trapping and escape from a local minimum. An artificial RNA molecule was
designed with a low-energy mis-folded state formed by two hairpins at the 5> and 3’ ends. The
3’ hairpin of the misfolded state blocks the formation of the ground state, which consists of a
single, much longer, 3’ hairpin. The upper left plot shows the energy profile of the two most
prominent folding pathways. The upper right plot shows the energy barriers between the 20
lowest local minima. The fast pathway begins with the formation of the correct hairpin at the
3’ end and the rapid elongation of the stem. The only an energy barrier occurs at the first
step with a height of about 2.7 kcal. The second pathway begins with the fast formation of
the meta-stable structure (frame 1 in the lower plot). In order to escape from the mis-folded
state the wrong stem at the 3’ end has to be unfolded (steps 2 to 4). Then the correct 3’ stem
can be initiated (step 5). However, this stem cannot be elongated rapidly, since it is still
blocked by the 5’ stem. A series of shift moves (steps 8 to 10) leads to the ground state 11.
Structures along this trajectory are indicated by square brackets in the tree diagram. The
dashed lines in the upper part indicate the energy barriers in the absence of shifts.
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Even an isolated example such as this one shows that it is easy to construct
cases where the kinetics cannot be predicted from thermodynamic properties.
More test cases will be needed in order to decide if and how strongly thermody-
namic stability and foldability correlate on average.

Some information about folding pathways can be inferred directly from the
kinetics of the folding process, in particular from p(t) curves. Thirumalai and
Woodson (1996) noted that meta-stable states cause dents in log-log plots of
p(t) versus t. We found that plotting ¢p'(t)/p(t) as a function of logt yields a
more detailed picture, see Figure 10.

Some molecules have folding pathways with very different time scales. In gen-
eral, these are determined by local minima with large basins of attraction on
the energy landscapes. Such local minima act as traps for the folding process.
In some cases these meta-stable states are long-lived enough for experimental
detection (Loss et al., 1991; Biebricher and Luce, 1992; Rosenbaum et al., 1993).
Here we consider an artificial RNA of 25 nucleotides that was designed in such a
way, that it can form either of two overlapping hairpins. This molecule is small
enough that we can readily see the escape from a meta-stable state within the
simulation time. Figure 11 shows a detailed analysis of the two most prominent
folding pathways. The left peak in Figure 10 corresponds to “direct folding”,
i.e., running down the correct “funnel” of the energy landscape. Once the hair-
pin loop is formed, a smooth “zipper” closes the base pairs of the stack and
the ground-state is reached very rapidly. The right peak corresponds to trapping
in a meta-stable state. An intricate pathway, detailed in Figure 11, allows the
molecule to escape by partially unfolding the meta-stable structure. The shoulder
in Figure 10, finally, corresponds to shallow meta-stable states that are unfolded
completely before the folding process follows the “funnel”.

6. Discussion

Both folding and evolution of biopolymers can be formulated in terms of land-
scapes, that is, mappings from a configuration space (sequence space or shape
space) into the real numbers (energy or fitness). Fitness landscapes inherit their
properties from the underlying sequence-structure map. The latter is well un-
derstood in the case of RNA secondary structures because the folding problem
is easily solved within this model.

The dynamics of evolutionary adaptation is determined by the interplay of
the large fraction of neutral mutations and the high degree of ruggedness. These
properties imply a diffusive motion along neutral network of a dominating struc-
ture punctuated by fast transitions to different structures. It seems that RNA
and proteins behave very similar in this respect.
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RNA secondary structures provide an ideal model system to study both struc-
ture formation and evolution. The secondary structure model is simple enough
to allow efficient algorithms to compute (almost) any thermodynamic quantity
of interest, yet it is still close enough to reality to address problems of practical
interest. Furthermore, it is relatively easy to explore the energy landscape of
a particular sequence. RNA secondary structures are thus an elegant model to
address questions about foldability. In the following we very briefly point out
the main differences between RNA and protein models, emphasizing the ways in
which RNA presents itself as the more tractable system.

Protein folding has remained (almost) intractable for a good biophysical reason
despite the efforts of many groups. Protein structure is stabilized by hydrophobic
interactions and hydrogen bonds that depend on a meticulous packing of amino
acid side chains. Hence the contribution of an amino acid to the overall structure
is determined by the details of its entire spatial neighborhood rather than the
simple specific interaction with a single pairing partner that is characteristic for
nucleic acids. As a consequence, protein secondary structure is neither a partic-
ularly good description of the spatial structure nor the single most important
folding intermediate.

The crucial dependence on side chain packing, which is not an important is-
sue in RNA, has far-reaching consequences on protein folding: Not all amino
acid sequences even reach a stable “native-like” structure. Instead they are
stuck in a flexible, partially folded molten globule state. It is worth noting
that not even the fraction of amino acid sequences that fold into a native-like
ground state is known with any certainty. As a many-point interaction, side-
chain packing is also very hard to incorporate into knowledge based potentials
of mean force (Bauer and Beyer, 1994; Bowie et al., 1991; Godzik et al., 1992;
Goldstein et al., 1992; Grossman et al., 1995; Hendlich et al., 1990; Sippl, 1993a;
Sippl, 1993b). Such potentials describe the effective interactions between amino
acid residues and can be regarded as a natural analog of the standard energy
model for nucleic acids. While such potential functions are very effective for
identifying sequences that fold into a given native protein structure (the inverse
folding problem) or to identify incorrectly folded proteins (or sections of pro-
teins), they cannot be used for folding a particular sequence into its ground
state structure. Inverse folding based on knowledge based potentials can be used
to partially explore the sequence-structure relationships. We found neutral net-
works and strong indications of shape space covering (Babajide et al., 1997;
Babajide et al., 1999), suggesting that the global properties of protein space do
not differ very much from the RNA case.

The overwhelming part of theoretical investigations into protein folding are
aimed at understanding the principles of the folding process rather than fold-
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ing individual sequences. We may distinguish two main approaches: computer
simulations based on simplified lattice models, and statistical mechanics papers.

Lattice models (Lau and Dill, 1990; Chan and Dill, 1991; Crippen, 1991;
Lipman and Wilbur, 1991; Camacho and Thirumalai, 1993; Sali et al., 1994b;
Dill et al., 1995; Chan and Dill, 1996; Li et al., 1996; Bornberg-Bauer, 1997;
Hart and Istrail, 1997a) provide a coarse grained view on protein structure not
unlike the approximation of RNA structure by secondary structures. Unfortu-
nately, the lattice protein folding problem is NP hard (Ngo and Marks, 1992;
Unger and Moult, 1993; Hart and Istrail, 1997b). Thus most computational
studies are limited to fairly short molecules (n < 30 in most work on the
HP model), or strongly constrained sets of structures (such as 27-mers that
fill a 3 x 3 x 3 cube). These models allow to study the hydrophobic collapse.
Furthermore they admit an intrinsic distinction between folding and non-folding
sequences (a sequences folds into a native structure if the lowest-energy structure
is unique); it is not clear how well this approach will generalize to more com-
plex potential functions and larger alphabets which will lead to non-degenerate
ground states for most sequences (Buchler and Goldstein, 1999). In addition,
some results, such as the clustering of S(¢)) and the relatively small extent of
neutral networks observed in some lattice models (Bornberg-Bauer, 1997) are
not very well compatible with simulations based on knowledge based poten-
tials. This discrepancy might be explained by the short chains n < 30 and the
two-letter HP alphabet used in these models. While native-like proteins can
be designed from reduced alphabets, recent experiments (Davidson et al., 1995;
Plaxco et al., 1998) as well as computer simulations (Babajide et al., 1997) sug-
gest that two letters are not sufficient.

The concept of a folding funnel was introduced based on an analysis of the
random energy model (Bryngelson and Wolynes, 1987) and has since inspired
many studies of protein folding, e.g. (Sali et al., 1994a; Shrivastava et al., 1995;
Dill and Chan, 1997; Onuchic et al., 1997). In this description the folding pro-
cess is determined entirely by the density of states while the topology of the
folding landscape is disregarded. The foldability of a sequence is then related to
the energy gap between the ground state and the first excited state or an en-
semble of mis-folded states. In the case of RNA, however, one can easily design
counterexamples of sequences that fold poorly in spite of high thermodynamic
stability, see Figure 9. Similar results for the protein case were presented recently
by Crippen and Ohkubo (1998).

The RNA secondary structure model does not suffer from all the shortcomings
and/or technical difficulties of the various protein folding models. On the other
hand it deals only with a coarse grained description, which disregards both the
overall three-dimensional shape and the detailed arrangement of the chemical
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groups that are oftentimes essential for the molecules functionality. Despite these
shortcomings and the limit accuracy of the standard energy model, it is the only
case that allows a complete treatment of all the various aspects, from the folding
kinetics of a single molecule to the long term evolution of a population of RNA
molecules in vitro, within a single consistent computational framework.
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