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4 The Santa Fe Institute, 1399 Hype Park Rd., Santa Fe NM 87501PACS. 87.15.-v � Biomoleules: struture and physial properties.PACS. 87.15.Aa � Theory and modeling; omputer simulation.PACS. 87.15.C � Folding and sequene analysis.Abstrat. � We present a generi, problem independent algorithm for exploration of the low-energy portion of the energy landsape of disrete systems and apply it to the energy landsapeof lattie proteins. Starting from a set of optimal and near-optimal onformations derived from aonstraint-based searh tehnique, we are able to seletively investigate the lower part of lattieprotein energy landsapes in two and three dimensions. This novel approah allows, in ontrastto exhaustive enumeration, for an e�ient alulation of optimal and near-optimal struturesbelow a given energy threshold and is only limited by the available amount of memory. Astraightforward appliation of the algorithm is alulation of barrier trees (representing theenergy landsape), whih then allows dynamis studies based on landsape theory.Introdution. � The onept of energy landsapes has proven to be of fundamental rel-evane in investigations of omplex disordered systems, from simple spin glass models tobiopolymer folding. In this piture, energy is viewed as an expliit funtion E(S) of under-lying onformational degrees of freedom S. The topologial struture of the onformationspae is determined in terms of the elementary moves that underly the dynamial behavior.Examples are single spin �ips in spin glasses, the formation or breaking of a base pair in RNAfolding models, or rotation around a bond in a protein folding model.The geometri properties and topologial details of the energy landsape, suh as numberof loal optima, the saddle points separating them, as well as the size distributions of thebasins of attration, therefore diretly in�uene the dynamis of the underlying system. Athorough understanding of these aspets of geometrial landsape struture is thus of wide in-terest. Various attempts to eluidate the topologial struture of landsapes, and in partiular© EDP Sienes



2 EUROPHYSICS LETTERSof their low-energy regions, have been developed independently and proposed for di�erent on-texts, among them ±J spin models [1℄, potential energy surfaes (PES) for protein folding [2℄and moleular lusters [3℄, as well as the kinetis of RNA seondary struture formation [4℄.An extensive study eluidating the energy landsape and dynamis of short two-dimensionallattie heteropolymers based on exhaustive enumeration, that haraterizes energy landsapesin similar terms as we do, was given in [5℄. However, we fous on larger and more omplex sys-tems, where full enumeration is out of reah. This requires to develop methods for seletivelyenumerating the (kinetially most important) low energy part of the onformation spae.The deomposition of energy landsapes into basins and saddle points separating them isstraightforward for non-degenerate landsapes. However, the situation beomes more om-pliated if the landsapes are degenerate (e.g. in the lattie protein ase). Consider a �atlandsape. It is not a trivial task to deide whih points are loal minima or saddle points in�at-land, however a rigorous formalism to answer questions like this was given in [6℄.Energy landsapes are onveniently visualized by �barrier trees� (Figure 1) that give areasonable impression on the overall shape and topology of the landsape. Formally, threethings are needed to onstrut an energy landsape [7℄: a) a set X of on�gurations, b) a notion
M of neighborhood, nearness, distane or aessibility on X and ) an energy funtion f : X →
R. The onformation spae X of a (biopolymer) sequene is the total set of on�gurations Sompatible with this sequene. The move set M is an order relation on X , de�ning adjaenybetween the elements of X . It ruially determines the topology of the energy landsape.Here, we onsider lattie proteins. The aim

2
3

4
5

1*

a

c
b

d

EFigure 1 � Shematis representation of an en-ergy landsape and its assoiated barrier tree.Loal minima are labeled with numbers (1-5),saddle points with lowerase letters (a-d). Theglobal minimum is marked with an asterisk.
of �nding a struture x that minimizes theenergy E(S, x) for a ertain sequene S anbe regarded as a ombinatorial optimizationproblem, often termed lattie protein foldingproblem. In ontrast to RNA, where e�ientalgorithms to determine the ground state ex-ist [8℄, lattie protein folding was shown to beNP-omplete, see e.g. [9℄. However, there ex-ists a fast and suessful onstraint-based ap-proah to this problem, whih we will use inthis ontribution [10℄. This method, termedonstraint-based protein struture predition(CPSP), is the only available method that isapable of enumerating the ground state and near-optimal states of several three-dimensionallattie protein models ompletely. An e�ient algorithm to generate the lower part of the den-sity of states, like it was given for RNA [11℄, is not available for proteins. Nevertheless, severalapproximation algorithms have been proposed so far. A resoure intensive geneti algorithmbased on Monte Carlo tehniques in the square lattie yields good results for fairly long hainsup to a length of 60 monomers [12℄. Further, the ativation-relaxation tehnique (in ombi-nation with redued o�-lattie representations and a simple energy funtion) was suessfullyused to investigate the energy landsape of small peptides by starting from distint low-energyonformations [13℄.Desription of the Method. � In this ontribution, we present a generi, problem-inde-pendent approah for the exploration of the lower portion of energy landsapes. Generally, theenergy funtion for a sequene with n residues S = s1s2 . . . sn with si ∈ A = {a1, a2, . . . , ab},the alphabet of b residues, and an overall on�guration x = (x1,x2, . . . ,xn) on a lattie Lan be written as the sum of pair potentials. In the lattie models that we will onsider in



Mihael T. Wolfinger et al : Energy landsapes of Heteropolymers 3this ontribution, this takes the form E(S, x) =
∑

i<j−1
Ψ[si, sj ] for |xi − xj | = 1. Ψ[s, s′] isalled the ontat energy for the monomers s and s′. Within this ontribution, we will usetwo di�erent lattie protein models: First, one with a two-letter alphabet A = {H,P} wherethere is only one stabilizing interation if, and only if hydrophobi residues (H) are neighborson the lattie but not along the hain. Polar residues (P) do not expliitly ontribute to theoverall energy. Seond, we will give an example for the four-letter HPNX model (see [14℄)with alphabet A = {H,P,N,X} in three dimensions. The letters denote hydrophobi (H),positive (P), negative (N) and neutral (X) residues. This model extends the HP model byinorporating eletrostati interations among polar residues.(1)In addition, we assume a �xed move set giving rise to a symmetri neighborhood relation

N : X × X . A walk between two onformations x and y is a list of onformations x =
x1 . . . xm+1 = y suh that ∀1 ≤ i ≤ m : N(xi, xi+1).Given a threshold η, the lower part of the energy landsape (written as X≤η) onsists ofall onformations x suh that E(S, x) ≤ η. For generating this lower part, a naive approahwould exhaustively enumerate all onformations. However, this is only appliable to veryshort sequenes beause of the huge size the onformation spae.So we developed a method for investigating the lower part of the energy landsape se-letively. This approah starts at low energy onformations and enumerates all �aessible�onformations. To exemplify the idea, for generating the lower part ompletely one startswith all loal minima x with E(S, x) ≤ η (where x is a loal minimum if for all y with N(x, y)we have E(S, y) ≥ E(S, x)). Iteratively, one visits all onformations that are neighbors ofalready seen onformations and stay below the energy threshold η.Aording to [6℄, two onformations x and y are mutually aessible at the level η (writtenas x"

η
# y) if there is a walk from x to y suh that all onformations z in the walk satisfy

E(S, z) ≤ η. The saddle height f̂(x, y) of x and y is de�ned by
f̂(x, y) = min{η | x"

η
# y}.This gives rise to an ultrametri distane d(x, y) between onformations x and y (see [15,16℄).Given the set of all loal minima X≤ηmin below threshold η, the lower energy part X≤η of theenergy landsape an alternatively be written as

X≤η = {y | ∃x ∈ X≤ηmin : f̂(x, y) ≤ η}.Of ourse, one does not have the omplete set of loal minima X≤ηmin as starting point ofthe onstrution in many pratial appliations. In this ase, one an hope to enumerate alarge part of the low energy onformations by starting from a restrited set of low energyonformations Xinit. In our appliation to the three-dimensional HPNX model, we use themethod desribed in [10℄ for omputing a set of exellent start onformations. This method,CPSP, is based on onstraint optimization. Given a HPNX-sequene with nt monomers oftype t = H,P,N,X, it starts by enumerating all maximally ompat hydrophobi ores ofsize nH. Then, for every hydrophobi ore, all possible threadings of the sequene onto theseleted hydrophobi ore are generated. Sine the maximally ompat hydrophobi ores giveonly optimality with respet to the hydrophobi part of the energy funtion, we enumeratesub-optimal hydrophobi ores as well. Here, we an bound the degree of suboptimality by themaximal number of N−P ontats for the given sequene, whih is min(nP, nN). Using this
(1)The ontat energies Ψ[s, s′] for two neighboring H's in the HP model is −1. For the HPNX model, theontat energies for H�H, N�P, P�P and N�N are −4,−1,+1,and +1, respetively. All other ontats haveenergy 0.



4 EUROPHYSICS LETTERSapproah, the method is able to enumerate the ground state and near-optimal states of three-dimensional lattie proteins in HP-type models ompletely. The method was suessfullyapplied to omplete enumeration of optimal onformations in the ubi lattie up to sequenelength 48 and predits optimal onformations up to length 300 in the fae-entered ubilattie. By using suh states as start onformations we guarantee to over the very lowestpart of the energy spetrum. Sine furthermore the method provably predits all groundstates, it an be used to identify sequenes with unique ground state. This allows us to �ndgood andidate sequenes for further studies; we provide an example for one suh sequenelater.Operationally, the lower part of the energy landsape an be generated using a �xpoint ofa monotone operator that suessively adds neighbors whose energy is below the threshold η.Given a set X of onformations whose energies are lower than η, then F≤η(X ) is de�ned asthe following set of onformations:
F≤η(X ) = {y | E(S, y) ≤ η ∧ ∃x ∈ X : N(x, y)} ∪ XIt is easy to see that F≤η is a monotone operator, and that the �xpoint

∞⋃

n=1

(F≤η)n(X≤ηmin)of applying F≤η to X≤ηmin is the lower part X≤η of the energy landsape.This operator an now be implemented e�iently. We denote the initial set X by X 0, andde�ne X i for i > 0 to be
(F≤η)i(X 0) = F≤η(X i−1).The urrent set X i of onformations is represented by a hash table. Note that by de�nition ofthe operator, the set X i ontains already all neighbors of X i−1. Hene, we need to onsiderin the step X i → X i+1 only the onformations in the set X i\X i−1, whih is represented asa list of pointers to hash entries. For eah single onformation x in the hash pointer listfor X i\X i−1, all neighbor onformations of x are generated. Given that its energy is belowthe threshold η, the hash table is used to determine for eah neighbor of x if it has alreadybeen seen before. If this is true, the struture is skipped and the next struture is proessed.Otherwise, it is inserted into the hash table and a pointer to the entry is put into a new hashpointer list. After all onformations from X i\X i−1 are proessed, the new hash pointer listreplaes the previous one, and the next round is started. The end of the algorithm is reahedas soon as a) a prede�ned amount of strutures has been found(2) or b) all strutures that are�reahable� from a distint start-struture (onstrained to an energy threshold) are found.We have applied the algorithm to lattie proteins. However, the algorithm is readily appli-able to any kind of disrete system, suh as spin glass models or RNA seondary strutures.The algorithm presented here does not - in ontrast to previously mentioned algorithms - aimat �nding distint low-energy minima. It is rather designed to generate the whole low-energyportion of energy landsapes inluding the ground state(s) as well as suboptimal struturesin order to enable dynamis studies based on landsape theory. An e�ient approah forbiopolymer folding dynamis alulations inorporating the energy landsape framework wasgiven reently [17℄. The main advantage of this approah, ompared to e.g. exhaustive enu-meration, is time e�ieny as well as the possibility to explore ertain regions of the energylandsape. It would thus be possible to seletively investigate a high-energy portion of thelandsape. The algorithm is only limited by the available amount of memory.

(2)To given an impression of limitations by the size of RAM, urrently approximately 85 million struturesan be generated on mahines with 4GB RAM.



Mihael T. Wolfinger et al : Energy landsapes of Heteropolymers 5Move Sets. � For the purpose of this ontribution we will rely on a simple, yet e�ientmove whose ergodiity was proven for the simple (hyper)ubi lattie [18℄, alled pivot move.This move set is N -onserving, i.e. the total number of beads along the hain is preserved.Pivot moves are non-loal in a sense that the positions of a large fration of beads alongthe hain are hanged by one elementary step. Alternatively, a loal move set onsisting ofrankshaft-, orner-, and end moves ould has been implemented. Loal move sets, alteringonly a few onseutive beads of the hain and leaving all other sites unhanged allow thehain to exhibit more �ne-grained strutural transitions. However, it was shown that everyloal, N -onserving move set is non-ergodi on simple (hyper)ubi latties for su�ientlylarge N [19℄.Results. � To illustrate the apabilities (and limitations) of this new approah we givetwo examples of lattie heteropolymer energy landsapes here. The �rst one is a 31-merwith the sequene HHHHHHHPPHPPHHPPHHPHPHPPHHPPHPH on the two-dimensional square lat-tie. Starting from a onformation with an energy of -16 (middle struture at the bottom ofFigure 2) and an upper energy threshold of -10, we found a total of 22985151 onformationsthat are related to the start struture by means of pivot moves.

Figure 2 � Barrier tree of an 31-mer HP-kind lattie protein showing the 150 lowest lying minimaof the energy landsape. Strutures that an be inter-onverted by symmetry operations (suh asre�etions) were not onsidered for alulation of the tree. A ground state (17 ontats) as well astwo near-optimal onformations with 16 ontats are illustrated below. Note that there is one loalminimum at the very left of the plot that is not attahed to the rest of the tree, but there is a diretpath onneting this minimum to the ground state with saddle height of E = −6.The barrier tree in Figure 2 exhibits ommon features of lattie protein energy landsapessuh as a high degree of degeneray (i.e., there are many onformation having exatly the sameenergy). There are 35 minima with E = −16 and 114 minima with E = −15. Degenerayan be seen as an artefat of the underlying model here, i.e. bond lengths/angles are �xedand the alphabet onsists of only two letters. It is striking that many of the near optimalonformations are onneted to the global optimum via a high energy barrier. This is due tothe low onnetivity (i.e., number of neighbors) of the two-dimensional lattie. At this point,it seems fair to ask whether it is orret to model a omplex protein with suh a oarse-grainedmodel.
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BCDEb) Conformation Absolute move Energy BarrierA FFUUBBDLFRRRBLDRFLFUUBBRFF -80 -B FFUUBDBBUFLLDRDLFRFUUBDLUF -79 31C FUBBDDFLFRRRBLURFLUBBDDRUU -79 35D FUBBDDFDFULLBRULFRUBBDDLUU -79 35E FFUUBDBLURRRDLDRFLFUUBDRUF -79 35Figure 3 � Energy landsape for the sequene HHXHPHHHNPHHPHHHHNHPHNHHHNP; a) barrier tree gener-ated by our method, using the ground state and the �rst exited states onformations as start set; b)onformations of the start set. Absolute moves are: F (forward), L (left), R (right), U (up), D (down).In the seond example, we used a HPNX sequene in the three-dimensional ubi lattie.Applying CPSP, we were able to prove that the 27-mer sequene HHXHPHHHNPHHPHHHHNHPHN-HHHNP has a unique ground state. In addition, we used CPSP to �nd all onformations on the�rst exited energy level. The resulting barrier tree for the lower part of the energy landsape isgiven in Figure 3. Although the tree still shows lattie protein artifats like high degeneray,the near optimal onformations are highly onneted via low energy barriers. This morepronouned onnetivity makes the energy landsape similar to those found in biologiallyrelevant and well studied systems suh as RNA [17℄. This is in ontrast to the two-dimensionalase, and is due to the use of the three-dimensional grid as well as the extended energy model(HPNX).Conlusion and Disussion. � We have designed a method for generating the lowerportion of the energy landsape of disrete models of biopolymers, given a starting set of lowenergy onformations. Using this method, we are able to alulate the barrier tree representingtopologial details of the energy landsape suh as loal minima, basin sizes and barrier heights.This information an readily be used to study a oarse grained dynamis [17℄.We have applied the method to lattie protein models in two and three dimensions. Weombined it with the onstraint-based protein struture predition method (CPSP [10℄), whihallowed us to ompletely explore the low energy part in three dimensions for the �rst time.The experiments indiate that using three dimensions and a four letter alphabet yield results



Mihael T. Wolfinger et al : Energy landsapes of Heteropolymers 7that are in good agreement with well-studied biologial systems, suh as RNA.In addition, this is in good aordane with experimental as well as theoretial studiesthat have shown that the full sequene omplexity of naturally ourring proteins is notneessarily required to design a funtional, rapidly folding protein (see e.g. [20℄ and referenestherein). Proteins with a drastially redued set of amino aids (ompared to the 20 naturallyourring ones) have been suessfully designed experimentally in the last years. Wang andWang proposed an algorithm to systematially selet redued alphabets [21℄. One of theoptimally redued sets they predited was the �ve-letter IKEAG alphabet. A later studyproposed the lower bound of amino aid types required for a protein to fold into a stablestruture to be around ten [22℄. The size of the alphabet in�uenes both foldability [23℄and designability (that is, the number of sequenes that have the presribed struture as theirunique lowest-energy state) of strutures [24℄. Detailed omputational investigations into bothfoldability and designability in lattie protein models are dependent upon an e�ient methodfor generating and analyzing the low-energy states. The lattie �ooder approah presentedhere sets the stage for suh a researh program.
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