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 � Folding and sequen
e analysis.Abstra
t. � We present a generi
, problem independent algorithm for exploration of the low-energy portion of the energy lands
ape of dis
rete systems and apply it to the energy lands
apeof latti
e proteins. Starting from a set of optimal and near-optimal 
onformations derived from a
onstraint-based sear
h te
hnique, we are able to sele
tively investigate the lower part of latti
eprotein energy lands
apes in two and three dimensions. This novel approa
h allows, in 
ontrastto exhaustive enumeration, for an e�
ient 
al
ulation of optimal and near-optimal stru
turesbelow a given energy threshold and is only limited by the available amount of memory. Astraightforward appli
ation of the algorithm is 
al
ulation of barrier trees (representing theenergy lands
ape), whi
h then allows dynami
s studies based on lands
ape theory.Introdu
tion. � The 
on
ept of energy lands
apes has proven to be of fundamental rel-evan
e in investigations of 
omplex disordered systems, from simple spin glass models tobiopolymer folding. In this pi
ture, energy is viewed as an expli
it fun
tion E(S) of under-lying 
onformational degrees of freedom S. The topologi
al stru
ture of the 
onformationspa
e is determined in terms of the elementary moves that underly the dynami
al behavior.Examples are single spin �ips in spin glasses, the formation or breaking of a base pair in RNAfolding models, or rotation around a bond in a protein folding model.The geometri
 properties and topologi
al details of the energy lands
ape, su
h as numberof lo
al optima, the saddle points separating them, as well as the size distributions of thebasins of attra
tion, therefore dire
tly in�uen
e the dynami
s of the underlying system. Athorough understanding of these aspe
ts of geometri
al lands
ape stru
ture is thus of wide in-terest. Various attempts to elu
idate the topologi
al stru
ture of lands
apes, and in parti
ular
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2 EUROPHYSICS LETTERSof their low-energy regions, have been developed independently and proposed for di�erent 
on-texts, among them ±J spin models [1℄, potential energy surfa
es (PES) for protein folding [2℄and mole
ular 
lusters [3℄, as well as the kineti
s of RNA se
ondary stru
ture formation [4℄.An extensive study elu
idating the energy lands
ape and dynami
s of short two-dimensionallatti
e heteropolymers based on exhaustive enumeration, that 
hara
terizes energy lands
apesin similar terms as we do, was given in [5℄. However, we fo
us on larger and more 
omplex sys-tems, where full enumeration is out of rea
h. This requires to develop methods for sele
tivelyenumerating the (kineti
ally most important) low energy part of the 
onformation spa
e.The de
omposition of energy lands
apes into basins and saddle points separating them isstraightforward for non-degenerate lands
apes. However, the situation be
omes more 
om-pli
ated if the lands
apes are degenerate (e.g. in the latti
e protein 
ase). Consider a �atlands
ape. It is not a trivial task to de
ide whi
h points are lo
al minima or saddle points in�at-land, however a rigorous formalism to answer questions like this was given in [6℄.Energy lands
apes are 
onveniently visualized by �barrier trees� (Figure 1) that give areasonable impression on the overall shape and topology of the lands
ape. Formally, threethings are needed to 
onstru
t an energy lands
ape [7℄: a) a set X of 
on�gurations, b) a notion
M of neighborhood, nearness, distan
e or a

essibility on X and 
) an energy fun
tion f : X →
R. The 
onformation spa
e X of a (biopolymer) sequen
e is the total set of 
on�gurations S
ompatible with this sequen
e. The move set M is an order relation on X , de�ning adja
en
ybetween the elements of X . It 
ru
ially determines the topology of the energy lands
ape.Here, we 
onsider latti
e proteins. The aim
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EFigure 1 � S
hemati
s representation of an en-ergy lands
ape and its asso
iated barrier tree.Lo
al minima are labeled with numbers (1-5),saddle points with lower
ase letters (a-d). Theglobal minimum is marked with an asterisk.
of �nding a stru
ture x that minimizes theenergy E(S, x) for a 
ertain sequen
e S 
anbe regarded as a 
ombinatorial optimizationproblem, often termed latti
e protein foldingproblem. In 
ontrast to RNA, where e�
ientalgorithms to determine the ground state ex-ist [8℄, latti
e protein folding was shown to beNP-
omplete, see e.g. [9℄. However, there ex-ists a fast and su

essful 
onstraint-based ap-proa
h to this problem, whi
h we will use inthis 
ontribution [10℄. This method, termed
onstraint-based protein stru
ture predi
tion(CPSP), is the only available method that is
apable of enumerating the ground state and near-optimal states of several three-dimensionallatti
e protein models 
ompletely. An e�
ient algorithm to generate the lower part of the den-sity of states, like it was given for RNA [11℄, is not available for proteins. Nevertheless, severalapproximation algorithms have been proposed so far. A resour
e intensive geneti
 algorithmbased on Monte Carlo te
hniques in the square latti
e yields good results for fairly long 
hainsup to a length of 60 monomers [12℄. Further, the a
tivation-relaxation te
hnique (in 
ombi-nation with redu
ed o�-latti
e representations and a simple energy fun
tion) was su

essfullyused to investigate the energy lands
ape of small peptides by starting from distin
t low-energy
onformations [13℄.Des
ription of the Method. � In this 
ontribution, we present a generi
, problem-inde-pendent approa
h for the exploration of the lower portion of energy lands
apes. Generally, theenergy fun
tion for a sequen
e with n residues S = s1s2 . . . sn with si ∈ A = {a1, a2, . . . , ab},the alphabet of b residues, and an overall 
on�guration x = (x1,x2, . . . ,xn) on a latti
e L
an be written as the sum of pair potentials. In the latti
e models that we will 
onsider in



Mi
hael T. Wolfinger et al : Energy lands
apes of Heteropolymers 3this 
ontribution, this takes the form E(S, x) =
∑

i<j−1
Ψ[si, sj ] for |xi − xj | = 1. Ψ[s, s′] is
alled the 
onta
t energy for the monomers s and s′. Within this 
ontribution, we will usetwo di�erent latti
e protein models: First, one with a two-letter alphabet A = {H,P} wherethere is only one stabilizing intera
tion if, and only if hydrophobi
 residues (H) are neighborson the latti
e but not along the 
hain. Polar residues (P) do not expli
itly 
ontribute to theoverall energy. Se
ond, we will give an example for the four-letter HPNX model (see [14℄)with alphabet A = {H,P,N,X} in three dimensions. The letters denote hydrophobi
 (H),positive (P), negative (N) and neutral (X) residues. This model extends the HP model byin
orporating ele
trostati
 intera
tions among polar residues.(1)In addition, we assume a �xed move set giving rise to a symmetri
 neighborhood relation

N : X × X . A walk between two 
onformations x and y is a list of 
onformations x =
x1 . . . xm+1 = y su
h that ∀1 ≤ i ≤ m : N(xi, xi+1).Given a threshold η, the lower part of the energy lands
ape (written as X≤η) 
onsists ofall 
onformations x su
h that E(S, x) ≤ η. For generating this lower part, a naive approa
hwould exhaustively enumerate all 
onformations. However, this is only appli
able to veryshort sequen
es be
ause of the huge size the 
onformation spa
e.So we developed a method for investigating the lower part of the energy lands
ape se-le
tively. This approa
h starts at low energy 
onformations and enumerates all �a

essible�
onformations. To exemplify the idea, for generating the lower part 
ompletely one startswith all lo
al minima x with E(S, x) ≤ η (where x is a lo
al minimum if for all y with N(x, y)we have E(S, y) ≥ E(S, x)). Iteratively, one visits all 
onformations that are neighbors ofalready seen 
onformations and stay below the energy threshold η.A

ording to [6℄, two 
onformations x and y are mutually a

essible at the level η (writtenas x"

η
# y) if there is a walk from x to y su
h that all 
onformations z in the walk satisfy

E(S, z) ≤ η. The saddle height f̂(x, y) of x and y is de�ned by
f̂(x, y) = min{η | x"

η
# y}.This gives rise to an ultrametri
 distan
e d(x, y) between 
onformations x and y (see [15,16℄).Given the set of all lo
al minima X≤ηmin below threshold η, the lower energy part X≤η of theenergy lands
ape 
an alternatively be written as

X≤η = {y | ∃x ∈ X≤ηmin : f̂(x, y) ≤ η}.Of 
ourse, one does not have the 
omplete set of lo
al minima X≤ηmin as starting point ofthe 
onstru
tion in many pra
ti
al appli
ations. In this 
ase, one 
an hope to enumerate alarge part of the low energy 
onformations by starting from a restri
ted set of low energy
onformations Xinit. In our appli
ation to the three-dimensional HPNX model, we use themethod des
ribed in [10℄ for 
omputing a set of ex
ellent start 
onformations. This method,CPSP, is based on 
onstraint optimization. Given a HPNX-sequen
e with nt monomers oftype t = H,P,N,X, it starts by enumerating all maximally 
ompa
t hydrophobi
 
ores ofsize nH. Then, for every hydrophobi
 
ore, all possible threadings of the sequen
e onto thesele
ted hydrophobi
 
ore are generated. Sin
e the maximally 
ompa
t hydrophobi
 
ores giveonly optimality with respe
t to the hydrophobi
 part of the energy fun
tion, we enumeratesub-optimal hydrophobi
 
ores as well. Here, we 
an bound the degree of suboptimality by themaximal number of N−P 
onta
ts for the given sequen
e, whi
h is min(nP, nN). Using this
(1)The 
onta
t energies Ψ[s, s′] for two neighboring H's in the HP model is −1. For the HPNX model, the
onta
t energies for H�H, N�P, P�P and N�N are −4,−1,+1,and +1, respe
tively. All other 
onta
ts haveenergy 0.
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h, the method is able to enumerate the ground state and near-optimal states of three-dimensional latti
e proteins in HP-type models 
ompletely. The method was su

essfullyapplied to 
omplete enumeration of optimal 
onformations in the 
ubi
 latti
e up to sequen
elength 48 and predi
ts optimal 
onformations up to length 300 in the fa
e-
entered 
ubi
latti
e. By using su
h states as start 
onformations we guarantee to 
over the very lowestpart of the energy spe
trum. Sin
e furthermore the method provably predi
ts all groundstates, it 
an be used to identify sequen
es with unique ground state. This allows us to �ndgood 
andidate sequen
es for further studies; we provide an example for one su
h sequen
elater.Operationally, the lower part of the energy lands
ape 
an be generated using a �xpoint ofa monotone operator that su

essively adds neighbors whose energy is below the threshold η.Given a set X of 
onformations whose energies are lower than η, then F≤η(X ) is de�ned asthe following set of 
onformations:
F≤η(X ) = {y | E(S, y) ≤ η ∧ ∃x ∈ X : N(x, y)} ∪ XIt is easy to see that F≤η is a monotone operator, and that the �xpoint

∞⋃

n=1

(F≤η)n(X≤ηmin)of applying F≤η to X≤ηmin is the lower part X≤η of the energy lands
ape.This operator 
an now be implemented e�
iently. We denote the initial set X by X 0, andde�ne X i for i > 0 to be
(F≤η)i(X 0) = F≤η(X i−1).The 
urrent set X i of 
onformations is represented by a hash table. Note that by de�nition ofthe operator, the set X i 
ontains already all neighbors of X i−1. Hen
e, we need to 
onsiderin the step X i → X i+1 only the 
onformations in the set X i\X i−1, whi
h is represented asa list of pointers to hash entries. For ea
h single 
onformation x in the hash pointer listfor X i\X i−1, all neighbor 
onformations of x are generated. Given that its energy is belowthe threshold η, the hash table is used to determine for ea
h neighbor of x if it has alreadybeen seen before. If this is true, the stru
ture is skipped and the next stru
ture is pro
essed.Otherwise, it is inserted into the hash table and a pointer to the entry is put into a new hashpointer list. After all 
onformations from X i\X i−1 are pro
essed, the new hash pointer listrepla
es the previous one, and the next round is started. The end of the algorithm is rea
hedas soon as a) a prede�ned amount of stru
tures has been found(2) or b) all stru
tures that are�rea
hable� from a distin
t start-stru
ture (
onstrained to an energy threshold) are found.We have applied the algorithm to latti
e proteins. However, the algorithm is readily appli-
able to any kind of dis
rete system, su
h as spin glass models or RNA se
ondary stru
tures.The algorithm presented here does not - in 
ontrast to previously mentioned algorithms - aimat �nding distin
t low-energy minima. It is rather designed to generate the whole low-energyportion of energy lands
apes in
luding the ground state(s) as well as suboptimal stru
turesin order to enable dynami
s studies based on lands
ape theory. An e�
ient approa
h forbiopolymer folding dynami
s 
al
ulations in
orporating the energy lands
ape framework wasgiven re
ently [17℄. The main advantage of this approa
h, 
ompared to e.g. exhaustive enu-meration, is time e�
ien
y as well as the possibility to explore 
ertain regions of the energylands
ape. It would thus be possible to sele
tively investigate a high-energy portion of thelands
ape. The algorithm is only limited by the available amount of memory.

(2)To given an impression of limitations by the size of RAM, 
urrently approximately 85 million stru
tures
an be generated on ma
hines with 4GB RAM.
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apes of Heteropolymers 5Move Sets. � For the purpose of this 
ontribution we will rely on a simple, yet e�
ientmove whose ergodi
ity was proven for the simple (hyper)
ubi
 latti
e [18℄, 
alled pivot move.This move set is N -
onserving, i.e. the total number of beads along the 
hain is preserved.Pivot moves are non-lo
al in a sense that the positions of a large fra
tion of beads alongthe 
hain are 
hanged by one elementary step. Alternatively, a lo
al move set 
onsisting of
rankshaft-, 
orner-, and end moves 
ould has been implemented. Lo
al move sets, alteringonly a few 
onse
utive beads of the 
hain and leaving all other sites un
hanged allow the
hain to exhibit more �ne-grained stru
tural transitions. However, it was shown that everylo
al, N -
onserving move set is non-ergodi
 on simple (hyper)
ubi
 latti
es for su�
ientlylarge N [19℄.Results. � To illustrate the 
apabilities (and limitations) of this new approa
h we givetwo examples of latti
e heteropolymer energy lands
apes here. The �rst one is a 31-merwith the sequen
e HHHHHHHPPHPPHHPPHHPHPHPPHHPPHPH on the two-dimensional square lat-ti
e. Starting from a 
onformation with an energy of -16 (middle stru
ture at the bottom ofFigure 2) and an upper energy threshold of -10, we found a total of 22985151 
onformationsthat are related to the start stru
ture by means of pivot moves.

Figure 2 � Barrier tree of an 31-mer HP-kind latti
e protein showing the 150 lowest lying minimaof the energy lands
ape. Stru
tures that 
an be inter-
onverted by symmetry operations (su
h asre�e
tions) were not 
onsidered for 
al
ulation of the tree. A ground state (17 
onta
ts) as well astwo near-optimal 
onformations with 16 
onta
ts are illustrated below. Note that there is one lo
alminimum at the very left of the plot that is not atta
hed to the rest of the tree, but there is a dire
tpath 
onne
ting this minimum to the ground state with saddle height of E = −6.The barrier tree in Figure 2 exhibits 
ommon features of latti
e protein energy lands
apessu
h as a high degree of degenera
y (i.e., there are many 
onformation having exa
tly the sameenergy). There are 35 minima with E = −16 and 114 minima with E = −15. Degenera
y
an be seen as an artefa
t of the underlying model here, i.e. bond lengths/angles are �xedand the alphabet 
onsists of only two letters. It is striking that many of the near optimal
onformations are 
onne
ted to the global optimum via a high energy barrier. This is due tothe low 
onne
tivity (i.e., number of neighbors) of the two-dimensional latti
e. At this point,it seems fair to ask whether it is 
orre
t to model a 
omplex protein with su
h a 
oarse-grainedmodel.
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ape for the sequen
e HHXHPHHHNPHHPHHHHNHPHNHHHNP; a) barrier tree gener-ated by our method, using the ground state and the �rst ex
ited states 
onformations as start set; b)
onformations of the start set. Absolute moves are: F (forward), L (left), R (right), U (up), D (down).In the se
ond example, we used a HPNX sequen
e in the three-dimensional 
ubi
 latti
e.Applying CPSP, we were able to prove that the 27-mer sequen
e HHXHPHHHNPHHPHHHHNHPHN-HHHNP has a unique ground state. In addition, we used CPSP to �nd all 
onformations on the�rst exited energy level. The resulting barrier tree for the lower part of the energy lands
ape isgiven in Figure 3. Although the tree still shows latti
e protein artifa
ts like high degenera
y,the near optimal 
onformations are highly 
onne
ted via low energy barriers. This morepronoun
ed 
onne
tivity makes the energy lands
ape similar to those found in biologi
allyrelevant and well studied systems su
h as RNA [17℄. This is in 
ontrast to the two-dimensional
ase, and is due to the use of the three-dimensional grid as well as the extended energy model(HPNX).Con
lusion and Dis
ussion. � We have designed a method for generating the lowerportion of the energy lands
ape of dis
rete models of biopolymers, given a starting set of lowenergy 
onformations. Using this method, we are able to 
al
ulate the barrier tree representingtopologi
al details of the energy lands
ape su
h as lo
al minima, basin sizes and barrier heights.This information 
an readily be used to study a 
oarse grained dynami
s [17℄.We have applied the method to latti
e protein models in two and three dimensions. We
ombined it with the 
onstraint-based protein stru
ture predi
tion method (CPSP [10℄), whi
hallowed us to 
ompletely explore the low energy part in three dimensions for the �rst time.The experiments indi
ate that using three dimensions and a four letter alphabet yield results
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apes of Heteropolymers 7that are in good agreement with well-studied biologi
al systems, su
h as RNA.In addition, this is in good a

ordan
e with experimental as well as theoreti
al studiesthat have shown that the full sequen
e 
omplexity of naturally o

urring proteins is notne
essarily required to design a fun
tional, rapidly folding protein (see e.g. [20℄ and referen
estherein). Proteins with a drasti
ally redu
ed set of amino a
ids (
ompared to the 20 naturallyo

urring ones) have been su

essfully designed experimentally in the last years. Wang andWang proposed an algorithm to systemati
ally sele
t redu
ed alphabets [21℄. One of theoptimally redu
ed sets they predi
ted was the �ve-letter IKEAG alphabet. A later studyproposed the lower bound of amino a
id types required for a protein to fold into a stablestru
ture to be around ten [22℄. The size of the alphabet in�uen
es both foldability [23℄and designability (that is, the number of sequen
es that have the pres
ribed stru
ture as theirunique lowest-energy state) of stru
tures [24℄. Detailed 
omputational investigations into bothfoldability and designability in latti
e protein models are dependent upon an e�
ient methodfor generating and analyzing the low-energy states. The latti
e �ooder approa
h presentedhere sets the stage for su
h a resear
h program.
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