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A distinguishing feature of chemistry is that the changes of molecules upon
interaction are not limited to quantitative physical properties such as free
energy, density, or concentrations. Molecular interactions not only produce
more of what is already there but novel molecules can be generated. This
is the principal difficulty for any theoretical treatment of complex chemical
systems. Dynamical systems models start from a fixed set a molecular species
and trace the time-dependence of their concentrations, in the same manner
as population dynamics describes frequencies of genes or organisms. In this
picture, molecules, genes, and biological species are reduced to mere indices
of the concentration variables, while their properties are implicitly described
by rate constants that must be determined outside these theories. Currently
approximately 27 million compounds are described in the chemical databases1,
but the number of conceivable molecules is in principle infinite.

The most interesting question in chemistry is, however, which molecules arise
in a given situation. To address this point, Walter Fontana and Leo Buss2,3

introduced the notion of a constructive dynamical system in which the inter-
actions, i.e., the chemical reactions, are viewed as algebraic operations on the
set of molecular types. Walter Fontana’s AlChemy3, for example represents
molecules as λ-calculus expressions and reactions are defined by the opera-
tions of “application” of one λ-term to its reaction partner. The result is a
new λ-term. Since λ-terms are a rather harsh abstraction of ’real’ molecules
Benkö et. al.4 resort to graphs to represent molecules and graph rewriting
to model reactions. A wide variety of different computational paradigms has
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been used in artificial chemistry models from strings and matrices to Turing
machines, see5 for a review. The approaches which target “real” chemistry are
heavily geared towards computer-assisted organic synthesis (CAOS) 6. These
programs however rely on knowledge bases which limit their chemical hori-
zon to the information stored in chemical databases which obviously possess
a heavy sampling bias.

The ToyChem model represents molecules as vertex and edge labeled graphs,
a natural abstraction in the spirit of most basic organic chemistry textbooks.
Such a chemical graph now uniquely determines the orbital graph, an undi-
rected graph with nodes representing outer atom orbitals, labeled by the
atomic element and the hybridization type of the orbital and edges repre-
senting overlaps of adjacent orbitals. A simplified Extended Hückel Theory
approach based on the orbital graph is used to give the ToyChem Model a
chemically meaningful energy function that allows the computation of physico-
chemical properties of molecules and reaction energies. By avoiding the com-
putationally intensive step of embedding the molecules in three-dimensional
space and sticking to the graph representation instead all steric information i.e.
chirality and Z/E-isomers are deliberately ignored in the ToyChem Model. Ba-
sic organic reaction mechanisms translate smoothly to graph rewriting rules,
which take on the role of named reactions. Explicit collision experiments can
be simulated in this universe, so that chemical knowledge in the form of “new”
rewriting rules can be extracted7. The ToyChem universe provides a valuable
to study the structure of large chemical networks without the burden and the
biased of actually modeling all known described substances and chemical re-
actions explicitly. It is therefore a computationally tractable proving ground
for mathematical and algorithmic approaches.

Large chemical reaction networks have been studied extensively in quite dif-
ferent domains, from metabolic networks8 to the chemistry of planetary ath-
mospheres9, combinatorial chemistry, see e.g.10, and thermal cracking11. Fur-
thermore, artificial chemistry models at various levels of realism can be used
to generate very large reaction networks, with the particular aim to determine
generic properties12.

From a formal point of view, however, these examples can be treated in a
unified framework: A chemical reaction network simply consists of a set of
chemical species (metabolites in the biochemical setting) X and a system R of
reactions ρ1, . . . , ρn that inter-converts them. Several “mathematical dialects”
have been used to further analyze (X,R).

Chemical reaction networks are thus directed hypergraphs 13, a generalization
of conventional graphs in which an arc (edge) can have more than one be-
ginning and more than one end. However, there exists a one-to-one mapping
between a hypergraph and a conventional graph. This so called König repre-
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Fig. 1. Reaction network consisting of the reactions ρ1 : 2A + B → C + A and
ρ2 : C → A + B. (left) König representation of the reaction network; (middle)
Subsets U of the set of chemical species {A,B,C} of the reaction network and
the generalized closure functions (cl(U)) for the cases of buffered and unbuffered
species concentrations; (right) The lattice of organizations of the reaction network.
(bottom) The stoichiometric matrix S as linear transformation between the chem-

ical flows ~J and the changes of species concentrations ~[X]

sentation of the hypergraph is essentially a bipartite graph where the vertex
set is partitioned into two classes, the reactions and the chemical species. If a
chemical species participates (either as educt or as product) in a reaction, an
edge is introduced between the respective vertices, Fig. 1.

In a recent study, Christian Forst demonstrated that complete metabolic net-
works of procaryotes can be compared directly, by applying familiar operations
from set algebra to their hypergraph representations. This method opens up
the route for both the pairwise comparison of metabolic networks and the iden-
tification of distinct metabolic features in two set of organisms. By defining a
distance based on the symmetric difference between hypergraphs, the phylo-
genetic tree of the organisms can be reconstructed directly from the reaction
networks14.

The topology of a chemical reaction network is also largely embodied in
the stoichiometric matrix S, a special form of an incidence matrix, acting
as linear transformation between the space of reaction rates and the time
derivatives of concentration space. Compared to the hypergraph representa-
tion, S neglects catalysts, which is problematic in higher level descriptions,
but harmless as long as one sticks to elementary reactions. Various methods
have been devised to investigate invariant properties of the chemical reac-
tion network based solely on the analysis of the structure of this matrix 15–18.
From the left null space, {~z|~z+S = ~0}, of S conservation relations between
chemical species can be extracted that do not change over time and form
so-called “metabolic pools”, while steady-state flux relationships19 can be de-
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rived from the (right) null space { ~J |S ~J = ~0}. The (extremal rays of the) cone

{ ~J |S ~J = ~0∧J ≥ 0} defines the steady state pathways in the reaction network.
Efficient algorithms20,21 have been proposed for the elementary flux analysis
of large-scale reaction networks that circumvent the problem of combinatorial
explosion. Although metabolic flux analysis disregards the kinetics of the re-
actions nevertheless biologically meaningful states of the reaction network can
be predicted which coincide nicely with experiments22,23. The stoichiometric
matrix can be used to derive an ordinary differential equations model of the
reaction network describing the dynamics of the concentration vector of the
system ċ = SJ(c) by specifying how the flux Jρ through reaction ρ depends
on the concentrations (see Figure 1).

Peter Dittrich recently presented24 a rigorous mathematical theory of chemical
organization, based Fontana’s work3. The theory captures the purely algebraic
aspects of chemistry based on the notions of self-maintaining sets and closures
in terms of properties of S and its flux vectors. The chemical organizations i.e.
sets of self-maintaining chemical species, can be organized in a hierarchical
lattice. There exists a links between the dynamical features of the reaction
network to the static lattice of chemical organization. Every organization in
the lattice corresponds exactly to one fixed point of the ordinary differential
equation system description the underlying chemical reaction network. The
lattice of organizations can therefore be viewed as a compact delineation of
the dynamic state space of the system.

The topology of an reaction network can be meaningfully described by a gen-
eralized closure function that determines which molecular species can be con-
structed from a given set of molecular species25. Self-maintenance and (alge-
braic) closure can be expressed in terms of this closure function26, thereby
defining a notions of neighborhood, interior, closure and boundary on chem-
ical reaction networks. These closure spaces are a strict generalization of the
“usual” topological spaces for which a rich mathematical theory has accumu-
lated over the last 100 years. For example, it generates natural definitions of
connectedness, separation, regularity, compactness, and the like. At the very
least the topological “language” is useful to remove ambiguities in the defi-
nitions of the most basic notions underlying the analysis of chemical space.
Whether it can provide deeper insights into the structure of chemical reaction
networks is a topic of active research.
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