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Abstract. Local minima and the saddle points separating them in the energy landscape are known to
dominate the dynamics of biopolymer folding. Here we introduce a notion of a “folding funnel” that is
concisely defined in terms of energy minima and saddle points, while at the same time conforming to a
notion of a “folding funnel” as it is discussed in the protein folding literature.

PACS. 87.10.+e General theory and mathematical aspects – 87.15.Cc Folding and sequence analysis –
89.75.Fb Structures and organization in complex systems

1 Introduction

The dynamics of structure formation (“folding”) of biopoly-
mers, both protein and nucleic acids, can be understood
in terms of their energy landscapes. Formally, a landscape
is determined by a set X of conformations or states, a
neighborhood structure of X that encodes which confor-
mations can be reached from which other ones, and an
energy function E : X → R which assigns the folding
energy to each state. In the case of nucleic acids it has
been demonstrated that dynamics features of the folding
process can be derived at least in a good approximation
by replacing the full landscape by the collection of local
minima and their connecting saddle points [1].

The notion of a “folding funnel” has a long history in
the protein folding literature [2–8]. It arose from the ob-
servation that the folding process of naturally evolved pro-
teins very often follows simple empirical rules that seem to
bypass the complexity of the vast network of elementary
steps that is required in general to describe the folding
process on rugged energy landscapes. Traditionally, the
funnel is depicted as a relation of folding energy and “con-
formational entropy”, alluding to the effect that the en-
ergy decreases, on average, as structures are formed that
are more and more similar to the native structure of a
natural protein [9]. It may come as a surprise, therefore,
that despite the great conceptual impact of the notion of
a folding funnel in protein folding research, the literature
does not seem to contain a clear mathematical definition
of “funnel”. Intuitively, one would expect that a funnel
should be defined in terms of the basins and barriers of the
fitness landscape (since, as mentioned above, these coarse-
grained topological features determine the folding dynam-

ics). Furthermore, it should imply the “funneling” of fold-
ing trajectories towards the ground state of the molecule.

Methods to elucidate the basin structure of landscapes
by means of trees that represent local minima and their
connecting saddle points have been developed indepen-
dently in different contexts, among them ±J spin models
[10], potential energy surfaces (PES) for protein folding
[11,12] and molecular clusters [13,14], and the kinetics of
RNA secondary structure formation [15].

2 Folding Dynamics as a Markov Chain

We consider here only finite discrete conformation spaces
X with a prescribed set of elementary moves of transitions
that inter-convert conformations. In the following we write
M(x) for the set of conformations accessible from x ∈ X .
For example, X = {−1, +1}n in spin-glass setting, where
flipping single spins is the natural definition of a move.
In the case of RNA or protein folding, the breaking and
formation of individual contacts between nucleotides or
amino acids, resp., is the most natural type of move set
[15].

The dynamics on X is modeled as usual by the 1st or-
der Markov chain with Metropolis transition probabilities

p(y|x) =
1

|M(x)|
min{1, exp(−β(Ey − Ex))}

for y ∈ M(x)

p(x|x) = 1 −
∑

y∈M(x)

p(y|x)

(1)

All other transition probabilities are zero.
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We will be interested in the average time τ(x) the sys-
tem takes to reach a pre-defined target state 0 ∈ X when
starting at state x ∈ X , given by the recurrence

τ(x) = 1 +
∑

y∈M(x)

p(y|x)τ(y) + p(x|x)τ(x) (2)

with τ(0) = 0 (starting from the target state itself).
In order to investigate the physical basis of the “funnel-

ing effect” we start with a simple 1-dimensional toy model
with landscapes defined over the integers {0, . . . N}, see
Table 1 and Figure 1. The time τ to target crucially de-
pends on the ordering of barriers. The time to target is
shortest when barriers are decreasing towards the ground
state as in panel (c) of Fig. 1. At the same time, the
property of decreasing barriers towards the ground state
matches the intuition of folding funnels. We therefore gen-
eralize this picture to arbitrary landscapes.

3 Geometric Funnels

A conformation x ∈ X is a local minimum if Ex ≤ Ey for
all y ∈ M(x). Allowing equality is a mere mathematical
convenience [16]. Let Pxy be the set of all walks from x to
y. We say that x and y are mutually accessible at level η,
in symbols

x"
η

# y , (3)

if there is walk p ∈ Pxy such that Ez ≤ η for all z ∈ p. The

saddle height f̂(x, y) between two configurations x, y ∈ X
is the minimum height at which they are accessible from
each other, i.e.,

f̂(x, y) = min
p∈Pxy

max
z∈p

Ez = min{η|x"
η

# y} (4)

The saddles between x and y are exactly the maximal
points along the minimal paths in the equation above. We
say, furthermore, that a saddle point s directly connects

the local minima x and y, if (i) Es = f̂(x, y) and (ii) s
has neighbors s′, s′′ ∈ M(s) such that there are gradient
descent paths ps′x and ps′′y starting from s′ and s′′ that
end in x and y, respectively. Note that this includes the
case that s′ = x and/or s′′ = y.

For simplicity, we assume weak non-degeneracy for our
energy landscape as follows. For every local minimum x
there is a unique saddle point sx of minimal height h(x) =

minz f̂(x, z). Note that sx is necessarily a direct saddle

Table 1. Definitions of the one-dimensional landscapes in
Figure 1 (a)-(d).

Landscape Ex =
x even x odd

(a) x/(N − 1) x/(N − 1)
(b) x/(N − 1) x/(N − 1) + 0.35
(c) x/(N − 1) 1.5x/(N − 1)
(d) x/(N − 1) x/(2N − 2) + 0.75
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Fig. 1. (a-d) Dynamics on the one-dimensional energy land-
scapes Ex (thick curves) defined in Table 1. Thin curves show
the average first passage time for the target state 0 when start-
ing from given state x, for inverse temperatures β = 0 (circle),
β = 1 (square), β = 2 (diamond), β = 3 (triangle up), β = 4
(triangle left). Bottom panel: temperature dependence of first
passage times in the landscapes (a-d); τmax = τ (19) is the av-
erage time to reach x0 for the first time starting at the “right-
most” state x = 19. Slight changes in the slopes or other details
of the landscapes Ex do not change the qualitative behavior of
τmax as long as the ordering of barrier heights is conserved.

between x and some other local minimum z, which for
simplicity we again assume to be uniquely determined.
This condition is stronger than local non-degeneracy but
weaker than global non-degeneracy in the sense of [16]. In
particular, it implies that gradient descent paths are also
uniquely defined for all initial conditions. In the degener-
ate case, we consider the set of all direct saddles and the
set of the local minima directly connected to them.

With these preliminaries, we are now in the position
to define the funnel of a landscape recursively as the fol-
lowing set F of states:
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Fig. 2. Fraction of minima belonging to the funnel vs. the to-
tal number of minima found in the landscape. RNA hairpins
(filled squares) and RNAs with two different near-ground state
structures (filled circles). The straight line has slope -1. Land-
scapes with only the ground state in the funnel fall on this
line. Open symbols are the results for the number partitioning
problem (NPP) with sizes n = 8 (circles), n = 10 (squares)
and n = 12 (triangles). For each system size, 30 instances were
generated by drawing random numbers a1, a2, . . . , an and c in-
dependently from the unit interval.
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Fig. 3. Funnel partitioning for the folding landscape of the
RNA sequence xbix (CUGCGGCUUUGGCUCUAGCC). The landscape
falls into three funnels. In [1] it was shown that a large part
of the folding trajectories reach the metastable state 2 whose
energy lies 0.8 kcal above the energy of the ground state 1.

1. The ground state is contained in the funnel F .
2. The local minimum x belongs to the funnel F if a mini-

mum saddle sx connects x directly to a local minimum
in the funnel F .

3. A state z belongs to the funnel if it is connected by a
gradient descent path to a local minimum in F .

Using the above definition, we can recursively partition
the landscape into “local funnels”: Simply remove F from
X and recompute the funnel of the residual landscape.

4 Algorithm

In practice, we compute this funnel decomposition using
a modified version of the flooding algorithm [16], which is
implemented in the program barriers1. This algorithm
operates on an energy sorted list of the low-energy states.
In the RNA examples, such a list can be generated effi-
ciently by RNAsubopt [17], which first computed the ex-
act ground state by dynamic programming energy mini-
mization and subsequently back-traces all conformations
within a prescribed energy interval above the ground state.
For the NPP examples used here, we fully enumerate the
energy landscape.

The “flooding” proceeds from the ground state to con-
formations with increasing energy and assigns the confor-
mation to an initially empty list of “basins”. At each step,
the set M(x) neighbors of the current conformation x is
generated and the intersection Q = M(x) ∩ L with the
list L of previously encountered (lower energy) states is
determined. Three cases can be distinguished:

– (1) Q = ∅, then x is a local minimum, and belongs to
its own new basin.

– (2) All conformations in Q belong to the same basin,
then x is assigned to this basin as well.

– (3) Q contains members of two or more distinct basins.
Then x is a saddle connecting these basins. In this case
the corresponding basis are combined to a single one.

Now x is added to the list L and the procedure is repeated
until the input list is exhausted.

The barrier tree of the landscape is generated by sim-
ply keeping track of the merging steps (3). In the non-
degenerate case the saddle points are unique, in general
only a representative is obtained (or additional work is re-
quired to obtain complete lists [16]). Additional informa-
tion can easily be computed and stored with each entry
in L. In particular, one can easily determine the gradi-
ent descent neighbor of x as γ(x) = argminy∈QEy as well
as the local minimum µ(x) = µ(γ(x)) in which the gra-
dient descent paths ends (For local minima we initialize
µ(x) = γ(x) = x). It is also possible to compute transition
rates between the gradient basins G(x̂) = {z|γ∞(z) = x̂}
associated with local minima without substantial extra ef-
fort [1]. In practice, landscapes with 107 vertices can easily
be analyzed in this way.

In order to compute the funnel decomposition we first
need to determine the pairs of local minima that are sep-
arated by a direct saddle point. In the non-degenerate
case this is easy: For each pair of local minima x̂ and ŷ,
there is a unique saddle sx̂ŷ. All we have to do, is to check
whether there are y′, y′′ ∈ N(sx̂ŷ) such that µ(y′) = x̂ and
µ(y′′) = ŷ. Clearly this can be done efficiently with the in-
formation stored in L during the flooding procedure. We
remark that the barrier program also provides a func-
tion that computes a path between any two local minima
such that the path consists of local minima, direct saddle
points between to subsequent local minima, and segments
of gradient descent paths between them.

1http://www.tbi.univie.ac.at/~ivo/RNA/Barriers/
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From the graph of local minima and their separating
direct saddles, we obtain the funnel partitioning in two
easy steps. First replace the path x̂ — s — ŷ by a directed
edge between x̂ and ŷ that points towards the lower en-
ergy. Then remove all edges except those that cross the
saddle point(s) of minimal energy. In the resulting graph,
every vertex is in the funnel of the ground state, if and
only if it is connected to the ground state by a directed
path.

This procedure easily accommodates degeneracies in
saddle heights (by allowing more than one out-arc) and
degenerate local minima (by connecting them with arcs
in both directions). In this case, all local minima that
are connected by directed circles could be collapsed into
a single state since they have the same energy and com-
municate via minimal barrier among them. An example is
the triangle 6, 14, 16 in Fig. 4.

5 Examples

Random instances of rugged landscapes are obtained from
the number partitioning problem (NPP) [18,19]. An in-
stance of size n is constructed by drawing positive random
numbers a1, . . . , an and c. The vertices of the landscape
are the binary spin vectors with n components. The en-
ergy of a state (x1, . . . , xn) ∈ {−1, 1}n is given as

Ex =

∣

∣

∣

∣

∣

n
∑

i=1

xiai + c

∣

∣

∣

∣

∣

. (5)

Hence the energy measures the deviation from a biparti-
tion of the set {a1, . . . , an} into subsets with equal sums.
The c represents an extra “clamped” degree of freedom to
break the symmetry under reversal of all spins. This en-
sures that almost all instances have a unique ground state.
A state y is a neighbor of state x (y ∈ M(x)), if y can be
reached from x by a spin flip in exactly one component.

As one example of biopolymers we consider small arti-
ficial RNA sequences which have been designed either to
fold into a single stable hairpin structure or to have two
near-ground state structures that have very few base pairs
in common. In the first case we expect landscapes domi-
nated by funnels because the RNAinverse algorithm [20]
tends to produce robustly folding sequences. In the second
case we used the design procedure outlined in [21] to pro-
duce sequences that have decoy structures with moderate
to large basins of attraction. The sequences we use here
have a length of 30 nucleotides or less, shorter than most
structured RNAs of biological importance.

Figure 2 shows the fraction of local minima contained
in the funnels of several landscapes. The RNA folding
landscapes have folding funnels comprising a large part of
the landscape. The landscapes of RNA sequences forming
hairpins have the largest funnels. For comparison, we plot
the relative sizes of the ground state funnels for instances
of the number partitioning problem. These artificial land-
scapes have significantly smaller funnels than the RNA
folding landscapes. Thus the latter have folding funnels
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Fig. 4. Funnel partitioning for one instance of the number
partitioning problem of size n = 8. State 1 is the unique ground
state.

much larger than expected for random rugged landscapes.
Through these large funnels the folding polymer may be
“guided” towards the native state.

Figure 3 shows an example of an RNA sequence with
a strong kinetic trap studied in detail in [1]. In this land-
scape, a suboptimal structure has a local funnel that cov-
ers most of the landscape, while the ground state is sep-
arated by comparably high barriers from almost all other
local optima. For comparison, the funnel partitioning of
an instance of the NPP is shown in Figure 4.

6 Continuous Landscapes

The definition of a funnel, which we have introduced above
in a discrete setting, easily carries over to the continuous
case. We only discuss the simplest case of a smooth energy
function E : R

n → R for finite n, with isolated hyperbolic
critical points ∇E(x̂) = 0. Recall that x̂ is a local mini-
mum if the real parts of all eigenvalues of ∆E(x̂) are pos-
itive, and x̂ is a saddle point (in the sense of differential
geometry) if exactly one eigenvalue is negative. Equation
(4) still makes sense (at least under suitable compactness
assumptions) and defines those points ŝ that separate lo-
cal minima from each other. All of them are are saddle
points (in the sense of differential geometry). Note that
the converse it not true: there are differential-geometric
saddle points that do not separate two local minima. For
our purposes only the local minima and the separating
saddle points are of interest. As in the discrete case, we
can define ŝ to be a direct saddle between two minima x̂
and ŷ if within every ε-neighborhood of ŝ there are points
x0 and y0 from which x̂ and ŷ are reachable via a gradient-
descent path. It follows that the energy function E on R

n

defines a graph whose vertices are the local minima and
their connecting saddles. From this graph, the funnel is
obtained just as in the continuous case.
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7 Concluding Remarks

In summary, we have introduced here a rigorous definition
of a folding funnel that is tractable computationally for ar-
bitrary energy landscapes. In the case of RNA, where the
lower fraction of the landscape can be generated without
the need for exhaustively enumerating all configurations
[17], funnels can be computed explicitly even for sequences
that are of immediate biological interest. Our first compu-
tational results show that the energy landscapes of RNAs
typically differ from the rugged landscapes of spinglass-
style combinatorial optimization problems by exhibiting
significantly larger funnels for the ground state. It remains
to be investigated in future work whether this is also true
e.g. for lattice protein models. A second important topic
of ongoing research is the question which and to what ex-
tent evolutionary processes select molecules with funnel-
like landscapes.
Acknowledgments. This work was supported in part by
the European Commission trough the EMBIO project in
FP-6 (http://www-embio.ch.cam.ac.uk/).
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