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Abstract

Dynamical changes of RNA secondary structures play an important role in the function of many regulatory RNAs. Such kinetic
effects, in particularly in time-variable and externally triggered systems are usually investigated by means of extensive and expen-
sive simulations of large sets of individual folding trajectories. Here we described the theoretical foundations of a generic approach
that not only allows the direct computation of approximate population densities but also reduces the efforts required to analyse the
folding energy landscapes to a one-time preprocessing step. The basic idea is to consider the kinetics on indidividual landscapes
and to model external triggers and and environmental changes as small but discrete changes in the landscapes. A “barmap”links
macrostates of temporally adjacent landscapes and defines the transfer of population densities from “snapshot” to the next. Imple-
mented in theBarMap software, this approach makes it feasible to study folding processes at the level of basins, saddle points, and
barriers for many non-stationary scenaria, including temperature changes, co-transcriptional folding, re-foldingin consequence to
degradation, and mechanically constrained kinetics as in the case of pulling polymers through a pore.
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1. Introduction

Dynamic changes of protein structure play an important role
in their cellular functions. This include in particular theprocess
of folding itself but also the structureal response to oligomeriza-
tion, chemical modification, ligand binding, and changes inam-
bient temperature or pH. The investigation of these phenomena
plays a central role in protein science in both theory and exper-
iment. Large-scale Molecular Dynamics (MD) simulations of
(re)folding trajectories constitute the major computational ap-
proach in this area [1].

Detailed case studies have demonstrated that nature also ex-
ploits the potential of RNA sequences to form multiple alter-
native metastable structures. These play a role in particular
in regulating gene expression at the level of the mRNA. One
widespread mechanism is the attenuation of transcription found
in many bacterial operons related to the bio-synthesis of amino
acids [2, 3]. Another impressive example is the control of plas-
mid R1 maintenance inE. coli, reviewed in [4]. RNA ther-
mometers [5] are temperature responsive structural elements
located in the 5’-untranslated region of bacterial heat shock
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and virulence genes. Mechanistically, RNA thermometers reg-
ulate the transcription of their respective genes by undergoing
temperature-induced structure changes, a widely used regula-
tory strategy in nature [6]. It has been shown repeatedly, fur-
thermore, that alternative conformations of the same RNA se-
quence can perform completely different functions [7, 8, 9].

A thorough analysis of the dynamics of RNA folding and
re-folding is thus a necessary prerequisite for a detailed un-
derstanding of the functionality of many RNA molecules. In
contrast to protein folding, the secondary structures of nucleic
acids provide a level of description that is sufficient to under-
stand the thermodynamics and kinetics of RNA folding [10]
— a least in a useful approximation. Initially, kinetic folding
was used as an attempt to improve RNA structure prediction,
[11, 12, 13, 14, 15]. More recently, the focus has shifted to-
wards understanding the conformational changes and the asso-
ciated folding pathways themselves, recently reviewed in [16].

Most kinetic folding algorithms for RNA are some form of
discretized Monte Carlo simulations of folding trajectories. The
direct analysis of the folding energy landscape presents a viable
alternative [17], due to the fact that the lower part of energy
landscape can be accessed efficiently by dynamics program-
ming [18, 19]. Here, one first constructs a compact representa-
tion of the energy landscape in the form of a hierarchical struc-
ture termedbarrier tree. Recently, coarse grained landscapes
have also been used in conjunction with stochastic samplingal-
gorithms [20].
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Figure 1: Move sets for simulations of RNA folding kinetics at secondary struc-
ture level. Adjacent conformation differ by insertion or deletion of a single base
pair, arranging the secondary structures in an undirected graph.

Barrier trees and related tree structures have been developed
independently for different classes of disordered systems, in-
cluding spin glasses [21], potential energy surfaces in protein
folding [22, 23], molecular clusters [24, 25], and RNA sec-
ondary structures [26]. Assuming that the basins of individual
local minima are in quasi-equilibrium, the rates between all lo-
cal minima can be calculated during barrier tree construction,
providing an approximated master equation that can be solved
explicitly [27]. This observation provides the starting point for
the present contribution.

Often, one is most interested in the re-folding of an RNA in
response to an external signal. Such a “signal” can be the bind-
ing of a ligand, a nucleolytic cleavage, the elongation of the
RNA during transcription, a change of the environmental tem-
perature, or some form of mechanical stress. We show here that
all these scenaria can be treated within a single coherent frame-
work, namely as a (series of) perturbations of the energy land-
scape on which the folding process operates. This observation
will allows us to develop generic tools that allow the efficient
evaluation of the re-folding kinetics by connecting the coarse-
grained tree representations of perturbed landscapes in suitable
way. Before we proceed to three illustrative applications,we
will develop the associated theory in detail in the following sec-
tion.

2. Theory

2.1. Energy Landscapes for RNA Folding

The energy landscapeof an RNA molecule is, for our pur-
poses, defined on the setXσ of all secondary structures that can
be formed by the sequenceσ in such a way that base pairs obey
the usual base pairing rules. As usual, we disregard pseudo-
knots. It is well known that the size of the setXσ grows expo-
nentially with the chain lengthn, see e.g. [28] and the references
therein. The Turner energy rules [29] allow us to compute the
energyf (x) for each given secondary structurex ∈ Xσ.

This set of discrete conformations is arranged as a graph by
defining a “move set”, i.e., by specifying which pairs of sec-
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Figure 2: Schematics representation of an energy landscapeand its associated
barrier tree. Local minima are labeled with numbers (1-5), saddle points with
lowercase letters (a-d). The global minimum is marked with an asterisk.

ondary structures can be interconverted in a single step, see e.g.
[30] and the references therein. Fig. 1 gives a simple example.
In [26], two move sets are considered for RNA: the simpler
case allows only the opening or closing of a single base pair,
the more complex approach allows the sliding on one end-point
of a pair to a new pairing partner. In both cases neighboring
structures differ by adding and/or removing a single base pair,
hence the sizeD of the neighborhood of a conformation is at
most quadratic in sequence length. This small size of the neigh-
borhoods relative to huge set of all conformations is crucial for
the computational feasibility of our approach.

We remark in passing that lattice models of protein folding
have the same formal properties [31]. The entire machinery
described here for RNA folding kinetics can thus be applied
also to this class of models.

The set of conformations, the move set, and the energy func-
tion together define the energy landscape of our molecule. Con-
ceptually, this energy landscape is closely related topotential
energy surfaces[32, 33], which describe the system at the level
of spatial coordinates of individual atoms.

2.2. Level Sets and Barrier Trees

A cycleor level setat energy levelη can be defined as a max-
imal connected setC ⊆ X such thatf (x) ≤ η for all structures
x ∈ C. Intuitively, one can interpret the level sets as basins
of attraction. When the energy levelη is increased, level sets
grow and new level sets emerge. More formally, letAη and
Bη′ be two level sets at levelsη ≥ η′. Then eitherAη ⊆ Bη′
or Aη ∩ Bη′ = ∅. This hierarchical structure is naturally rep-
resented by a tree. The leafs of this tree are thelocal minima
of the landscape, i.e., those configurationsx which do not have
neighbors with lower energy. With each leaf/local minimumx̂
and each energy level we can thus associate the connected level
setXη[x]. For consistency, we setXη[x] = ∅ if f (x) > η. The
level sets of two local minima ˆx and ŷ thusmergeat the level
η if Xη[ x̂] = Xη[ŷ] andXη′ [x] ∩ Xη′ [y] = ∅ for all η′ < η. The
interior nodes of the barrier tree correspond to these “merging
points”. In the following, we writeB(X, f ,M) for the barrier
tree of the landscape (X, f ,M). Fig. 2 shows a simple example.
For further formal details we refer to [17].
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Given an energy-sorted listing of theL lowest energy config-
urations of the landscape, the barrier tree can be computed in
O(L × D) time and space [26], whereD = O(n2) is the number
of neighbors according to the move set. In the case of RNA
secondary structures, our model at hand, the energy sorted list
can in turn be computed inO(n3 + nL+ L ln L) timeO(n2+ nL)
space usingRNAsubopt [18]. It is therefore feasible in prac-
tice to compute the barrier tree for RNAs of interesting sizes
(n ≈ 100) with moderate computational resources.

2.3. Macrostates

Let Π be a partition ofX. The classes ofΠ can be seen as
a coarse-graining of the configuation space. For our purposes,
it will be of particular interest to consider partitions that are
consistentwith the energy function in the following sense:

If Q ∈ Π thenQη := {x ∈ Q| f (x) ≤ η} is either empty or a
connected set.

It follows that every level-set is the union of such “lower parts”
of macrostates. In the non-degenerate case, furthermore, each
consistent macrostate has a unique local minimum ˆxQ that may
serve as its representative.

For example, we can associate the conformationx ∈ X with
the local minimumγ(x) that is reached fromx by gradient de-
cent. Again, in non-degenerate landscapes,γ is well-defined
and the collection

Πγ = {γ−1(ẑ)|ẑ is a local optimum} (1)

of the gradient basinsof local optima forms a partition ofX.
In degenerate landscapes we can break ties e.g. stochastically,
see [17] for further details. Clearly,Πγ is consistent with the
energy function and hence also with the barrier tree. The local
minima of the energy landscape thus act as representatives of
the macrostates in this case.

2.4. Kinetics on Barrier Trees

This construction allows us to associate with each local mini-
mum not only its “basin” in the barrier tree but also a macrostate
that is consistent with the energy function and hence with the
barrier tree. In particular, we use here thegradient basinsΠγ

defined in the previous paragraph.
The dynamics of biopolymer folding, in our discrete picture,

is given as a Markov process onX with transition rates of the
form

pxy ∝

{

exp
(

−
f (y)− f (x)

RT

)

if x ∈ My

0 otherwise
(2)

As demonstrated in [27], one can approximate this dynamics by
a dynamics on the set of macrostatesprovidedon can argue that
the process is approximately equilibrated within each class of
Π. A slightly cruder, but computationally much more efficient
approximation entails an Arrhenius ansatz using the barrier tree
to estimate the activation energies. For any two local minima
x̂ , ŷwe define their transition state energyf [ x̂, ŷ] as the energy

level at which their associated macrostates merge in the barrier
tree, i.e.,

f [ x̂, ŷ] = min
{

η
∣

∣

∣[γ−1(x̂)]η ∩ [γ−1(ŷ)]η , ∅
}

. (3)

Note that this expression coincides with the more “usual” def-
inition of the barrier height as the minimum of the maximal
height of paths connecting ˆx andŷ, see e.g. [34]. The advantage
of equ.(3) is that it emphasizes that the saddle heightf [ x̂, ŷ]
can be computed as themergingof cycles within a flooding
algorithm [26], instead of the (algorithmically infeasible) opti-
mization over all paths.

Transition rates between macrostates, represented here bythe
local minima that define them, are then given by the Arrhenius
law

px̂,ŷ = Aexp

(

−
f [ x̂, ŷ] − f (ŷ)

RT

)

(4)

whereA is normalization constant. For further details we refer
to [27].

2.5. BarMaps

Given a landscape (X, f ,M) we now may ask how the folding
behavior changes if we perturb the landscape. Such perturba-
tions can take a wide variety of forms:

1. (X,M) remains the same, only the energy function is per-
turbed, f → g. This is the case e.g. when temperature or
ionic strength of the system is changed.

2. (X, f ) remains the same, but the move set changesM →

M′. This case is of interest when one is interested in the
sensitivity of folding kinetics to changes in the underly-
ing mechanistic models, e.g. to assess the impact of shift
moves [18]

3. X, f , andM change systematically. Examples are co-
transcriptional folding or for experimental manipulations
such as pulling an RNA molecule through a pore.

Our goal is to consider these types changes in a coherent way
in the framework of barrier trees. This will allow us to ap-
proximate the folding dynamics in time-variable landscapes of
various types. Since we model the dynamics at the level of
macrostates, we need to investitage how the perturbation ofthe
landscape translates into changes of the barrier trees and their
associated macrostates. In other words, we need to construct
a mapβ : Π → Π′ from the macrostates of (X, f ,M) to the
macrostates of (X, f ,M).

From a mathematical point of view, we first of all need a
mapξ : X→ X′ : x 7→ x′ which specifies how the perturbation
affects an individual conformationx before it “relaxes” in the
modified landscapes. In the first two cases, this map is trivial:
it coincides with the identity map,ı : x 7→ x, since the set of
conformations does not change.

In the case of co-transcriptional folding it is also quite sim-
ple: When the next nucleotide is appended to a growing chain,
it initial does not interact with the already folded “head” of
the molecules, so thatx′ is x with an unpaired base appended,
x′ = x++′•′, where++ denotes concatenation of strings.

3
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Bk−1 Bk

βk

Figure 3: Schematic of the bar map between two consecutive landscapes. Three
types of events may occur: (i) two (here the two leftmost) local minima inBk−1
merge into one (ii) a new minimum (marked by⋆) appears inBk (iii) one to
one correspondence between minima (as for the rightmost minimum here).

The situation is a bit more complex in applications such as
pulling macromolecules through pores, or other mechanical
constraints. In the pore case, the RNA structure is composed
of two independently folding partsx[1..k] and x[k + ℓ + 1..n],
while the interval [k + 1, k + ℓ] is located within the pore and
hence inaccessible to base-pairing. In the next step, the 5’part
is x[1..k− 1]; if k was paired, the base pair (j, k) now has been
opened because nucleotidek is now covered by the pore. The
other part isx[k + ℓ..n] where the first position,k + ℓ emerges
unpaired from the pore. Note that in the pore case, the gradi-
ent descent operatorγ also needs to be restricted to producing
independent structures on both sides of the pore.

In the landscape (X′, f ′,M′) we have again well-define gra-
dient basins by means of the steepest descent operatorγ′ on
this landscape. The concatenationγ′(ξ(z)) thus maps every lo-
cal minimum of (X, f ,M) to a local minimum of the perturbed
(X′, f ′,M′) by first re-interpretingz in the new context an than
relaxing it to local minimum of the associated basin. It there-
fore implies the desired mappingβ that maps macrostates of
(X, f ,M) to the macrostates of (X′, f ′,M′). In other words,β
maps the leafs of the barrier treeB(X, f ,M) to the leafs of the
barrier treeB(X′, f ′,M′). We thus refer toβ as the barrier tree
map, orbar mapfor short, Fig. 3.

Note that, in general, the bar map is neither injective nor sur-
jective: There many be local minima in (X′, f ′,M′) that are not
the image of any local minimum of (X, f ,M), while multiple
local minima of (X, f ,M) may be merged into a single mini-
mum of (X′, f ′,M′).

2.6. Kinetics on Time-Variable Landscapes

The formalism developed in the previous subsections can
be exploited to approximate RNA (re)folding kinetics on time-
variable landscapes. The idea is to first determine a sequence
of barrier trees{Bk} together with barmapsβk : Bk−1 → Bk.
These data have to be determined only once. We are then free
to choose a sequence{Tk} of time points at which the system
proceed fromBk to Bk+1. This allows us to explore the ef-
fects of variations in the speed of transcription, the rate temper-
ature chances, or the pulling force in manner that is indepen-
dent of the computationally expensive analysis of the energy
landscapes.

Denote byπ(x̂, 0) the initial condition, i.e., the population
densities in macrostate ˆx on barrier treeB1 at time 0. The pop-
ulation density onB1 just before the transition toB1 isπ(x̂,T1).
The initial condition on the next barrier treeBk+1 is obtained by
collecting for each macro-state ˆy the population densities of all
those macrostates ˆx of the previous barrier treeBk that map to
ŷ under the barmapβk. In symbols:

π(ŷ,Tk) =
∑

x̂:βk(x̂)=ŷ

π(x̂,Tk) (5)

Within the time interval [Tk,Tk+1] we simply have to solve the
master equation

π̇(x̂) =
∑

ŷ

px̂,ŷπ(ŷ) (6)

with px̂,ŷ = −
∑

ẑ pẑ,x̂ and the initial conditions described above.
Note that the transition matrixP = (px̂,ŷ) is by assumption inde-
pendent of time for each fixed barrier tree. Thus the expensive
part of solving the Master equation, namely the diagonaliza-
tion of P, is also independent of the time intervals, and thus
has the be performed only once for each barrier tree. After
these preparatory computations have been performed, the popu-
lation dynamics for a given schedule{Tk} can be evaluated with
a few matrix and vector multiplications. This set the stage for
an in-depth analysis of the interplay of folding dynamics and
changes in the energy landscapes without substantial computa-
tional costs.

3. Results

3.1. TheBarMap Software
TheBarMap software is implemented as a combination of C

programs and Perl scripts that form a pipeline for simulating
folding time-dependent energy landscapes. In the first stepof
the pipeline, all low-energy structures of a landscape are com-
puted usingRNAsubopt from the Vienna RNA package. Sub-
sequently, they are analyzed by thebarriers program [26].
This is done separately for each landscape in the time series
and yields both a barrier tree and a matrix of effective transition
rates. Thebar map Perl program then computes the barmapβ
between consecutive barrier trees. Folding dynamics on each
landscape are computed by thetreekin program [27]. The fi-
nal population on the landscape at time stepk − 1 is mapped
to the the initial population on the landscape at time stepk us-
ing the barmapβk. A helper Perl script,barmap simulator, is
available that automatically generates the necessarytreekin

command lines. In order to plot folding dynamics as shown
in Figs. 4 and 5 thetreekin trajectory for the time intervals
in which the landscapes is fixed are stitched together using the
barmapsβk, k ≥ 1. This is accomplished by the finalbmjoin
script. An accompanying visualization tool,BarMapViz [35]
can be used to create movies of a barrier tree sequences, facili-
tating the analysis of the landscape features that are responsible
for particular kinetic effects.

Source code for thebarriers andtreekin programs, as
well as thebar map, barmap simulator, andbmjoin Perl
programs is available fromhttp://www.tbi.univie.ac.
at/RNA/Barriers/.
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Figure 4: Hysteresis effects in an thermo-sensitive RNA.
In this example, the temperature cycles periodically from 10 to 59◦C. The RNA
has different optimal conformations at 10◦C (blue) and 59◦C (red), respectively.
At high temperatures, furthermore, the minimum energy structure is nearly de-
generate, so that an alternative structure (magenta) is populated substantially.
For very fast temperature cycles, the only structural change that is fast enough is
the opening of a GU:GU stack (cyan). These pairs are marked inthe secondary
structure diagrams.

3.2. Application 1: A RNA thermometer

Figure 4 shows the refolding dynamics of an artificial RNA
thermometer when cycling between a high and low temperature
regime. The sequence was designed using the RNA switch de-
signer described in [36], taking into account the sequence and
structure constraints listed in [37]. This study demonstrated that
in silico design with subsequentin vivofine-tuning can produce
temperature-controlled RNA elements with efficiencies com-
parable to their natural counterparts. For very slow tempera-
ture cycles (top), the molecule behaves adiabatically, effectively
reaching thermodynamic equilibrium at each time step. The dy-
namics is therefore determined entirely by the barrier trees and
the connecting barmaps. For intermediate cycling frequencies
(104 − −105 time units per cycle), the system prefers the high-
temperature structure. The relaxation time increases as with
cycling frequency. At even faster cycles, the system is trapped
close to the (low temperature) starting conformation, since it
does not have sufficient time to refold before the temperature
drops again.

3.3. Application 2: Co-Transcriptional Folding

Under cellular conditions, RNA molecules start to fold be-
fore transcription is completed. This phenomenon is exploited
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Figure 5: Co-transcriptional folding of theE. coli leader RNA of the tRNAphe

synthetase operon for two different transcription speeds. For slow transcription
(top) the completely transcribed chain shows a nearly zero density for the ter-
minator structure, and transcription of the full length operon proceeds. For fast
transcription, most of the fully elongated molecules form the terminator struc-
ture. Thermodynamic equilibrium is reached only on very long (> 1010) time
scales.

by many bacteria to regulate the expression of amino acid
biosynthesis genes [38, 39, 40]. This RNA-based regulatory
strategy by premature termination of transcription, oftencalled
transcription attenuation[2], relies on the selective formation
of either of two mutually exclusive RNA secondary structures
(the anti-terminator and the terminator) in the nascent tran-
script. The terminator structure causes premature termination
of transcription.

We investigated the co-transcriptional folding dynamics of
the leader RNA of the phenylalanine tRNA synthetase operon
from E. coli [41] under different transcription speeds, see
Figure 5. For slow transcription, when the full-length chain
produced after∼ 105 arbitrary time units, the anti-terminator
structure is formed (green curve top left panel). In contrast,
under fast transcription conditions (transcription completed al-
ready after∼ 104 arbitrary time units), the terminator struc-
ture is formed (red curve bottom left panel). Since transcription
attenuation operates far from the thermodynamic equilibrium,
the kinetic competition between two small stem-loop struc-
tures (see blow-up panels on the right) decides whether the
full-length leader RNA will eventually end up in the termina-
tor or the anti-terminator structure. This competition early in
the folding process is highly sensitive to the speed of transcrip-
tion. Note, that for very long folding times (∼ 1011) both co-
transcriptional folding scenarious converge, as expected, to the
thermodynamic equilibrium, which is dominated by the more

5
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Figure 6: Translocation of the artificial RNA sequence
UUUUAGCCUCUUUGAGGUCGCCAUGCGAUUUUUUUU through a pore with a
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the minimum free energy (MFE) structure (black) is occludedby the pore, the
RNA refolds into alternative structures (green and red). Atthe mid point, the
most likely structure is the open chain (blue). Note how the probability of the
MFE almost reaches 100% att ≈ 290, when the energy is fully formed, but
alternative structures are inhibited by the pore.

stable terminator structure.
In vivo, elongation speed is not constant, but influenced by

site-specific pausing of the RNA polymerase and interactions
of the nascent RNA with proteins [42]. The effect of pause sites
can easily be included in our approach. One simply need to
specifying an appropriate elongation speed profile, i.e., an ex-
plicit list of time-points{Tk} for the transitions from one land-
scape to the next.

3.4. Application 3: Re-folding during Pore Translocation

The transport of biopolymeres through narrow pores is a fun-
damental process in life which is often coupled to the dynamics
of biopolymere structure formation e.g. the base pair unfold-
ing and folding dynamics while an mRNA passes through the
ribosome during translation. Translocation of polymeres is hin-
dered by an entropic barrier, since the narrow confinement of
the pore effectively seperates the biopolymer into two indepen-
dent sections resulting in an reduction of the chain entropyand
hence an increase of the free energy of the chain [43].

For structured nucleic acids, further kinetic barriers arise
since the molecule has to locally unfold while passing through
the pore [44, 45]. In recent years, the single-molecule tech-
niques of driving biopolymeres through nano-pores using elec-
tric fields have been used to explore experimentally the struc-
tural and dynamic properties of nucleic acides [46, 47, 48, 49].

We model the effect of the pore by allowing only secondary
structures that are unpaired within the pore and contain no base
pairs crossing from one side of the pore to the other. Fig-
ure 6 shows the resulting translocation dynamics for an artificial

RNA sequence. In this example we use a slow translocation rate
which allows the base pairing pattern on both sides of the pore
to almost equilibrate.

4. Discussion

We have introduced here a very generic approach to investi-
gate in detail the dynamic aspects of RNA folding in scenaria
that involve external stimuli and/or changes of environment. By
separating changesin the energy landscapes from the dynamics
on these landscapes it becomes possible to avoid the extensive
simulation of individual trajectories altogether. Instead, transi-
tion matrices between macrostates in each fixed landscapes and
“barmaps” linking the macrostates of temporally adjacent land-
scapes are computed in a pre-processing step. The time course
of the population densities of macrostates are then obtained by
means of a few matrix and vector operations. This computa-
tional efficiency allows detailed numerical studies of externally
guided kinetic effects.

The examples described in the previous section highlight the
major advantage of theBarMap approach: each energy land-
scape and its barrier tree, and all the barmaps between adjacent
landscapes need to be computed only once. The transition rate
matrices between macrostates within a landscape also have to
be computed and diagonalized only once. The systematic ex-
ploration of the effects of different rates of change in the en-
vironment can thus be conducted very efficiently without the
need to recompute any landscape-specific data. Time series of
population densities in fact can be obtained using a few simple
matrix and vector multiplications. TheBarMap approach is thus
particularly suitable to study the subtle kinetic effect that arise
from the intricate interplay of different time scales.

5. Methods

5.1. RNA Folding

All structure predictions were performed using the Vienna
RNA package [50] version 1.8.3, using the Turner energy pa-
rameters as described in [29].

5.2. Visualization of Barrier Tree Series

In order to gain a thorough understanding of the effects of
changes in the landscape one needs to comprehend how these
changes affect the corresponding barrier trees. To this end, we
have developed theBarMapVis tool to create an animations of
a sequences of barrier trees and the leaf mappings between ad-
jacent trees [35]. In brief,BarMapVis is based on theforesight
layout with tolerancealgorithm [51], a very general attempt
to solve any offline dynamic graph drawing problem. First, a
directed acyclic supergraphG∗ is constructed that contains all
barrier trees as subgraphs and reflects the topological proper-
ties of all energy landscapes. The supergraphG∗ is then laid
out in the plane using a modified version ofdot [52]. Finally,
the layout of the subgraphs is determined by using the layoutof
the supergraph as a template following static drawing esthetic

6



criteria in a way that approximately preserves the mental map
[53] between consecutive barrier trees.

Animations showing the sequence of barrier trees generated
by BarMapVis for each of the three examples from the Results
section can be found in the web supplement.
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