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Freiburg, Germany
5Image and Signal Processing Group, Department of Computer Science, University of Leipzig, Johannisgasse 26, D-04109 Leipzig
6Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103 Leipzig, Germany
7Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, D-04103 Leipzig, Germany
8Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA

Email: Peter F. Stadler - studla@bioinf.uni-leipzig.de;

∗Corresponding author

Abstract

Background: The metabolic architectures of extant organisms share many key pathways such as the citric acid

cycle, glycolysis, or the biosynthesis of most amino acids. Several competing hypotheses for the evolutionary

mechanisms that shape metabolic networks have been discussed in the literature, each of which finds support

from comparative analysis of extant genomes. Alternatively, the principles of metabolic evolution can be studied

by direct computer simulation. This requires, however, an explicit implementation of all pertinent components: a

universe of chemical reaction upon which the metabolism is built, an explicit representation of the enzymes that

implement the metabolism, of a genetic system that encodes these enzymes, and of a fitness function that can

be selected for.

Results: We describe here a simulation environment that implements all these components in a simplified ways so

that large-scale evolutionary studies are feasible. We employ an artificial chemistry that views chemical reactions as

graph rewriting operations and utilizes a toy-version of quantum chemistry to derive thermodynamic parameters.

Minimalist organisms with simple string-encoded genomes produce model ribozymes whose catalytic activity is

determined by an ad hoc mapping between their secondary structure and the transition state graphs that they

stabilize. Fitness is computed utilizing the ideas of metabolic flux analysis. We present an implementation of the

complete system and first simulation results.

Conclusions: The simulation system presented here allows coherent investigations into the evolutionary mecha-

nisms of the first steps of metabolic evolution using a self-consistent toy universe.

1



Introduction
Computer models of the transition between an abi-
otic chemosphere and a primitive biosphere are
plagued by the complexity of the systems and pro-
cesses that need to be integrated into a coherent
picture. Individual aspects and components, such
as thermodynamic boundary conditions, the dynam-
ics of self-replication, the effects of coding [1], of
the influence of spatial organization and compart-
mentalization, can be — and have been — tackled
with their own specific minimal models. Much of
the most successful modeling efforts have been in-
vested in early systems of information propagation.
The success of these approaches can at least in part
be explained by the fact that generic behavioral reg-
ularities can be extracted independent of physical
details. It is entirely sufficient to consider linear se-
quences that can be copied, mutated, ligated, and
cleaved according to rules that do not have to recurse
explicitly to underlying physics and chemistry [2–5].

We argue here that the situation becomes fun-
damentally different once we become interested in
metabolic evolution. Then, chemistry (an in partic-
ular the complexities and subtleties of organic chem-
istry) is moved to center stage and any model must
encapsulate the ground rules of chemical transforma-
tions: the conservation of mass and atomic types as
well as conservation and dissipation of energy intro-
duces constraints that critically determine the sys-
tem’s behavior. This does not mean, of course, that
it is necessary to implement all of chemistry in all its
natural beauty and with all its intricate details. Nev-
ertheless, it calls for a framework that goes much be-
yond most implementations of artificial chemistries
or the string models of polymer systems.

In principle, so we argue, we eventually will need
to understand the transition to life, and the first
steps in the evolution of primitive life-like systems,
in terms of their chemical organization. Neverthe-
less, it appears prohibitively inefficient to even at-
tempt an atom-level simulation, and even if it were
feasible, it is not clear what insights were to gain
from it. Instead, we would like to understand, and
implement, information molecules and other hetero-
polymer components by their sequence, at least in
part because we already understand their behav-
ior at that level. Practical simulations in this field,
therefore, will necessarily have to have components
at different scales and implement them using differ-
ent modeling paradigms, leaving us with the ques-
tion how to bridge the gaps between these different

layers.

In this contribution we describe a particular
framework in which questions about the most prim-
itive “life-forms” and their evolution can be ad-
dressed. As we shall see, it combines a grossly simpli-
fied Chemical Universe with a very minimal, RNA-
World style, genetics, and simple fitness function
linked to metabolic efficiency.

The Chemical Model Universe

Artificial Chemistries

Many models of artificial chemistries have been ex-
plored in recent years. The spectrum ranges from
chemically accurate quantum mechanical simula-
tions to abstract computational models. Walter
Fontana’s AlChemy [6, 7], for example represents
molecules as λ-calculus expressions and reactions are
defined by the operations of “application” of one λ-
term to its reaction partner. The result is a new λ-
term. Related models are based on a wide variety of
different computational paradigms from strings and
matrices to Turing machines and graphs [8–14], see
also the reviews [15,16]. The abstract computational
models are very useful for understanding algebraic
properties of reaction systems; the notion of a self-

maintaining set and the development of a theory of
Chemical Organizations [17] emphasizes the success
of such approaches.

Reaction energies pose severe constraints on
chemical reactions networks, by selecting one or a
few preferred reaction pathways from a plethora of
logically possible reaction channels. An energy func-
tion, that behaves as a state variable and allows the
modeling of transition states, is therefore indispens-
able for any model that is realistic enough to allow
us to consider, say, the differences between a bacte-
rial metabolic network and atmospheric chemistry of
the planet Mars. Despite substantial progress in the-
oretical chemistry, detailed quantum chemical com-
putations are in many cases still too expensive to be
employed in large scale computer simulations. Com-
prehensive reaction databases used e.g. in synthesis
planning, on the other hand, are mostly commercial
products which come a substantial access costs. It
also remains unclear to what extent the network of
the millions of reactions performed and compounds
synthesized by organic chemists over the past two
centuries [18] provided a view biased by the history
of chemical research. Knowledge-based approaches
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hence appear less attractive for our endeavor.

The particular Chemical Universe that underlies
our simulation is motivated by the way how chemi-
cal reactions are explained in introductory Organic
Chemistry classes: in terms of structural formulae
(labeled graphs) and reactions mechanisms (rules for
modifying graphs).

Molecules

Historically, the description of molecular structures
was one of the roots of graph theory [19, 20].
Graphs with vertex labels denoting atom types and
edges indicating bond orders are ubiquitous in ev-
ery book and journal article on Organic Chemistry
and in practice convey enough information to pro-
vide chemists with a good idea of the molecules be-
havior in particular chemical reactions.

By construction, the graph representation ab-
stracts spatial information to mere adjacency.
Thereby we avoid the most time-consuming compu-
tation step: embedding the atoms in 3D by means
of finding the minima on a potential energy sur-
face [21]. On the other hand, the restriction to
graphs implies that several features of real molecules
cannot even be defined within the model: (1) There
is no distinction between different conformers and, in
particular, between cis and trans isomers at a C = C

double bond. (2) there is no notion of asymmetric
atoms and chirality.

Energy

As argued in the introduction, a consistent energy
function is indispensable in a meaningful model of
chemistry since all chemical transformations are as-
sociated with well-defined energy differences that de-
termine e.g. the direction in which a chemical reac-
tion will proceed. The ToyChem model [23] utilizes
a caricature version of quantum chemistry to com-
pute total binding energies directly from the labeled
graphs. In particular, the chemical structure graph
is decomposed in an unambiguous way into hybrid
orbitals using the VSERP rules [24]. Application of
a simplified version of the Extended Hückel Theory
(EHT) [25] yields a Schrödinger type secular equa-
tion which is parametrized in terms of the atomic va-

lence state ionization potentials and the overlap inte-
grals between any two orbitals. The physical proper-
ties of a molecule are determined by the eigenvalues

of the Hamilton matrix and their associated eigen-
vectors as well as by the number of valence electrons
and the electrons in the various molecular orbitals.
For details we refer to Ref [23].

The ToyChem model was used to study the generic
graph-theoretic properties [26] of chemical reac-
tion networks under thermodynamic constraints. A
straightforward extension of the ToyChem model to
solvation energy made it possible to study chemical
reaction networks in a multiple phases setting [27].

The Klopman-Salem equation [28, 29] connects
the wave function to the reactivities of molecules,
paving the way to study the kinetic properties of
chemical reaction networks. However, it turned
out, that the reaction rate estimates calculated with
the Extended Hückel method implemented in the
ToyChem model are to inaccurate especially to study
time-scale separation in the time evolution of pre-
biotic reaction networks. The reason for this prob-
lem is that the accuracy of the rate constant de-
pends exponentially on the quality of the energy pre-
dictions. More realistic estimates of reaction rates
therefore require the use of state-of-the-art methods
from well established quantum mechanical program
packages such as GAUSSIAN or Schrödinger Soft.

Unfortunately, many of these sophisticated quan-
tum mechanical methods are very expensive in terms
of computer time. For our purposes, semi-empirical
methods like PM3 (implemented for example in
Mopac and GAUSSIAN) might be better suited, al-
though the results are not very reliable. Another
popular choice nowadays is DFT on the B3LYP
level of theory, which works well for certain organic
molecules, but not across board for the whole organic
chemistry subset [30,31].

Three tasks are required to automate reaction
rate calculations when using any one of the quan-
tum chemistry packages: (i) a fast and high-quality
3D embedding of the molecular graphs, (ii) the cor-
rect pre-orientation of the educt structures in bi-
molecular reactions as well as a good guess of the
transition state geometry, and (iii) a fast and re-
liable reaction mapping assigning atoms from the
educts to the respective atoms of the products. The
knowledge-based program CORINA [32] is used to
generate high-quality 3D structures from molecular
graphs. The Imaginary Transition State (ITS) of
the reaction [22, 33], see below and Figure 1, guides
the construction of a transition structure analogon,
which is then 3D-embedded by CORINA. Splitting the
embedded transition state analogon into the educts
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Figure 1: Imaginary Transition State (ITS) and their hierarchical organization: Superimposition of educt
and product molecular graphs and subsequent removal of all atoms and bonds which do not directly par-
ticipate in the chemical reaction (marked in green) yields a cyclic ITS for a chemical reaction (e.g. acidic
hydrolysis of ethylacetate). Bonds which are broken/formed during the reaction are marked with a red x/o.
Left: The ITS can be organized in a hierarchical structure where each tree level adds additional information
to the base cycle of the ITS such as bonds or atom labels. Specific instances of reactions are found as leafs
of the tree. Mono-cyclic ITS account for over 90% of all known chemical reactions [22].

results in properly pre-orientated reactants.

For situations in which even faster rate calcu-
lations are needed, an estimation using quantita-
tive structure-property relationship (QSPR) and the
Wiener numbers of reactants and products can be
used. Here, we use the QSPR and the approach for
activation energy computation from Faulon, deliver-
ing still realistic results [34], for the calculation of
the rate constants. We gain the final reaction rate,
by multiplying the rate constant with the reactant
concentrations divided by the volume (here, the sum
of concentrations of all molecules in the particular
cell).

Chemical Reactions: Graph Rewriting

Once we represent the molecules as (labeled) graphs
it becomes natural to view reactions as graph trans-
formations. Again, this matches the intuition. Af-
ter all, a chemical reaction mechanisms is taught
and understood as a sequence of events that break
and/or form chemical bonds among the atoms (ver-
tices) of small assembly of molecules (graphs). From

a computer scientist’s point of view, chemical reac-
tions are thus just graph-rewriting rules. The part of
chemistry that does not deal with energy, therefore,
can be modeled and understood as a graph grammar.
The applicability of rewriting-based approaches to
metabolic network data was demonstrated recently
in an analysis of KEGG data [35].

A graph rewriting rule is specified as a triple con-
sisting of left graph, context, and right graph, see
Fig. 2. Left and right graphs consist of all atoms and
bonds that vanish or a newly formed in the trans-
formation, respectively. The context specifies the
necessary prerequisites for the applicability of the
rule beyond the atoms that are actually affected by
the reaction itself. Note that in proper chemical re-
actions all vertices (atoms) involved in the reaction
are part of the context of the rewrite rule because
they neither disappear nor are newly created. The
ITS of the reaction is intimately connected to the
left and right graphs. It is obtained from the super-
position of educt and product molecular graphs and
subsequent removal of all atoms and bonds which
do not directly participate in the reaction. The ITS
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Figure 2: Reactions as Graph Grammars: Chemical transformations very naturally translates into graph
transformation rules. As an example the Cope rearrangement, a concerted pericyclic [3,3]-sigmatrope rear-
rangement, is shown (a). A graph rewrite rule consists of 3 graphs: (i) the left graph which is composed of
all the atoms and bonds which vanish during the reaction (ii) the context graph comprised of all atoms and
bonds which do not change (iii) the right graph consists of all the atoms and bonds which are formed during
the reaction. The conjunction of left and context graph forms the pre-condition for the applicability of the
rewrite rule. the rules for the Cope and oxy Cope rearrangement are shown (b). The context sensitivity
of graph rewrite rules is illustrated by Wender’s methatese, a tandem reaction (oxy-Cope rearrangement
followed by Cope rearrangement). While the Cope rule applies to both steps, the oxy-Cope rule is only
applicable to the first step of the tandem reaction (c).

thus can be derived from the rewriting rule provided
the mapping of the vertices (atoms) between the left
graph and the right graph is known. A variant of the
cut successive largest (CSL) algorithm [36] is used to
predict the atom mapping from the educt and prod-
uct molecular graphs automatically. The perfor-
mance of the original CSL algorithm was drastically
improved by replacing the expensive complete sub-
graph isomorphism check with an efficient subgraph
isomorphism check [37] augmented by a chemically
motivated heuristic scoring schema for bond break-
ing energies. The correctness of the automatic atom
mappings were validated againest the KEGG RPAIR

database [38].

A graph rewrite system [39] interprets the graph
rewrite rule and performs the graph rewriting step
if the graphical pre-condition is matched in a host
graph. We utilize here a generic graph rewrite en-
gine. The computationally most difficult step is the
identification of all occurrences of the left graph of
the rule in an input graph. To solve this subgraph

isomorphism problem we apply the dedicated state-
of-the-art VF-algorithm, freely available in the C++
VFlib-2.0 library [40, 41]. For each match, the
input molecule is then rewritten according to the
current graph rewrite rule. The resulting molecule
graphs are converted into unique SMILES [42] to test
for duplicates. The initial molecule(s) and the re-
sulting ones are utilized to generate the ITS (Fig. 1)
needed to calculate the transition rate for the applied
reaction. Our fully generic object oriented C++ im-
plementation is freely available as the Graph Gram-
mar Library (GGL) [43].

Reaction Networks

Once molecules and reactions have been imple-
mented, it is conceptually trivial to construct the
complete chemical reaction network by exhaustive
enumeration. In practice, however, this is not fea-
sible due to the combinatorial explosion that would
result from iteratively applying all possible reactions
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Figure 3: Generating Reaction Network: To avoid combinatorial explosion during reaction network gen-
eration a filtering step, which prunes unproductive parts from the reaction network, is needed after each
application of the reaction set (arrows) to the (current) set of molecules (circles). The network usually
quickly converges in size if the filtering is performed based on reaction kinetics. In particular, after the
estimation of reaction rates (green squares), the dynamics of the reaction network is simulated by a Gillespie
type stochastic method, followed by removing nodes from the reaction network which have not accumulated
enough particles, due to small reaction rates.

to all combinations of molecules. It is imperative
therefore, to prune the growing network at each step
by removing energetically unfavorable products and
by ignoring highly unlikely reaction channels [34,44],
Figure 3.

Suppose we are given a list of reaction mecha-
nisms and an initial list L0. Performing all uni-
molecular reactions on each molecule M ∈ L0 and
all bimolecular reactions with each pair of molecules
(M1,M2) ∈ L0 × L0 we obtain a new list L

′

1 and a
list of new molecules L1 = L

′

1 \ L0. The recursion
then proceeds in the obvious way:

L
′

k+1 =





k−1
⋃

j=0

Lj



 × Lk ∪ (Lk × Lk) (1)

and Lk+1 = L
′

k+1 \
⋃

Lk. This type of strategy [34]
was applied in practice e.g. to predicting product
distributions from simulations of chemical cracking
and combustion processes, which have notoriously

large reaction networks.
In addition to kinetically inaccessible reaction

products we also exclude all molecules with more
than 30 atoms in order to keep the efforts comput-
ing molecular properties within manageable bounds.

In order to check whether a newly generated
molecule m is already contained in a previous list a
comparison of the structural formulae must be per-
formed. This is done by transforming the molecu-
lar graphs into their canonical SMILES representa-
tion [45], which then are compared as strings.

Artificial Molecular Biology
Minimalist Genomics and Genetics

The “players” in our Simulation Universe are mod-
eled as complex agents that are characterized by in-
dividual genomes. This genome is necessary and suf-
ficient to encode the individual’s metabolic, i.e., cat-
alytic capabilities.
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We are interested here primarily in the earliest
stages of metabolic evolution, which arguably took
place in the setting of the Early RNA World [46].
In this setting, RNA has the double role of genetic
material and serves as catalysts. Both the analy-
sis of naturally occurring ribozymes and a wide va-
riety of artificial selection experiments have shown
that RNA molecules of about 100nt are capable of
catalyzing most important types of chemical trans-
formations that occur in a modern organism, see
[47–49] for recent reviews. Thus it makes good
sense from a prebiotic evolution point of view to
implement “enzymes” as structured RNAs of ap-
proximately tRNA-size. For simplicity, we use a
very simple genomic organization: A single RNA
sequence serves as genome carrying a collection of
non-overlapping “genes” encoding ribozymes. Start
and stop positions of genes are marked by special
sequence motifs.

Our organisms are though to be haploid. As ge-
netic operators we currently use only point muta-
tions as well as gene duplication. More sophisticated
modes of genome evolution such as rearrangements,
recombination, or lateral gene transfer are excluded
at present but could easily be incorporated into the
computational framework.

We refrain from modeling in detail any form of
gene regulation to reduce the computational efforts.
Again, such refinements could be included e.g. along
the lines of [50,51]. Our minimal organisms thus ex-
hibit constant metabolic characteristics throughout
their life-time, thus dispensing with the need to ex-
plicitly model any aspects of growth or development
at the level of individuals.

Artificial Biochemistry:

Ribozyme Catalysis

The catalytic activity of ribozyme as well as a
polypeptide enzyme is dependent on the three-
dimension structure of the catalytic heteropolymer.
The map from sequence to catalytic activity can be
understood in two steps:
sequence 7→ structure 7→ function
In the case of protein-enzymes, translation of the
genomic nucleic acids sequence into the polypeptide
sequence forms an additional mapping step. Here,
for simplicity, we consider ribozymes.

The first step, the sequence-to-structure map
[52], is well approximated by the usual RNA fold-
ing algorithms. RNA molecules form secondary

structure by folding back onto itself to form dou-
ble helical regions interspersed with unpaired regions
termed “loops”. The resulting secondary structure
can be represented by an outer planar graph with nu-
cleotides as vertices and base pairs as edges. A well
established energy model [53], with parameters de-
rived from melting experiments, assigns a free energy
to every possible secondary structure. The simplest
approach to RNA folding consists then of selecting
the structure with minimal free energy from the com-
binatorial set of all possible structures. Fortunately,
this task can be solved efficiently by dynamic pro-
gramming algorithms that run in time proportional
to the cube of the sequence length. Here we use the
folding routines as implemented in the Vienna RNA

package [54–56].

For the structure-to-function mapping, unfortu-
nately, we do not have a well-understood physically
realistic model. Instead, we employ a simple purely
computational model based on structural features
motivated by early models of RNA evolution [57].
Catalytic structures typically depend on the molec-
ular details of an active center, which we abstract
here to a local motif contained in a secondary struc-
ture. We use here the longest “loop” (cycle) of the
secondary structure as a computationally easily ac-
cessible feature of this type.

Without any claim of physical realism, we in-
terpret this cycle as an encoding of the imaginary
transition state of the catalyzed reaction. This type
of mapping was inspired by the fact that many en-
zymes catalyze a reaction by stabilizing its transi-
tion state and the work on reaction classification
systems, in particular Fujita’s imaginary transition
structures (ITS) approach [33], in which cycles also
play a central role. All common homo- and am-
bivalent reactions, which account for over 90% of all
known reactions [58], can be described by a mono-
cyclic ITS [22]. The rest of the reactions are usually
composites of successive mono-cyclic reactions in se-
quence (rarely more than two [59]) with unstable
intermediates like carbene or nitrene.

In order to construct and evaluate the structure-
to-function map we utilize a hierarchical classifica-
tion of imaginary transition states [60]. The size of
the ITS, i.e. the number of atoms involved in the
electron re-ordering in course of the chemical reac-
tion, corresponds to the length of the loop and con-
stitutes level 1 of classification hierarchy (see rhs of
Fig. 4). The “reaction logo” specifies in addition
the bond types in the transition state. We use the
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Figure 4: The structure-to-function map: (left) The colored regions of the ribozyme fold determine the
catalytic function i.e. which leaf in ITS-tree is picked; (right) Along the levels of the ITS-tree the amount
of chemical detail increases.

length and the type of the enclosing base pairs of the
adjacent stems to determine the bond types. The
absolute positions of the stems within the loop de-
termine the arrangement of the electron re-ordering
corresponding to level 3, the basic reaction. The
information that leads from the basic reaction to
the specific reaction (level 4), the atom-types, stems
from the sequence within the loop. Again, each of
the different loop regions stands for one part in the
transition state, here the atoms. The details of the
mapping are specified in [61].

Since the structure-to-function map is not based
on an approximation of physico-chemical principles
but on an ad hoc model, we need to investigate
its statistical properties. To this end, we con-
sider in particular its autocorrelation function of the
sequence-to-function map and compare it to the au-
tocorrelation function of the sequence-to-structure
map of RNA folding [62]. To this end, we need dis-
tance measures on the spaces of RNA structures and
transition states, respectively.

For the structure space, an existing tree edit dis-
tance is used that is obtained through a sequence
alignment procedure and the minimization of the

cost for transforming one tree into the other, allow-
ing deletions, insertions and relabeling of nodes as
edit operations [52]. Similarly, the distance measure
for the transition states starts with an alignment
procedure. This can either be done on the graph rep-
resentation or a unique string form of the transition
state [63]. Edit operations include substitution of
atoms, rearrangement of electron re-ordering, substi-
tution of bonds and increase/decrease of transition
state size. The cost of the edit operations rises in
this order, atom substitution thus being the cheap-
est operation. The total cost for transforming one
transition state to the other is then minimized.

The autocorrelation function of a map ϕ :
(X, d) → (Y,D) between metric space X with dis-
tance d and Y with distance D can be defined as

ρ(d) = 1 −
〈D(ϕ(x), ϕ(y))〉d(x,y)=d

〈D2〉
(2)

where 〈D2〉 denotes the expected distance between
the images ϕ(x) and ϕ(y) of two independent ele-
ments x, y ∈ X [52]. Fig 5 shows that the compos-
ite sequence-to-function map behaves much like the
underlying sequence-to-structure map. This is not
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Figure 5: Autocorrelation functions for sequences of length n = 100 for secondary structure landscape and
transition-state landscape, with alphabets AUGC (left) and GC (right). For each of 1000 randomly generated
reference sequences we produced 1000 mutants for each of the 100 Hamming distance classes.

surprising: if the sequence-to-structure map is dom-
inated by neutral and essentially randomized struc-
tures, as in the case of RNA folding, then the sec-
ond component, the structure-to-function map, has
little influence on the overall behavior of the compos-
ite sequence-to-function map [64]. This observation
in particular justifies the use of an ad hoc artificial
structure-to-function map in our simulation setting.

In other work [65] we showed that the compos-
ite map, of RNA sequence to structure map and
our novel structure to function map, performs su-
perior against other artificial genotype-phenotype
mappings, as well as other maps based on RNA fold-
ing, in terms of evolvability, connectivity and ex-
tension of the underlying neutral network . Thus,
making it the preferable choice for our model and
possibly other similar optimization tasks.

Fitness and Selection

The final ingredient in our minimal model of evolu-
tionary processes is the choice of fitness function and
a scheme for selection.

The fitness our minimal organisms is derived di-
rectly from their metabolic yield, more precisely, the
amount of “desirable end products” that can be pro-
duced from a defined quantity and composition of
input material. It explicit computation is again a
computationally nontrivial task. We determine the
the pathway distribution of the metabolic network
under the steady-state assumption using metabolic
pathway analysis (MPA) [66]. This approach starts
from the stoichiometric matrix S of a metabolic net-

work which is extracted from the structural informa-
tion encoded in its graph representation. (Internally,
our simulations represent metabolic networks as bi-
partite graphs composed of metabolite and reaction
nodes.) The steady state assumption implies that
we are interested in non-negative flux vectors ~v in
the null-space of S, i.e., S~v = ~o. We assume that
catalyzed reactions have a non-zero flux only in one
direction. Our implementation of MPA delivers the
set of extreme pathways from which all other admis-
sible pathways through the metabolic network can
be derived as linear combination. The optimal yield
of the entire network is therefore realized by one of
the extreme pathways [67]. The fitness is therefore
computed as the maximum of the (linear) yield func-
tion over all extreme pathways.

This fitness function depends on our definition
of the a set of metabolites that need to be produced
as “desirable end products”. This set can be either
chosen explicitly by the user (entering a set of tar-
get molecules and a graph-similarity measure), or
by defining an order on the produced metabolites
with the help of molecular descriptors. Here we offer
several different topological indices such as Balaban-
Index [68] or Wiener-Number [69]. A certain num-
ber of produced metabolites with maximal/minimal
(user’s choice) values (graph-similarity or topologi-
cal index) then constitutes the set of “desirable end
products”.

In principle, selection could be handled in an
agent-based framework [70], using e.g. tournaments
of pairs of individuals taken from a population of
competing model organism. Due to the computa-
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tional efforts necessary to construct and evaluate
each metabolic network, however, we have to refrain
from using a population of many individuals. In-
stead we work with a single individual and resort to
the simplest possible model of adaptive walks, which
applies in the limit of strong selection, weak mu-
tation, negligible interactions between individuals,
and constant environment [71]. An adaptive walk
amounts to accepting a genomic mutation if and
only if it increased this yield function. A similar
setup is used e.g. in simulations of metabolic evolu-
tion based on group-transfer reactions [72] that ex-
plain the emergence of hub metabolites.

Visualization

The analysis of complex simulations is impossible
without efficient visualization tools, in particular in
the current exploratory phase of research, where it is
not clear at all which evolutionary patterns we will
encounter and which aggregate statistics can be used
to summarize the simulation results.

A suitable representation for a metabolic network
is a directed bipartite graph with two types of nodes,
i.e. reactions and molecules. The adjacent nodes of
a reaction are the substances consumed — incoming
edges — or produced – outgoing edges. For intuitive
visual distinction, we represent reactions as yellow
squares and molecule nodes as white circles. The
number of potential fluxes through a graph element
is represented by the node size, or edge width, re-
spectively. We used here the orthogonal grid based
layout [73]. Nodes lie on even integer grid positions.
Edges run along grid segments and may bend at any
grid position. The layout algorithm allows multi-
edges but no loops. In the first step of the algorithm,
the nodes are placed at crossing sections of a regular
grid minimizing the global stress. The edge routing
step places edges on a sequence of grid lines minimiz-
ing a global edge cost function taking into account
the number of bends, crossings, edge length and seg-
ment densities. The last step displaces edges running
along the same segments to avoid overlapping edge
routes. This approach does not take edge directions
into account. When visualizing flux dynamics of the
network, this may not be the most intuitive method.
Nevertheless, the produced drawings are fairly com-
pact and appear to be more aesthetic even for larger
graphs.

Evolution of Metabolisms
Simulation-based studies of the evolution of
metabolisms so far pre-suppose the presence of an
elaborate complement of metabolic enzymes and fo-
cused on the structural changes of network of cat-
alyzed reactions under the action of mutations that
change enzyme specificities, see e.g. [72]. On the
other hand, there is mounting evidence that bio-
chemical aspects, such as similarities among cat-
alyzed reactions and their coupling in pathways in-
fluences the evolutionary patterns of the many gene
families that encode metabolic enzymes [74,75].

The simulation system described in the previous
sections attempts to address this point head on. In-
stead of artificial high-level proxies of the underlying
chemical entities, we strive to simulate the entire
chemical universe as completely as possible. As a
consequence, we can in particular address the origin
of metabolism itself. We may start from a primi-
tive proto-cell that is just about to invent its first
enzyme, and ask how the internalization of chemical
reactions into metabolic pathways proceeds in the
most early steps of molecular evolution.

Several different scenaria have been discussed in
the literature, reviewed recently in [76]:

1. The retrograde hypothesis [77] postulates that
internalization starts with the last reaction in
the pathway and stepwisely generates, via gene
duplication, enzymes the extend the pathway
to more an more distant starting points. Ex-
amples include histidine biosynthesis and ni-
trogen fixation.

2. The forward hypothesis [78], in contrast, sug-
gest that evolution proceeds from simple to
complex biochemical compounds, so that the
oldest enzymes are those at the beginning of
pathways. A good example is the isoprene lipid
pathway.

3. The patchwork hypothesis [79,80] suggests that
metabolic pathways may have been assembled
through the recruitment of primitive enzymes
that could react with a wide range of chemi-
cally related substrates.

4. The semi-enzymatic hypothesis [81] posits the
emergence of a limited number of “starters”,
novel protein classes that later diversified into
large paralog groups. These starters would
have taken over originally uncatalyzed reac-
tions of stable abundant chemical species in
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Figure 6: A series of simulated metabolic networks after (a) 10, (b) 40, (c) 50, and (d) 100 generations.
Yellow squares represent enzymes, gray circles represent metabolites. An edge leading from a metabolite to
an enzyme indicates that the respective metabolite is an educt in the reaction. An edge from an enzyme to
a metabolite marks it as a product. The size of the nodes and the width of the edges encode for the number
of minimal pathways in which the respective object is involved. The colors in panel (d) encode the age of
the reactions, where red stands for old and blue for newer reactions.

the environment or of (by-)products of already
established pathways.

Although all these mechanisms appear to have left
traces in the extant metabolic networks (see [76]
and the references therein), their relative impor-
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tance in early evolution remains unclear. First, re-
placement of enzymes by non-homologous functional
analogs may have been a frequent in the early phases
of evolution (which may have been dominated by
horizontal gene transfer [82]). This would super-
impose a patchwork pattern on the metabolic net-
work that eventually eradicates genomic traces of
more ancient states. If LUCA was predated by a
ribo-organism with an elaborate ribozyme-catalyzed
metabolism, the ancestral catalysts have been com-
pletely replaced by peptide-based innovations. This
would naturally produce a pattern consistent with
the predictions of Lazcano and Miller, with novel
protein families rapidly replacing functionally anal-
ogous ribozymes throughout the system.

We argue, therefore, that insights into the ear-
liest evolutionary history of metabolism cannot be
safely based on comparative studies of the extant en-
zyme repertoires, since the latter may have emerged
much later than the metabolic pathways themselves.
As a alternative we propose here to explore system-
atically the selection pressures and advantages as-
sociated with the genetic internalization of reaction
pathways that arise from the underlying chemistry
itself. Although we cannot – yet – report on a co-
herent scenario of metabolic evolution, our first sim-
ulations show that a simulation approach utilizing a
full-fledged artificial chemistry and complex model
of biopolymers is feasible, Fig. 6.

For this contribution, we performed two simu-
lation runs for a length of 100 generations. Both
runs were initialized with the full set of chemical re-
actions to chose from, the same configurations for
genome length (5000 bases), TATA-box constitution
(“UAUA”) and gene length (100 bases) but with dif-
ferent starting conditions and different selection cri-
teria.

The first simulation run (Fig. 6) starts with
a population of ten cells in an environment con-
stituting of a set of five chemical molecules,
namely, cyclobutadiene, ethenol, phthalic anhy-
dride, methylbutadiene, and cyclohexa-1,3-diene. In
each generation cells are selected based on their pro-
duction of molecules with maximal Balaban-Index
(this leads to molecules with a high degree of ram-
ification). The selected cells produce one copy of
themselves, which might include a mutation or du-
plication event.

The second simulation run (see animation in Ad-
ditional Files) with a starting population of just one
cell, increasing in size up to 100 cells. The environ-

ment consists of glucose only. Fitness values corre-
spond here to production of molecules with a max-
imal Wiener number. Until the population reached
100 cells, no selection is performed. Afterwards the
same procedure of selection and multiplication as
above is applied.

It can be observed in both simulations, as well
as in most of the simulations we performed (e.g.
in [61]), that enzymes and metabolites from earlier
stages are involved in more reactions and more fre-
quently used pathways than enzymes and metabo-
lites from later stages. In Fig. 6 (d) you can see
that most of the more recent reactions (blue) have
a smaller flux (thin line), while older reactions (red)
have a bigger flux (thick line). It can be speculated,
that this finding supports the patchwork hypothesis
assuming enzyme recruitment. Further simulation
runs with different starting conditions and configu-
rations, should bring more insight in this and related
questions.

In a previous study [61], we showed for a se-
ries of simulations (1000 generations), that the pro-
duced networks have similar structural properties
as real world metabolic networks. In particular,
we discussed the node degree distribution follow-
ing the power law and consequently, the existence
of hub metabolites. Currently, we are investigating
the similarity to metabolic networks from pathway
databases, in terms of more dynamical properties
based on the set of extreme pathways [83] and min-
imal knockout sets [84].

The simulation system described here demon-
strates that computational investigations into ma-
jor organizational transitions — here the transition
from a chemical reaction system to a genetically con-
trolled metabolism — are feasible in practice. Our
work also exemplifies that progress in this direction
requires the construction of multi-scale models in
which different components (chemical reactions, cat-
alytic biopolymers, and genetic machineries) are rep-
resented as different levels of abstraction. A major
difficulty with such models lies in the construction
of the interfaces between the levels of description,
highlighted here by the sub-system modeling the cat-
alytic function of our “ribozymes”.
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von Ragué Schleyer P: How accurate are DFT treat-
ments of organic energies? Org. Lett. 2007, 9:1851–
1854.

31. Brittain DRB, Lin CY, Gilbert ATB, Izgorodina EI,
Gill PMW, Coote ML: The role of exchange in
systematic DFT errors for some organic reac-
tions. Physical chemistry chemical physics : PCCP
2009, 11(8):1138–1142.

32. Gasteiger J, Rudolph C, Sadowski J: Automatic Gen-
eration of 3D Atomic Coordinates for Organic
Molecules. Tetrahedron Comp. Method. 1990, 3(6):537–
547.

33. Fujita S: Description of Organic Reactions Based
on Imaginary Transition Structures. 1. Introduc-
tion of new concepts. J. Chem. Inf. Comput. Sci.
1986, 26(4):205–212.

34. Faulon JL, Sault AG: Stochastic generator of chem-
ical structure. 3. Reaction network generation. J.
Chem. Inf. Comput. Sci. 2001, 41(4):894–908.
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facker IL: The Vienna RNA Websuite. Nucl. Acids
Res. 2008, 36:W70–W74.

57. Fontana W, Schuster P: Continuity in evolu-
tion: on the nature of transitions. Science 1998,
280(5368):1451–5.

58. Herges R: Organizing Principle of Complex Reac-
tions and Theory of Coarctate Transition States.
Angew. Chem. Int. Ed. 1994, 33(3):255–276.

59. Hendrickson JB, Miller TM: Reaction indexing for re-
action databases. J. Chem. Inf. Comput. Sci. 1990,
30(4):403–408.

14



60. Herges R: Coarctate Transition States: The Dis-
covery of a Reaction Principle. J. Chem. Inf. Com-
put. Sci. 1994, 34:91–102.

61. Ullrich A, Flamm C: Functional Evolution of
Ribozyme-Catalyzed Metabolisms in a Graph-
Based Toy-Universe. In Proceedings of the 6th In-
ternational Conference on Computational Methodes in
Systems Biology (CSMB), Volume 5307 of Lect. Notes
Bioinf.. Edited by Istrail S 2008:28–43.

62. Fontana W, Stadler PF, Tarazona P, Weinberger ED,
Schuster P: RNA folding and combinatory land-
scapes. Physical Review E 1993, 47(3):2083–2099.

63. Ullrich A: Evolution of Metabolism in a graph-
based Toy-Universe. PhD thesis, Universität Leipzig,
Germany 2008. [MSc Thesis].

64. Stadler PF: Fitness Landscapes Arising from the
Sequence-Structure Maps of Biopolymers. J. Mol.
Struct. 1999, 463(1-2):7–19.

65. Ullrich A, Flamm C: A Sequence-to-Function Map
for Ribozyme-catalyzed Metabolisms. In ECAL,
Lect. Notes Comp. Sci. 2009.

66. Palsson BO: Systems Biology: Properties of Recon-
structed Networks. New York, NY, USA: Cambridge Uni-
versity Press 2006.

67. Gagneur J, Klamt S: Computation of elementary
modes: a unifying framework and the new binary
approach. BMC Bioinformatics 2004, 5(175).

68. Balaban AT: Highly discriminating distance-based
topological index. Chem. Phys. Lett. 1982, 89(5):399–
404.

69. Wiener H: Structural Determination of Paraffin
Boiling Points. J. Am. Chem. Soc. 1947, 69:17–20.

70. Axelrod R: The Complexity of Cooperation: Agent-Based
Models of Competition and Collaboration. Princeton, NJ:
Princeton University Press 1997.

71. Orr HA: The evolutionary genetics of adaptation:
a simulation study. Genet. Res. Camb. 1999, 74:207–
214.

72. Pfeiffer T, Soyer OS, Bonhoeffer S: The Evolution of
Connectivity in Metabolic Networks. PLoS Biol.
2005, 3:e228.

73. Rohrschneider M, Heine C, Reichenbach A, Kerren A,
Scheuermann G: A Novel Grid-based Visualization
Approach for Metabolic Networks with Advanced
Focus and Context View. In 17th International Sym-
posium on Graph Drawing (GD09), Lect. Notes Comp.
Sci.. Edited by Emden Gansner DE, Springer 2009. [To
appear].
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