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ABSTRACT: In the analysis of complex networks, the description of etiohary pro-
cesses, or investigations into dynamics on fitness or erlargiscapes notions such as
similarity, neighborhood, connectedness, or continuitghmnge appear in a natural way.
These concepts are of an inherently topological nature.eitleeless, the connection to
the mathematical discipline of point set topology is ramigde in the literature, presum-
ably because in most applications there is no natural obcesponding to an open or
closed set. The link to textbook topology thus cannot made straightforward manner.
Many of the deep results of point set topology still remaitidyghowever, when open
sets are abandoned an generalizations of the closure oparatused a the foundation of
the mathematical theory. Here we survey some applicatibesah generalized point set
topologies to chemistry and biology, providing an overvigiwhe underlying mathemati-
cal structures.



INTRODUCTION

Investigations into general principles underlying cheahieaction networks,
molecular phylogenetics, evolutionary changes, or theirigl of biopoly-
mers naturally encounter notions suchsasilarity, proximity, connected-
ness or continuity of change To a mathematician, all of these concepts
are intrinsically topological in nature. On the other haaltlthese systems
are very far away from the “continuum” picture so familiarghysics and
chemistry that familiar constructions such&balls seem to be little use.
Even worsethe starting point of textbook topology, th@pen setdoes not
have a natural counterpart in the paradigmatic examplésaiavill con-
sider throughout this contribution.

EduardCech’s treatise of Topological Spaces [9], however, showad t
the classical theory of Point Set Topology can be constducta different
way, starting from Kuratowski’s axioms of closure functsoor an equiv-
alent notion of neighborhoods. As we shall see below, thasebe seen
as formalizations of a vague notion of accessibility thes lat the heart of
many of the questions that we are interested in. Before pdacgédo the
mathematical framework, we briefly introduce a few of our &y stems.
We note, finally, that generalized topological spaces haydications in
various applied domains of computer science, includingalignage pro-
cessing, information representation, the semantics ofatlodic, or hand-
writing recognition [21, 66, 62, 31, 59, 56, 22, 60].

Chemical Reaction Networks. We start from a fixed seX of molecular
types or chemical species. A chemical reaciois a transformation rule

of the form
Z( SpxX— Z( S xX (1)
Xe Xe

whereE, = {x € X|a, , > 0 are the educts arf}; := {xc X|af, >0 are
the products of reactiop. Thus we can interpret reactignas a hyperedge
ép = (Ep, E;) in a directed hypergrapfy. It may be convenient, even, to
interpretE* andE~ as multi-sets to incorporate the stoichiometric coeffi-
cientssgX as multiplicities [82]. The coefficienl$X are connected to the
stoichiometric matridSvia S, x = s+ p,X—s, . Figure 1 shows a graphical

description of small chemical reaction network.



Figure 1: Hypergraph representation of the reaction nétwdbrelemen-

tary reaction steps for the overall enzyme catalyzed readii+ B Ec
with unordered substrate binding. Reaction nodes are drawguares and
species nodes as gray circles. (Note for clarity the in- arttlaw reaction
nodes p1 — p3) have been omitted.)

Recently, the Network of Organic Chemistry (NOC) [23, 6] hasrbee
constructed from all organic reactions reported in the cbehiiterature
since 1779. Despite the apparent complexity of this netywtkich cap-
tures all the knowledge on synthetic organic chemistry, NN@Gws an un-
expected but well-defined topological structure [37]. Imticalar, NOC
possesses a densely wired core region of about 300 syraietioportant
building blocks and industrial compounds which are mujuedinnected by
short synthetic pathways. The core region is embedded nga énd sparse
periphery constituting approximately 78% of chemistry. @onmnds in the
periphery can be reached on average in 3-7 synthetic stepstfre core
region. Core region and periphery are surrounded by sméditesbislands
constituting about 18% of NOC. Much smaller chemical reactietworks
that represent the metabolic pathways of several organisrocanpiled in
dedicated databases, see e.g. [52].



In the analysis of such chemical networks, so-cafiathwaysi.e., se-
guences of reactions/hyperedges that connect chemiaatl wigh output
molecules, and catalytic cycles are of particular inter€temical orga-
nizations, that is, closed and self-maintaining subset$ {27, 18], fur-
thermore, are closely related to the limit set of the comesing reaction
kinetics [61]. The most useful of these structural featanmesrelated to al-
gebraic invariants that can be expressed in ternt§ ske [4] for a recent
review.

The topological description of chemical networks centegsctibing
what can be produced instantaneously fromAsetX of molecular species,
ie.,

p(A) = |J {x&X|scp >0} 2
pP:Ey

A speciesx is maintainablein A if no reactionp with E; C A inevitably
leads to the depletion of The set of maintainable speciesAnwill be
denoted bym(A). A setA is closed ifp(A) = A and self-maintaining if
m(A) = A. So-calledlow systemsnake the additional assumption that ev-
ery speciex can flow out of the system. Bothandm are set-valued set
functions, i.e., they are of the forp: B (X) — B (X), where3(X) denotes
the power-set oK. One can show that in flow systems bgitandm are
isotonic (see below), and hence impose a generalized tgigalcstructure
on X [5].

Evolutionary Computation and Genetic Evolution. A (combinatorial)
optimization problem is usually specified in terms of aXeif configura-
tions and a cost functiof : X — R, whereR is an ordered set, or, in the
case of multi-objective optimization [17], a partially ereéd set [74]. A
large class of heuristic algorithms, including Simulateth@aling, Genetic
Algorithms, Evolutionary Strategies, or Genetic Prograngnattempt to
find optimal solutions by moving through the séand evaluating the cost
function at different pointx € X. This search procedure imposes an im-
plicit mathematical structure on the s¢tthat determines how points or,
more generally, subsets are mutually accessible. In a motegically
inspired setting, thisearch spacés uniquely determined by the genetic
operators, i.e., by mutation, recombination, duplicatideletion, or rear-
rangement of gene order.
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Figure 2: Barrier tree of a simple landscape with mutatioft)(end muta-
tion plus 1-point-crossover. Figure adapted from [26].

A natural way of abstracting the action of these operator® ide-
termine for each “populationA C X, the setc(A) of configurations that
can be reached from by applying a single on of these operator. This
is most easily visualized for mutations: Each paremtay give rise to a
setc({x}) of possible offsprings (mutants). In this cag¥, c) defines a
(possibly directed) graph. The situation becomes more Goatpd, how-
ever, when recombination (crossover) is considered [3Bg dnalogue of
the adjacency relation of the graph is the recombinatio&aty), which
is defined as the set of all (possible) recombinants of twengax and
y. Recombination sets are usually required to satisfy{fly} € Z(x,y),
and (2)Z(x,y) = Z(y,x), Often (3)%(x,x) = {x} is assumed, which is,
however, not satisfied by models of unequal crossover [6b,Rhctions
Z . X x X — Z(X) satisfying these three axioms were also considered un-
der different names, e.gransit functiond10] and asP-structureq77, 75].

We note, furthermore, that recombination can be seen asaryerelation
(X,v,y) € Z < ve Z(XY) closely connected with betweenness relations
[1].

Similar to the chemical networks, we may base a formal treatrof

topological structures on a set-values set-function thebdes reachability



at the level of sets by setting

c(A = |J Z(xy) 3)

X,YEeA

The topological structure defined lwyalso brings with it a concept of
connectedness [81, 43], and hence allows a constructioevef sets or
“basins” for the cost functiorf : X — R as connected components (w.r.t.
c) of the setsX;, = {x|f(x) < h}. The basin have a hierarchical structure:
if A andB are connected componentsX§ and X, ' < h”, resp., then
eitherAC Bor ANB=0. This gives rise to a tree structure representing the
landscape [53, 32, 19, 24, 25, 39, 79], called the barriet trecal minima

of the cost function correspond to the leaves of the treerimtnodes are
saddle points that define the fitness barriers between locaina. These
notion of a local minimum is clearly a topological concefas,it can be
defined in terms of the behavior of the cost function in theyhkeorhood
around a pointxis a local minimum if there is a neighborhobidof x such
that f(y) > f(x) for all x € N. The concept of a saddle point is much less
clear. A number of similar but not-equivalent constructiamdiscussed in
detail in [25]. A connection to combinatorial vector fieldsdrawn in [71].

The Genotype-Phenotype Map. Two distinct and largely independent
processes drive biological evolution and lie at the hea@ludrles Darwin’s
theory: the generation of variation and selection of theavds according
to their fitness. With the advent of molecular genetics it b@some clear
that variation is produced (primarily) at the moleculaddyy mutation, re-
combination, and other rearrangements of the genomic segueforma-
tion. Selection, in contrast, acts on the macroscopicdivrganism. The
genotype-phenotype map, which relates genetic informatarganismal
appearance, properties, and behavior, thus plays a ceolieah modern
theories of evolution [76].

RNA secondary structures have played a major role for therstated-
ing of genotype-phenotype maps in general since they caedufly ex-
plored computationally [64]. In this setting, the primaggsience of the
RNA is the genotype, while its secondary structure takes enrdke of
phenotype. At the phenotypic level, evolutionary processe governed by
the accessibility of phenotypic variants. The biophyspraberties of RNA
molecules allow at least a qualitative understanding ofikedy structural

6



Figure 3: Fontana-Schuster topology of RNA phenotype sdabes.: Fre-
quent transitions between RNA secondary structures in nsgpto point
mutations are the opening or closing of singe base pairsfaadpgening
of constrained stems. The latter transition is not revéesince must se-
guences are not not pre-disposed to closing a constraiagdistresponse
to a point mutation. R.h.s.: Space of secondary structums f6C se-
guences of length 10. Arrows indicate accessibility defiasdrequent
transitions in the sense of the two rules on the r.h.s. Figdepted from
[12, 68].

effects of simple point mutations and thus the formulatidbmplzenotypic
rules of accessibility [28, 29], see Figure 3.

An evolutionary trajectory can be regarded as a functifnom the time
axis into phenotype space, whefret) represents e.g. the dominating phe-
notype in a population at time Computer simulations of the RNA model
reveal a pattern of periods of stasis with intermittent teuo$§ adaptive evo-
lution. With few exception, consecutive phenotypes anisenfeach other
through one of the easily accessible structural changesgof3F These
transition are indeed continuous in the usual topologieass [13, 73].

A phenotype is usually described by a set of “charactersit, i) prop-
erties that can be used to differentiate between diffeygr@s of organisms.
The particular state of a given character (e.g. the preseihgdingers) is
interpreted as an evolutionary adaptation caused by natelection. This
explanation requires the assumption that the charactercsia be produced
by mutation without significantly affecting the functioitgland/or struc-
ture of the rest of the body, i.e., “quasi-independence].[2& argued in
[80], this is a statement about the structure of accessditeis phenotype
space, namely the requirement that the phenotype spacecapiesented



Figure 4: Phenotype space as a product of two characterdgy“bloape”
and “faces”). For illustrative purpose the Cartesian grapdpct rather
than the strong graph product, which corresponds to stdnataduct of
topological spaces, is shown. The latter is obtained byragttie two di-
agonal edges to each quadrangle. Figure adapted from [70].
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Figure 5: Sketch of
the DAG G(V,E).
Fat dots indicate the
vertices in the extant
sampleX Cc V. A
possible  clustering
that conforms to the
phylogenetic relation-
ships is indicated. For
details we refer to
[20].

as a product of generalized topological space correspgrdithe individ-

ual characters, Fig. 4. Since characters are meaningfeafipetl only in a
local or regional subset of the entire phenotype space,rtaipt structure
also can only be a local approximation. These ideas havdadethe devel-
opment of a theory of “Approximative Graph Products” ancegesh into
algorithms for local approximate factorization of graphg,[48].



The “DAG of Everything”.  Instead of looking at the potential of evolu-
tionary processes it is also of interest to consider onlyatteial history

of life. This idea was recently explored in [20] using a grap(V,A)
whose vertex se¥ consists of all individuals that ever lived. A directed
edgex — y indicates thak contributed genetic information tp Pedigree
graphs are special cases of this construction, where tdegree is lim-
ited to 2, namely and arc from the father and an arc from thénerptee
e.g. [78, 63]. This model also easily incorporates horiabgene transfer
or the formation of hybrid species, and hence forms also & bastudy
arbitrary complex phylogenetic networks [54]. Given a sibsf extant
observable individualX C V several notions of connectedness of subsets
of X can be defined. The main result of [20] is that these lead toralat
collections of clusters that can be interpreted e.g. asogeylies, Fig. 5.
The DAG G(V,A) might also be an attractive starting point to study more
general forms of phylogenetic networks.

GENERALIZED TOPOLOGY

Abstract closure functions

Instead of open sets, most approaches to generalized tppstart from
an abstractlosure function ¢(X) — B (X) that encapsulates a notion of
reachability or accessibility from a given subgetThe natural conjugate
i PB(X) — P(X) defined byi(A) = X\ ¢(X \ A) identifies the interior oA
as the part oA that is not accessible from the complement, i.e., the oeitsid
of A. Closure and, equivalently, interior give rise to a concdptagh-
borhood of pointsN is a neighborhood df, if its interior containsx. The
collection of neighborhoods can be viewed as a functionx — B (P (X))
so thatN € A4/ (x) iff x € i(N), i.e., iff x¢ c(X\ N). Closure, interior, and
neighborhood are equivalent in specifying the generalippdlogy [15].
For later reference we note that the notion of neighborhaoadisrally ex-
tends to setsN € .4 (A) iff ACi(N), i.e.,Nis a neighborhood of ak € A.
The notion of continuity lies at the heart of topologicaldhge In the
most abstract setting it comes in two flavors. Détcy ) and(Y,cy) by two
sets, each endowed with its closure function A functiarX — Y is



closure preserving if for all Ae Z2(X), f(cx(A)

) Coy(f ( A)) holds;
continuous ifforall Be 22(Y), cx(f1(B))C f-

L(cy(B)) holds.

One says that : X — Y is continuous in xf B € .4 (f(x)) impliesf~1(B) €
A (X). It can be shown thaft : X — Y is continuous if and only if it is con-
tinuous in eackx € X [35, Thm.3.1.].

Obviously, the identity: (X,c) — (X, c) : x+— Xis both closure-preserving
and continuous. Furthermore, the concatenatieng(f) of the closure-
preserving (continuous) functioris X — Y andg:Y — Z is again closure-
preserving (continuous).

Note that at this point we have made no assumption at all opribye
erties ofc. Almost all approaches to extend the framework of topology
assume at least that the closure functions are isotonic42115, 7, 34].
The importance of isotony is emphasized by several equivalenditions
[42, Lem.10] listed in Tab. 1 below. A (not necessarily nanpgy) collec-
tion § C P(X) is astackif F € § andF C G impliesG € §. The closure
function c is isotonic if and only if the neighborhood system (x) is a
stack for allx € X. In isotone spaces, continuity and closure preservation
are equivalent.

Kuratowski's axioms

Kuratowski’'s axioms for the closure function of a topolagispace [55]
may be seen as specializations of the very general closnctidas that we
have considered so far. It is interesting to note that eadheyh can be
formulated equivalently for closure, interior, and neighiods. Different
combinations of these axioms, summarized in Table 2 definergézed
topological structures that have been studied to variogee@s in the liter-
ature.

Connectedness and Separation

Topological connectedness is closely related to separalioe basic idea is
to investigate under which conditions closure or neighbods of distinct
points or sets do or do not intersect. We say thandB areseparatedf
they have disjoint neighborhoods, i.e (A)n.4(B) = 0. Two sets are
semi-separatedf there are neighborhoody’ € .4"(A) andN" € _4/(B)
such thaANN” = N'NB = 0. Consider a continuous functian: (X,c) —

10



Table 1: Kuratowski’s axioms.
The properties below are meant to hold forAlB € (X) and allx € X,
respectively.

[ [ closure [ interior [ neighborhood |

KO’ JA:x ¢ c(A) JA:xeci(A) N (X) # &
KO c(0)=0 i(X)=X Xe AN (X)
K1 ACB = c(A)Cc(B) | ACB=i(A)Ci(B) | Ne.#(x)andNCN’
isotonic c(ANB) C c(A)Nc(B) i(A) Ui(B) Ci(AUB) =
monotone | c(A)Uc(B) C c(AUB) i(ANB) Ci(A)Ni(B) N’ € ¥ (x)
KA c(X)=X i(0)=0 D¢ N (X
KB AUB=X = ANB=0 = N N" € ¥ (x) =

c(A)Uc(B) =X i(A)Ni(B) =10 N'NN" #0
K2 ACc(A) i(A)CA Ne ./ (x) = xeN
expansive
K3 c(AUB) C c(A)uc(B) i(A)Ni(B) Ci(AUB) N ,N" € A (x) =
sub-linear N'AN" € 4 (x)
K4 c(c(A)) =c(A) i(i(A) =i(A) Ne AN (X) <
idempotent i(N) e A (x)
K5 A (X) =0 oraN(x) :
additive Uc) =cJA) i) =i(NA) N e A (x)

il il icl il
<= N(X)CN

[0,1], where[0, 1] denotes the unit interval endowed with the usual topology
of the real numbers. It is called dsrysohn functiorseparatingA andB
if u(A) C {0} andu(B) C {1}. If such a function existsA andB are
called Urysohn-separateB.is completely withinA, B € A, if BandX\ A
are Urysohn-separated. Urysohn-separated implies sedanaplies semi-
separated.

A large number of subtly differergeparation axioméave been con-
sidered in the literature, of which here we just list a few iteeghe flavor.
In the following, we consider conditions for all distinctipts x, y and all
disjoint non-empty subse#s B in (X,c).

(th0) there isze X andN € .#(z) such that for aN" ¢ N, N € .4(2)
holdx € N" andy ¢ N’ or vice versa

(thl) A (x) = A (y) impliesx=y.
(TO) there isN € .#/(x) such thaty ¢ N or there isN’ € .4'(y) such that

11



Table 2: Axioms for various types of closure space.
Defining axioms are marked bw; further properties that are implied are
marked byo.

%) —
2 > <
= < |2 | T
(&) 5] b/'E )
S ﬂ &) 2? UI§ 2 . 1)
— [ ~ /‘\O ~
| |a5|c2| 55|22 <2
s |ug|ug <258 | 38
Axiom T | <L | <0 | On | o8 | O® | Ref.
(KO) | (K1) | (K2) | (K3) | (K4) | (K5)
Extended Topology | e o [42]
Brissaud ° ° [7]
Neighborhood space e ° ° [44]
Closure space (o) o o . [67]
Smyth space ° ° ° [66]
Binary relation o o o o | [58,8]
Pretopology . . . . [9]
Topology ° ° ° ° °
Alexandroff space o o ° o .
Alexandroff topology| e o ) o o o [2]
xé¢ N,

(TO) y ¢ c({x}) orx ¢ c({y}).

(T1) thereisN € .4/(x) andN’ € .#/(y) such tha ¢ N’ andy ¢ N.
(T1) c(x) C {x}.

(T2) there isN € .4 (x) andN’ € 4 (y) such thaNNN’ = 0.
(T23) thereisN € .4 (x) andN’ € .#'(y) such that(N)Nc(N') = 0.

12



(T2U) Any two distinctx andy are Urysohn-separated.
(R) If x¢ c(A) then there are disjoint neighborhoodsxatndA.

(R’) For every neighborhoodN of x there is also a neighborhoddl €
A (X) such thac(U) C N.

(CR) For every neighborhool of x there is also a neighborhoadl €
A (X) such that) € N.

(QN) If c(A)Nc(B) = 0 thenA andB are separated.

(A)Nc
(N) If c(A)nc(B) =0 thenc(A) andc(B) are separated.
(A)nc

(UN) If c(A)nc(B) = 0 thenA andB are Urysohn-separated.

(CN) Any two semi-separated sets are separated.
Several symmetry conditions are close associated witlrstpa

(RO) If x is contained in every neighborhood ptheny is contained in
every neighborhood of

(RO’) x e c({y}) impliesy € c({x}).
(S) Ifxe NforallN € 4 (y) then.A (y) = A (y)
(S") If c(A)nc({x}) # 0 thenx € c(A).
(RE) fNNN'#0forallN € .4 (x) andN’ € 4 (x), then4 (y) = A (y).

The interesting point about these axioms is that there abmehte chains of
implications among them in (ordinary) topological spac&sme of these
carry over to pretopologies, neighborhood spaces, or esggoric spaces
satisfying only (KO) and (K1), see Fig. 6 and its caption. &efion axioms
have a close connections to generalized uniform strucfdfdsnd the ex-
istence of metrics that allow the definition &balls as basis for neighbor-
hoods of points, see [9].

The separation axiom (TO) implies bathinnessconditions (thO) and
(th1), which do not seem to have been studied in detail in tmext of
topology. In particular (thl) plays an important role in theory of graph
products [49].

13
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Figure 6: Relationships among separation and symmetry axibifferent

arrow types indicate implications that hold in all isotopaee, in all neigh-
borhood space, in all pretopological space, or only in togigial spaces.
The (T)-separation axioms are defined by a normality camdiéind (T1),

dashed double-arrow, or by a regularity/symmetry condiéind (TO), dot-
ted double-arrow, respectively. Most of the proofs for tmplications are
non-trivial. They can be found in the book [9], in the suppésrtal material
to [68], or in [69].

There have been several attempts to use connectednessaisritiee
notion in topological theory [81, 43, 45]. Here, we emplog thore usual
approach to defined connectedness as a derived propertysurelspaces:

A setZ is connectedn (X,c) if it is not a disjoint union of semi-separated
pairs of non-empty setd,Z\ A. In isotonic spaces, connected sets are
characterized by the Hausdorff-Lennes condition:

[(A)N(Z\A)U[C(Z\A)NA] # 0 (4)

In neighborhood spaces, we arrive at a more familiar dedimitiA set is
connected if and only if it is not the disjoint union of two rempty closed
(open) sets [38, Thm.5.2].
The collection of connected sets satisfies the following fwoperties

in isotonic spaces [68, 38]:

(cl) If Z consists of a single point, thehis connected.

(c2) IfY andZ are connected andNZ # 0 thenY U Z is connected

(c3) If Zis connected and C c¢(Z), thenc(Z) is also connected.

(c4) Letl be an arbitrary index set ande X. Suppose, is connected
andx e Z fori1el. ThenW :=J,¢, Z is connected.

14



Consider a seA and a poink € A and letA[x] be the union of all connected
subsets oA that containx. By (c4),A[x] is itself connected. We call it the
connected component éfcontainingx. Note that the well-definedness of
AJx| is required e.g. for the construction of the barrier treestineed in
the Introduction.

The relationship of connected components and semi-sépatkecomes
counter-intuitive in non-additive spaces: Supp@skas a finite number
k > 1 of connected components and @te such a component. Thén
andA\ Q are not necessarily semi-separated un{&ss) is a pretopology
[26]. Without the benefit of additivity, furthermore, it bmoes natural to
investigate alternative definitions of connectedness5)nfpr instance, a
less stringent definition of connectivity is introducedttigin particular
suitable for chemical reaction network& and B are productively sepa-
ratedif for all Z C AUB holds (1)c(ZNnA)NB =0 andc(ZNB)NA=0,
and (2)c(Z) = c(ZNA)Uc(ZNB). A setisZ productively connecteif
it cannot be written as the disjoint union of two non-emptgductively
separated subsets.

Path-connectedness is a widely used notion of connectedhatin
general is stronger than topological connectedness. Hnentopological
point of view, apathis acontinuousunctionp: [0, 1] — X whose endpoints
arep(0) andp(1). A setAis path-connected for any two pointsx,y € A,
there is a patip with p(0) = xandp(1) =Y.

A useful lemma [26] characterizes connectedness in 2-@aits Let
(X,c) be a neighborhood space afidy} C X a 2-point subset. Then the
following three statements are equivalent: B c({x}) orx € c({y}); (2)
{x,y} is path-connected; (3),y} is connected. We will return to this point
later when considering finite generalized topologies.

Product Spaces

Let (X1,c1) and (X2,¢2) be two isotonic spaces. Then the product space
(X1 x X2,€1 X €) is defined by means of the neighborhood systéftx;, x2),
where

N € A (X1,X2) <= AN € A1(x1) andNy € A5(x2) such thatN; x N € N

()
For sets of the fornd\; x Ay this translates to(A; x Az) = ¢1(A1) x C2(A2)
in the product space, see [34, Thm.8.1]. (X,c1) and (Xp,cp) satisfy
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(K2), (K3), or (K4), respectively, then so does their produd/e remark
that the construction of products can be extended to infiiaitailies of
spaces, even uncountable ones. The projectipn§]; (Xj,cj) — (X,Ci) :
X={(...,%,...) — X are continuous.

The inductive product(Xy,c;1)00(Xz,c2) has the neighborhoods €
NB(xq, %) iff there isNy € .41(x1) andN, € .45(xz) such thaty x {xx} U
{X2} x N2 C N. This product is discussed briefly in [9].

Finite Generalized Topologies

For practical applications in computational biology anthpaitational chem-
istry, finite spaces are of particular interest. Of couraethis case (K3)
implies (K5). The by far best studied finite structure are finde pre-
topologies: these are the simple directed graphs. Morasgigcif (X,c)

is a finite pretopological space, the associated graph héexveetX and
(x,y) is a directed edge iff € c({x}). Conversely, given a graph this recipe
defines a finite pretopology ox[73]. Graphs that correspond to topologi-
cal spaces are considered e.g. in [13].

Several of the topological concepts outlined above havepeddently
have been developed in graph theory. Continuous functioimstance, co-
incide with graph homomorphisms [46], i.e., functiohs(X,E) — (Y,F)
such that(x,y) € E implies (f(x), f(y)) € F or f(x) = f(y). The usual
graph-theoretical definition of connectedness is alsodheesas pre-topological
connectedness: a two-element subpel} is connected if and only if
(x,y) € E or (y,x) € E. Furthermore, connectedness and path-connectedness
is the same [26]. The (RO) symmetry axiom, furthermore, atiarezes
undirected graphs. On the other hand, it appears to be unmkif®strong
connectedness in digraphs has a straightforward intatpyatas a topolog-
ical property.

The strong product of graphs coincides with the product okgalized
topological spaces, while the inductive product is the sagthie Cartesian
graph product. For graphs, products have been studied ficydar w.r.t.
to the conditions under which a graph has a unique prime riaet@n.
We refer to the book [40] for an extensive discussion of thEd. Inter-
estingly, thinness conditions play an important role irs ttontext. Local
and approximative product structures have been exploshtly [47, 48]
motivated by the interpretation of characters as locabfagpaces of phe-
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notype space [80].

As mentioned in the introduction, topological spaces apestly stud-
ied in terms of their closed sets, i.e., the collect®®r= {A|c(A) = A}. If
(K1) to (K4) are satisfied, we have (I1X) € ¢, (12) arbitrary intersections
of closed sets are closed, and (I13) the union of two closeslisatlosed.
In lattice theory more general so-calledersection structureare consid-
ered that fulfill only (12) see e.qg., [14], in graph theory geme structures
appear as convexities [11]. Since neither idempotency dditigity of the
closure function readily applies to the examples in theothiiction we will
not consider them further in this contribution.

Not much is known about finite neighborhood spaces. Theyspond
to theM-systemsntroduced in [50]. Consider a paiX,91) consisting of
a nonempty finite se&X and a functiordt: X — 2 (£ (X)) that associates
to eachx € X a collectiom(x) = {N1(x),N2(x),...,N9X®} of d(x) subsets
of X with the following properties:

(NO) M(x) # 0.
(N1) N'(x) € NI(x) impliesi = j.
(N2) x e Ni(x), for 1 <i < d(x).

91-systems are by construction exactly the finite neighbadlspaces, when
the N'(x) are interpreted a minimal neighborhoods, id¢ .4 (x) if and
only if there isN’ C N with N’ € 91(x). We may also interpret them as a spe-
cial type of directed hypergraphs with hyperedges of thefgix}, N'(x)).
Axiom (N1) ensures that it is simple.

The characterization of connectedness in 2-point setsq@égests to
associate a grapff‘(x, c) with vertex seX with a given finite neighborhood
space(X, c) such that(x,y) is a (directed) edge ¥ € c({x}). If cis addi-
tive, thanl is exactly the graph representation of the pretopologicate
(X,c). In finite neighborhood spaces every path consists of a finiteber
of connected 2-point sets consisting of consecutive poirias a subset of
X is path-connected if and only if the corresponding induadssaph of
I is path connected [26]. Connectedness is strictly weakeyepty since
a connected set with three points does not necessarily inortanected
pairs. Finite neighborhood spaces admit a unique primetfiaetion w.r.t.
to the usual topological product under certain conditiom§ §50].

17



Finite isotone spaces, finally, have not been consideredmbioatorial
objects to our knowledge.

DIRECTED HYPERGRAPHS AS TOPOLOGICAL STRUCTURES

It may come as a surprise that hypergraphs have remainedyrtinstud-
ied from a topological perspective. While the interpretated graphs as
finite pretopological spaces is quite natural, we will seloWwehat there
does not seem to be a unique canonical translation for hgggang.

A directed hypergraph consists of a vertex se¢ and a set’ of di-
rected hyperedges, each of which is a fgaie (E~,E*) with E~,E* C X.
A hypergraph is simple if no edge is properly contained intheoone, i.e.,
if E- CF~ andE™ C F' impliesE = F. One way of defining undirected
hypergraphs as a special case of directed ones is to reguireE~ for all
Ecé.

Given a directed hypergragh, it appears natural to consider the clo-
sure function

cA):= [J E* (6)
&E-CA
or
c(A):=AU [J ET (7)
&E-CA

depending on whether we want to insist thas enlarging or not. This ap-
proach indeed has been taken in [5] to describe chemicaloaawtworks.
These constructions, however, become trivial for unda@dtypergraphs
since the conditiofe™ = E~ for all hyperedges ensures tigh\) C A.

As a possible remedy one might identify undirected hypeigsawith
directed ones that satisfy the following symmetry conditio

(SH) For every directed hyperedge= (E—,E™) every pair(A,B) of non-
empty sets wittAUB = E~ UE™ is also a hyperedge.

In particular, in this casé{x},E) with E:=E~ UE™ and anyx € E is a
hyper-edge. Thus, for a given hyperedggf E~ C Athen therecec ENA
and hencé{x},E) also contributes to(A). Thus equ.(6) can be rephrased
as

cA= |J E (8)

& ENALD
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This expression also makes perfect sense for undirecteerdmgphs. It
is equally unsatisfactory, however, since this closurefion is obviously
additive and hence describes a (symmetric) graph with ed@crelation
x ~ y iff there a hyperedgé such thak,y € E.

An alternative approach is to consider hyperedges as mimeghbor-
hoods in the sense of tf&-systems introduced in the previous section. In
finite pretopologies, i.e. directed graphs, the intersectif all N € .47(x)
is again a neighborhood &f It coincides with the “in-neighborhood” of
given by

N(x) ={y € X|x€ c(y)} 9)

For directed hypergraphs, one would analogously postthatdyper-edges
that “produce’™ are the minimal neighborhoods xfi.e.,

Ne .V (X) — I&:xcETandE" UET CN (10)
It is straightforward to compute the corresponding clogunetion
c(A) = {x|3& : x € E" implies(E" UE")NA# 0} (11)

An undesirable feature remains, however. If we speciafimedonstruction
to directed graphs, i.e., so tHat andE™ consist of two distinct points for
each hyperedge, théthc .#(x) iff there is an ardy,x) such that,y € N.
The associated closure functiond@A) = AU {z|Nin(z) C A}. This is in
general not additive.

A possibly fruitful alternative is to start from the notatiof hypergraph
homomorphismgX, &) — (Y, mathcalP), i.e., mapsp : X — X’ so that
for every(E~,E™) € & there is(F~,F") € .# so that¢(E~) C F~ and
¢ (E*) C F. One may then ask if there exist isotonic closure functians s
that the hypergraph homomorphisms are exactly the conismfimction as
in the case of graphs. To our knowledge, this question is.open

We have to conclude that at present there is no satisfacttaspretation
of hypergraphs a topological objects.

DYNAMICAL ASPECTS
The notion oftopological dynamical systemsee e.g. [16] does not seem

to have explored in systematic way for generalized topckigipaces. A
natural starting point would be flows of the forem: T x X — X whereT
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is suitable (topological) semigroup such as the non-negatitegers and
(1,X) — X, wherel denotes the neutral elementdf Orbits, for instance,
are well-defined in this setting2(x) = {txt € T} C X, wheretx denotes
the action of the semigroup elemeran the pointx. Similarly, trajectories
are simply functions of the forr§ : T — X such that — & (t) =txg for a
fixed “initial condition” xo. In [73], for instance, conditions are explored
under which trajectories of phenotypic evolution are qumius. It turns
out that this matches well with intuition developed earirej28, 29] in the
context of the evolution of RNA secondary structures.

Combinatorial vector fields offer a more specialized altevedormal-
ization. LetM be a simplicial complex constructed over the lsatf sim-
plices, see e.g. [51]. We write < 1 if the simplexo lies in the bound-
ary of the simplext. A combinatorial vector fieldon M [30] is a map
n :K — Ku{g} such that

1. If n(o) # @ thendimn (o) = dim(o) + 1, ando < n(o).
2. Ifn(o)=1# @, thenn (1) = 2.
3. Forallo €K, o7} < 1.

We remark that combinatorial vector fields can in fact be @efion the
much more general CW-complexes [30].

Combinatorial vector fields come with a natural notionnepaths as
the analog of trajectories, namely a a finite sequence of Igiegy =
(0o, 10, 01, T1, ... On—1, Tn—1, On) Such thatn(o;) = 1; for 0 <i < n and
0411 < T. Arest point is a simplew such that) (o) = @ andn (o) = 0.
The rest points and the closedpaths together form the so-called chain-
recurrent setZ of . These play the role of attractors. All other trajectories
lead towardsz.

A Lyapunov functiorof the combinatorial vector fielg is a function
F :M — R such that

1. if 0 ¢ # andt > o then

(@ F(o)<F(n)if t#An(o)
(b) F(o) > F(1)if t=n(0)

2. ifoe# andt > o then
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(@ F(o)=F(r)ifo~T1
(b) F(o)<F(r)ifo¢rt

A combinatorial version of Conley’s theorem ensures thatethe Lya-
punov function for every combinatorial vector field [30]. Cloimatorial
vector fields thus form discrete analog for gradient vectids.

In [71] this observation was used to consider a the colleatbcom-
binatorial vector fields on a grapgh (with vertex setX) for which a given
functionF : X — R is a Lyapunov function. In this context, the function
F is interpreted as energy function. The combinatorial veftédd, on the
other hand, can be interpreted as a partial orientdion G so that{x,y}
is directed fromx to y iff n(x) = {x,y}. Conversely a system of directed
edgesP with the properties

1. (x,y) € Pimplies{x,y} € E (consistency wittG)
2. (x,y) € Pand(x,z) € P impliesy = z (uniqueness)
3. (x,y) € Pimplies(y,x) ¢ P (antisymmetry)

corresponds to a combinatorial vector field®nA trajectory inn is then
given by a sequence of vertices), i = 1,...k so that(x;, x1) € P.

These combinatorial vector fields provide a convenient rj@san of
the system of adaptive (downhill) walks on the energy laage(G, F) and
admits an alternative approach towards characterizinggdsarriers, and
their hierarchical structure. In particular, they highlighe complications
in the analysis of landscapes arising from degeneracidwieriergy func-
tion. GivenF, denote byG" the subgraph o6 with edges{x,y} € E(G)
if F(x) = F(y). The connected componer@s (x), the so called shelves of
the landscape, provide the main complication for practcahputations,
Fig. 7. While the vector fields for whick is a Lyapunov function nec-
essarily point downwards between shelves, it is complitaehandle the
possible orientations with a single shelf since edges mayibated in both
directions depending on the particular choicejof

A direct connection to the topology of the landsc&@eF ) is obtained
by mean of the following construction:

Definition. A pointy is reachable fronx in (G, F) if there is a combina-
torial vector fieldn for which F is a Lyapunov function and that admits a
trajectory fromx toy. LetC(x) be the set of vertices reachable fram
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Figure 7: Shelves, i.e., maximal connected sets on whiclerleegy func-
tion F is constant are indicated by dotted boxes. Edges dfat are ori-
ented by the combinatorial vector fieldare shown as arrows, the remain-

ing edges ofG are shown in gray. Edges between shelves are either not

oriented or point downwards in any combinatorial vectordfitdr which
F is a Lyapunov function. Both orientations are possible fayesdwithin
shelves. Figure adapted from [71].

As shown in [71]C can be extended to an additive closure function that
satisfies all of Kuratowski’'s axioms and hence defined a fioip®logical
space on the vertex s¥t This topology is intimately related with the bar-
rier structure of the landscape by means of the notion oflayah valley
in (G,F) is a maximal connected closed set with respect to the reditjab
topology. Equivalently a valleyV is a maximal connected subsetXfso
that no vertex ¢ W is reachable from anye W.

CONCLUDING REMARKS: COARSE GRAINING

Accessibility is of particular interest in the context ofoftstructive sys-
tems”, i.e., models comprising a set combinatorial objects set of rules
with which they can be combined. This was pioneered e.g.emtbrk of
Fontana and Buss [27] usimg-calculus as a modelling platform for ab-
stract chemistry. The state spaXein such models is usually not finite.
In simulations of (evolutionary) processes on such modaisilies of ob-
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jects emerge that share many regularities and differ eadlgnh size only
[27]. In chemistry, polymers are the most obvious examplatuially, the
guestion arises whether there are coarse-grained repaigean.

In the analysis of the fine structure of the Network of Orga@iem-
istry, it has turned out that so-called one-pot reactioms, reactions that
can be performed concurrently without the need to purifgnmediates and
hence are of practical interest in practice, play an impdriale [36]. Since
one-pot reaction lumps together individual reactions sgquences they
can be seen as a form of coarse-graining of the chemical spazently,
we have started to explore [3], from an algebraic perspectwether com-
positions of transformation rules can be employed to cagtamilies such
as homologous series (i.e., groups of chemicals with ana®g@roperties
that differ only in the number of simple structural unitskbd on their re-
active capabilities.

Coarse-graining is an import issue also in the analysis é.Gtness
landscapes. A rather simple example is the use of barries,txehich rep-
resent a partition of state spaXe Quotient spaceX/ ~, obtained by iden-
tifying ~equivalent points oX, thus appear to be a natural formal structure
to consider in this context. To our knowledge, this avenwgerw been ex-
plored systematically for any of the model systems disaiabeve. It will
be interesting to see if the intuitive connection of rule pasitions and
guotient spaces can be given a precise topological meaning.
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