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ABSTRACT: In the analysis of complex networks, the description of evolutionary pro-

cesses, or investigations into dynamics on fitness or energylandscapes notions such as

similarity, neighborhood, connectedness, or continuity of change appear in a natural way.

These concepts are of an inherently topological nature. Nevertheless, the connection to

the mathematical discipline of point set topology is rarelymade in the literature, presum-

ably because in most applications there is no natural objectcorresponding to an open or

closed set. The link to textbook topology thus cannot made ina straightforward manner.

Many of the deep results of point set topology still remain valid, however, when open

sets are abandoned an generalizations of the closure operator are used a the foundation of

the mathematical theory. Here we survey some applications of such generalized point set

topologies to chemistry and biology, providing an overviewof the underlying mathemati-

cal structures.
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INTRODUCTION

Investigations into general principles underlying chemical reaction networks,
molecular phylogenetics, evolutionary changes, or the folding of biopoly-
mers naturally encounter notions such assimilarity, proximity, connected-
ness, or continuity of change. To a mathematician, all of these concepts
are intrinsically topological in nature. On the other hand,all these systems
are very far away from the “continuum” picture so familiar inphysics and
chemistry that familiar constructions such asε-balls seem to be little use.
Even worse,thestarting point of textbook topology, theopen set, does not
have a natural counterpart in the paradigmatic examples that we will con-
sider throughout this contribution.

EduardČech’s treatise of Topological Spaces [9], however, showed that
the classical theory of Point Set Topology can be constructed in a different
way, starting from Kuratowski’s axioms of closure functions or an equiv-
alent notion of neighborhoods. As we shall see below, these can be seen
as formalizations of a vague notion of accessibility that lies at the heart of
many of the questions that we are interested in. Before proceeding to the
mathematical framework, we briefly introduce a few of our model systems.
We note, finally, that generalized topological spaces have applications in
various applied domains of computer science, including digital image pro-
cessing, information representation, the semantics of modal logic, or hand-
writing recognition [21, 66, 62, 31, 59, 56, 22, 60].

Chemical Reaction Networks. We start from a fixed setX of molecular
types or chemical species. A chemical reactionρ is a transformation rule
of the form

∑
x∈X

s−ρ,xx→ ∑
x∈X

s+
ρ,xx (1)

whereE−
ρ := {x∈ X|a−ρ,x > 0 are the educts andE+

ρ := {x∈ X|a+
ρ,x > 0 are

the products of reactionρ. Thus we can interpret reactionρ as a hyperedge
Eρ = (E−

ρ ,E+
ρ ) in a directed hypergraphH. It may be convenient, even, to

interpretE+ andE− as multi-sets to incorporate the stoichiometric coeffi-
cientss±ρx as multiplicities [82]. The coefficientss±ρx are connected to the
stoichiometric matrixSvia Sρ,x = s+ρ,x−s−ρ,x. Figure 1 shows a graphical
description of small chemical reaction network.
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Figure 1: Hypergraph representation of the reaction network of elemen-

tary reaction steps for the overall enzyme catalyzed reaction A+ B
E
−→ C

with unordered substrate binding. Reaction nodes are drawn as squares and
species nodes as gray circles. (Note for clarity the in- and outflow reaction
nodes (ρ1−ρ3) have been omitted.)

Recently, the Network of Organic Chemistry (NOC) [23, 6] has been
constructed from all organic reactions reported in the chemical literature
since 1779. Despite the apparent complexity of this network, which cap-
tures all the knowledge on synthetic organic chemistry, NOCshows an un-
expected but well-defined topological structure [37]. In particular, NOC
possesses a densely wired core region of about 300 synthetically important
building blocks and industrial compounds which are mutually connected by
short synthetic pathways. The core region is embedded in a large and sparse
periphery constituting approximately 78% of chemistry. Compounds in the
periphery can be reached on average in 3-7 synthetic steps from the core
region. Core region and periphery are surrounded by small isolated islands
constituting about 18% of NOC. Much smaller chemical reaction networks
that represent the metabolic pathways of several organism are compiled in
dedicated databases, see e.g. [52].
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In the analysis of such chemical networks, so-calledpathways, i.e., se-
quences of reactions/hyperedges that connect chemical input with output
molecules, and catalytic cycles are of particular interest. Chemical orga-
nizations, that is, closed and self-maintaining subsets ofH [27, 18], fur-
thermore, are closely related to the limit set of the corresponding reaction
kinetics [61]. The most useful of these structural featuresare related to al-
gebraic invariants that can be expressed in terms ofS, see [4] for a recent
review.

The topological description of chemical networks centers describing
what can be produced instantaneously from setA⊆X of molecular species,
i.e.,

p(A) =
⋃

ρ :E−
ρ

{
x∈ X|sx,ρ > 0

}
(2)

A speciesx is maintainablein A if no reactionρ with E−
ρ ⊆ A inevitably

leads to the depletion ofx. The set of maintainable species inA will be
denoted bym(A). A set A is closed if p(A) = A and self-maintaining if
m(A) = A. So-calledflow systemsmake the additional assumption that ev-
ery speciesx can flow out of the system. Bothp andm are set-valued set
functions, i.e., they are of the formp : P(X)→P(X), whereP(X) denotes
the power-set ofX. One can show that in flow systems bothp andm are
isotonic (see below), and hence impose a generalized topological structure
onX [5].

Evolutionary Computation and Genetic Evolution. A (combinatorial)
optimization problem is usually specified in terms of a setX of configura-
tions and a cost functionf : X → R, whereR is an ordered set, or, in the
case of multi-objective optimization [17], a partially ordered set [74]. A
large class of heuristic algorithms, including Simulated Annealing, Genetic
Algorithms, Evolutionary Strategies, or Genetic Programming, attempt to
find optimal solutions by moving through the setX and evaluating the cost
function at different pointsx ∈ X. This search procedure imposes an im-
plicit mathematical structure on the setX that determines how points or,
more generally, subsets are mutually accessible. In a more biologically
inspired setting, thissearch spaceis uniquely determined by the genetic
operators, i.e., by mutation, recombination, duplication, deletion, or rear-
rangement of gene order.
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Figure 2: Barrier tree of a simple landscape with mutation (left) and muta-
tion plus 1-point-crossover. Figure adapted from [26].

A natural way of abstracting the action of these operators isto de-
termine for each “population”A ⊆ X, the setc(A) of configurations that
can be reached fromA by applying a single on of these operator. This
is most easily visualized for mutations: Each parentx may give rise to a
setc({x}) of possible offsprings (mutants). In this case,(X,c) defines a
(possibly directed) graph. The situation becomes more complicated, how-
ever, when recombination (crossover) is considered [33]. The analogue of
the adjacency relation of the graph is the recombination setR(x,y), which
is defined as the set of all (possible) recombinants of two parentsx and
y. Recombination sets are usually required to satisfy (1){x,y} ∈ R(x,y),
and (2)R(x,y) = R(y,x), Often (3)R(x,x) = {x} is assumed, which is,
however, not satisfied by models of unequal crossover [65, 72]. Functions
R : X×X →P(X) satisfying these three axioms were also considered un-
der different names, e.g.transit functions[10] and asP-structures[77, 75].
We note, furthermore, that recombination can be seen as a ternary relation
(x,v,y)∈ R̂ ⇐⇒ v∈R(x,y) closely connected with betweenness relations
[1].

Similar to the chemical networks, we may base a formal treatment of
topological structures on a set-values set-function that encodes reachability
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at the level of sets by setting

c(A) =
⋃

x,y∈A

R(x,y) (3)

The topological structure defined byc also brings with it a concept of
connectedness [81, 43], and hence allows a construction of level sets or
“basins” for the cost functionf : X → R as connected components (w.r.t.
c) of the setsXh = {x| f (x) ≤ h}. The basin have a hierarchical structure:
if A andB are connected components ofXh′ andXh′′, h′ < h′′, resp., then
eitherA⊆B or A∩B= /0. This gives rise to a tree structure representing the
landscape [53, 32, 19, 24, 25, 39, 79], called the barrier tree. Local minima
of the cost function correspond to the leaves of the tree, interior nodes are
saddle points that define the fitness barriers between local minima. These
notion of a local minimum is clearly a topological concepts,as it can be
defined in terms of the behavior of the cost function in the neighborhood
around a point:x is a local minimum if there is a neighborhoodN of x such
that f (y) ≥ f (x) for all x∈ N. The concept of a saddle point is much less
clear. A number of similar but not-equivalent constructions is discussed in
detail in [25]. A connection to combinatorial vector fields in drawn in [71].

The Genotype-Phenotype Map. Two distinct and largely independent
processes drive biological evolution and lie at the heart ofCharles Darwin’s
theory: the generation of variation and selection of the variants according
to their fitness. With the advent of molecular genetics it hasbecome clear
that variation is produced (primarily) at the molecular level by mutation, re-
combination, and other rearrangements of the genomic sequence informa-
tion. Selection, in contrast, acts on the macroscopic living organism. The
genotype-phenotype map, which relates genetic information to organismal
appearance, properties, and behavior, thus plays a centralrole in modern
theories of evolution [76].

RNA secondary structures have played a major role for the understand-
ing of genotype-phenotype maps in general since they can be readily ex-
plored computationally [64]. In this setting, the primary sequence of the
RNA is the genotype, while its secondary structure takes on the role of
phenotype. At the phenotypic level, evolutionary processes are governed by
the accessibility of phenotypic variants. The biophysicalproperties of RNA
molecules allow at least a qualitative understanding of thelikely structural

6



 
 

 
 

 
 

 
 

 
 

 
 

..........(((...))). .(((...)))

((.....)).

.((...)).. ..((...)).

.((.....))

...((...)) ((...))...

((......)) (((....)))

Figure 3: Fontana-Schuster topology of RNA phenotype space.L.h.s.: Fre-
quent transitions between RNA secondary structures in response to point
mutations are the opening or closing of singe base pairs and the opening
of constrained stems. The latter transition is not reversible since must se-
quences are not not pre-disposed to closing a constrained stem in response
to a point mutation. R.h.s.: Space of secondary structures from GC se-
quences of length 10. Arrows indicate accessibility definedas frequent
transitions in the sense of the two rules on the r.h.s. Figureadapted from
[12, 68].

effects of simple point mutations and thus the formulation of phenotypic
rules of accessibility [28, 29], see Figure 3.

An evolutionary trajectory can be regarded as a functionf from the time
axis into phenotype space, wheref (t) represents e.g. the dominating phe-
notype in a population at timet. Computer simulations of the RNA model
reveal a pattern of periods of stasis with intermittent bursts of adaptive evo-
lution. With few exception, consecutive phenotypes arise from each other
through one of the easily accessible structural changes of Fig. 3. These
transition are indeed continuous in the usual topological sense [13, 73].

A phenotype is usually described by a set of “characters”, that is, prop-
erties that can be used to differentiate between different types of organisms.
The particular state of a given character (e.g. the presenceof 5 fingers) is
interpreted as an evolutionary adaptation caused by natural selection. This
explanation requires the assumption that the character state can be produced
by mutation without significantly affecting the functionality and/or struc-
ture of the rest of the body, i.e., “quasi-independence” [57]. As argued in
[80], this is a statement about the structure of accessible sets in phenotype
space, namely the requirement that the phenotype space can be represented
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Figure 4: Phenotype space as a product of two characters (“body shape”
and “faces”). For illustrative purpose the Cartesian graph product rather
than the strong graph product, which corresponds to standard product of
topological spaces, is shown. The latter is obtained by adding the two di-
agonal edges to each quadrangle. Figure adapted from [70].

time

Figure 5: Sketch of
the DAG G(V,E).
Fat dots indicate the
vertices in the extant
sample X ⊂ V. A
possible clustering
that conforms to the
phylogenetic relation-
ships is indicated. For
details we refer to
[20].

as a product of generalized topological space corresponding to the individ-
ual characters, Fig. 4. Since characters are meaningfully defined only in a
local or regional subset of the entire phenotype space, the product structure
also can only be a local approximation. These ideas have leadto the devel-
opment of a theory of “Approximative Graph Products” and research into
algorithms for local approximate factorization of graphs [47, 48].
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The “DAG of Everything”. Instead of looking at the potential of evolu-
tionary processes it is also of interest to consider only theactual history
of life. This idea was recently explored in [20] using a graphG(V,A)
whose vertex setV consists of all individuals that ever lived. A directed
edgex→ y indicates thatx contributed genetic information toy. Pedigree
graphs are special cases of this construction, where the in-degree is lim-
ited to 2, namely and arc from the father and an arc from the mother, see
e.g. [78, 63]. This model also easily incorporates horizontal gene transfer
or the formation of hybrid species, and hence forms also a basis to study
arbitrary complex phylogenetic networks [54]. Given a subset of extant
observable individualsX ⊂ V several notions of connectedness of subsets
of X can be defined. The main result of [20] is that these lead to natural
collections of clusters that can be interpreted e.g. as phylogenies, Fig. 5.
The DAGG(V,A) might also be an attractive starting point to study more
general forms of phylogenetic networks.

GENERALIZED TOPOLOGY

Abstract closure functions

Instead of open sets, most approaches to generalized topology start from
an abstractclosure function c: P(X)→P(X) that encapsulates a notion of
reachability or accessibility from a given subsetA. The natural conjugate
i : P(X) → P(X) defined byi(A) = X \c(X \A) identifies the interior ofA
as the part ofA that is not accessible from the complement, i.e., the outside,
of A. Closure and, equivalently, interior give rise to a concept of neigh-
borhood of points:N is a neighborhood ofx, if its interior containsx. The
collection of neighborhoods can be viewed as a functionN : x→P(P(X))
so thatN ∈ N (x) iff x∈ i(N), i.e., iff x /∈ c(X \N). Closure, interior, and
neighborhood are equivalent in specifying the generalizedtopology [15].
For later reference we note that the notion of neighborhoodsnaturally ex-
tends to sets:N ∈N (A) iff A⊆ i(N), i.e.,N is a neighborhood of allx∈ A.

The notion of continuity lies at the heart of topological theory. In the
most abstract setting it comes in two flavors. Let(X,cX) and(Y,cY) by two
sets, each endowed with its closure function A functionf : X →Y is
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closure preserving if for all A∈ P(X), f (cX(A)) ⊆ cY( f (A)) holds;
continuous if for all B∈ P(Y), cX( f−1(B)) ⊆ f−1(cY(B)) holds.

One says thatf : X →Y iscontinuous in xif B∈N ( f (x)) implies f−1(B)∈
N (x). It can be shown thatf : X →Y is continuous if and only if it is con-
tinuous in eachx∈ X [35, Thm.3.1.].

Obviously, the identityı : (X,c)→ (X,c) : x 7→ x is both closure-preserving
and continuous. Furthermore, the concatenationh = g( f ) of the closure-
preserving (continuous) functionsf : X →Y andg :Y → Z is again closure-
preserving (continuous).

Note that at this point we have made no assumption at all on theprop-
erties ofc. Almost all approaches to extend the framework of topology
assume at least that the closure functions are isotonic [41,42, 15, 7, 34].
The importance of isotony is emphasized by several equivalent conditions
[42, Lem.10] listed in Tab. 1 below. A (not necessarily non-empty) collec-
tion F ⊆ P(X) is astackif F ∈ F andF ⊆ G impliesG∈ F. The closure
function c is isotonic if and only if the neighborhood systemN (x) is a
stack for allx ∈ X. In isotone spaces, continuity and closure preservation
are equivalent.

Kuratowski’s axioms

Kuratowski’s axioms for the closure function of a topological space [55]
may be seen as specializations of the very general closure functions that we
have considered so far. It is interesting to note that each ofthem can be
formulated equivalently for closure, interior, and neighborhoods. Different
combinations of these axioms, summarized in Table 2 define generalized
topological structures that have been studied to various degrees in the liter-
ature.

Connectedness and Separation

Topological connectedness is closely related to separation. The basic idea is
to investigate under which conditions closure or neighborhoods of distinct
points or sets do or do not intersect. We say thatA andB areseparatedif
they have disjoint neighborhoods, i.e.,N (A)∩N (B) = /0. Two sets are
semi-separatedif there are neighborhoodsN′ ∈ N (A) and N′′ ∈ N (B)
such thatA∩N′′ = N′∩B= /0. Consider a continuous functionυ : (X,c)→
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Table 1: Kuratowski’s axioms.
The properties below are meant to hold for allA,B∈ P(X) and allx∈ X,
respectively.

closure interior neighborhood

K0’ ∃A : x /∈ c(A) ∃A : x∈ i(A) N (x) 6= ∅

K0 c( /0) = /0 i(X) = X X ∈ N (x)
K1 A⊆ B =⇒ c(A) ⊆ c(B) A⊆ B =⇒ i(A) ⊆ i(B) N ∈ N (x) andN⊆N′

isotonic c(A∩B) ⊆ c(A)∩c(B) i(A)∪ i(B) ⊆ i(A∪B) =⇒
monotone c(A)∪c(B) ⊆ c(A∪B) i(A∩B) ⊆ i(A)∩ i(B) N′ ∈ N (x)
KA c(X) = X i( /0) = /0 /0 /∈ N (x)
KB A∪B = X =⇒ A∩B = /0 =⇒ N′,N′′ ∈ N (x) =⇒

c(A)∪c(B) = X i(A)∩ i(B) = /0 N′ ∩N′′ 6= /0
K2 A⊆ c(A) i(A) ⊆ A N ∈ N (x) =⇒ x∈ N
expansive
K3 c(A∪B) ⊆ c(A)∪c(B) i(A)∩ i(B) ⊆ i(A∪B) N′,N′′ ∈ N (x) =⇒
sub-linear N′ ∩N′′ ∈ N (x)
K4 c(c(A)) = c(A) i(i(A)) = i(A) N ∈ N (x) ⇐⇒
idempotent i(N) ∈ N (x)
K5 N (x) = /0 or∃N(x) :
additive

⋃

i∈I

c(Ai) = c(
⋃

i∈I

Ai)
⋂

i∈I

i(Ai) = i(
⋂

i∈I

Ai) N ∈ N (x)

⇐⇒ N(x) ⊆ N

[0,1], where[0,1] denotes the unit interval endowed with the usual topology
of the real numbers. It is called anUrysohn functionseparatingA andB
if υ(A) ⊆ {0} and υ(B) ⊆ {1}. If such a function exists,A and B are
called Urysohn-separated.B is completely withinA, B ⋐ A, if B andX \A
are Urysohn-separated. Urysohn-separated implies separated implies semi-
separated.

A large number of subtly differentseparation axiomshave been con-
sidered in the literature, of which here we just list a few to give the flavor.
In the following, we consider conditions for all distinct points x, y and all
disjoint non-empty subsetsA, B in (X,c).

(th0) there isz∈ X andN ∈ N (z) such that for allN′ ⊂ N, N′ ∈ N (z)
holdx∈ N′ andy /∈ N′ or vice versa.

(th1) N (x) = N (y) impliesx = y.

(T0) there isN ∈ N (x) such thaty /∈ N or there isN′ ∈ N (y) such that
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Table 2: Axioms for various types of closure space.
Defining axioms are marked by•, further properties that are implied are
marked by◦.

Axiom c(
/0)

=
/0

A
⊆

B
=
⇒

c(
A
)
⊆

c(
B
)

is
ot

on
ic

A
⊆

c(
A
)

en
la

rg
in

g

c(
A
∪

B
)
⊆

c(
A
)
∪

c(
B
)

su
b-

lin
ea

r

c(
c(

A
))

=
c(

A
)

id
em

po
te

nt

c(
⋃

iA
i)

=
⋃

ic
(A

i)
ad

di
tiv

e

Ref.
(K0) (K1) (K2) (K3) (K4) (K5)

Extended Topology • • [42]
Brissaud • • [7]
Neighborhood space • • • [44]
Closure space (•) • • • [67]
Smyth space • • • [66]
Binary relation • ◦ ◦ • [58, 8]
Pretopology • • • • [9]
Topology • • • • •
Alexandroff space • ◦ • ◦ •
Alexandroff topology • ◦ • ◦ • • [2]

x /∈ N′.

(T0’) y /∈ c({x}) or x /∈ c({y}).

(T1) there isN ∈ N (x) andN′ ∈ N (y) such thatx /∈ N′ andy /∈ N.

(T1’) c(x) ⊆ {x}.

(T2) there isN ∈ N (x) andN′ ∈ N (y) such thatN∩N′ = /0.

(T21
2) there isN ∈ N (x) andN′ ∈ N (y) such thatc(N)∩c(N′) = /0.
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(T2U) Any two distinctx andy are Urysohn-separated.

(R) If x /∈ c(A) then there are disjoint neighborhoods ofx andA.

(R’) For every neighborhoodN of x there is also a neighborhoodU ∈
N (x) such thatc(U) ⊆ N.

(CR) For every neighborhoodN of x there is also a neighborhoodU ∈
N (x) such thatU ⋐ N.

(QN) If c(A)∩c(B) = /0 thenA andB are separated.

(N) If c(A)∩c(B) = /0 thenc(A) andc(B) are separated.

(UN) If c(A)∩c(B) = /0 thenA andB are Urysohn-separated.

(CN) Any two semi-separated sets are separated.

Several symmetry conditions are close associated with separation

(R0) If x is contained in every neighborhood ofy theny is contained in
every neighborhood ofx

(R0’) x∈ c({y}) impliesy∈ c({x}).

(S) If x∈ N for all N ∈ N (y) thenN (y) = N (y)

(S’) If c(A)∩c({x}) 6= /0 thenx∈ c(A).

(RE) If N∩N′ 6= /0 for all N ∈N (x) andN′ ∈N (x), thenN (y) = N (y).

The interesting point about these axioms is that there are elaborate chains of
implications among them in (ordinary) topological spaces.Some of these
carry over to pretopologies, neighborhood spaces, or even isotonic spaces
satisfying only (K0) and (K1), see Fig. 6 and its caption. Separation axioms
have a close connections to generalized uniform structures[70] and the ex-
istence of metrics that allow the definition ofε-balls as basis for neighbor-
hoods of points, see [9].

The separation axiom (T0) implies boththinnessconditions (th0) and
(th1), which do not seem to have been studied in detail in the context of
topology. In particular (th1) plays an important role in thetheory of graph
products [49].
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Figure 6: Relationships among separation and symmetry axioms. Different
arrow types indicate implications that hold in all isotone space, in all neigh-
borhood space, in all pretopological space, or only in topological spaces.
The (T)-separation axioms are defined by a normality condition and (T1),
dashed double-arrow, or by a regularity/symmetry condition and (T0), dot-
ted double-arrow, respectively. Most of the proofs for the implications are
non-trivial. They can be found in the book [9], in the supplemental material
to [68], or in [69].

There have been several attempts to use connectedness as theprimitive
notion in topological theory [81, 43, 45]. Here, we employ the more usual
approach to defined connectedness as a derived property in closure spaces:
A setZ is connectedin (X,c) if it is not a disjoint union of semi-separated
pairs of non-empty setsA,Z \A. In isotonic spaces, connected sets are
characterized by the Hausdorff-Lennes condition:

[(̧A)∩ (Z\A)]∪ [c(Z\A)∩A] 6= /0 (4)

In neighborhood spaces, we arrive at a more familiar definition: A set is
connected if and only if it is not the disjoint union of two non-empty closed
(open) sets [38, Thm.5.2].

The collection of connected sets satisfies the following four properties
in isotonic spaces [68, 38]:

(c1) If Z consists of a single point, thenZ is connected.

(c2) If Y andZ are connected andY∩Z 6= /0 thenY∪Z is connected

(c3) If Z is connected andZ ⊆ c(Z), thenc(Z) is also connected.

(c4) Let I be an arbitrary index set andx ∈ X. SupposeZı is connected
andx∈ Zı for ı ∈ I . ThenW :=

⋃
ı∈I Zı is connected.
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Consider a setA and a pointx∈ A and letA[x] be the union of all connected
subsets ofA that containx. By (c4),A[x] is itself connected. We call it the
connected component ofA containingx. Note that the well-definedness of
A[x] is required e.g. for the construction of the barrier trees mentioned in
the Introduction.

The relationship of connected components and semi-separation becomes
counter-intuitive in non-additive spaces: SupposeA has a finite number
k > 1 of connected components and letQ be such a component. ThenQ
andA\Q are not necessarily semi-separated unless(X,c) is a pretopology
[26]. Without the benefit of additivity, furthermore, it becomes natural to
investigate alternative definitions of connectedness: In [5], for instance, a
less stringent definition of connectivity is introduced that is in particular
suitable for chemical reaction networks:A and B are productively sepa-
rated if for all Z ⊆ A∪B holds (1)c(Z∩A)∩B = /0 andc(Z∩B)∩A = /0,
and (2)c(Z) = c(Z∩A)∪ c(Z∩B). A set isZ productively connectedif
it cannot be written as the disjoint union of two non-empty productively
separated subsets.

Path-connectedness is a widely used notion of connectedness that in
general is stronger than topological connectedness. From the topological
point of view, apathis acontinuousfunctionp : [0,1]→X whose endpoints
arep(0) andp(1). A setA is path-connectedif for any two pointsx,y∈ A,
there is a pathp with p(0) = x andp(1) = y.

A useful lemma [26] characterizes connectedness in 2-pointsets: Let
(X,c) be a neighborhood space and{x,y} ⊆ X a 2-point subset. Then the
following three statements are equivalent: (1)y∈ c({x}) or x∈ c({y}); (2)
{x,y} is path-connected; (3){x,y} is connected. We will return to this point
later when considering finite generalized topologies.

Product Spaces

Let (X1,c1) and (X2,c2) be two isotonic spaces. Then the product space
(X1×X2,c1×c2) is defined by means of the neighborhood systemN (x1,x2),
where

N∈N (x1,x2) ⇐⇒ ∃N1∈N1(x1) andN2∈N2(x2) such thatN1×N2⊆N
(5)

For sets of the formA1×A2 this translates toc(A1×A2) = c1(A1)×c2(A2)
in the product space, see [34, Thm.8.1]. If(X1,c1) and (X2,c2) satisfy
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(K2), (K3), or (K4), respectively, then so does their product. We remark
that the construction of products can be extended to infinitefamilies of
spaces, even uncountable ones. The projectionsπi : ∏ j(Xj ,c j) → (Xi,ci) :
x = (. . . ,xi, . . .) 7→ xi are continuous.

The inductive product(X1,c1)¤(X2,c2) has the neighborhoodsN ∈
N ¤(x1,x2) iff there isN1 ∈N1(x1) andN2 ∈N2(x2) such thatN1×{x2}∪
{x2}×N2 ⊆ N. This product is discussed briefly in [9].

Finite Generalized Topologies

For practical applications in computational biology and computational chem-
istry, finite spaces are of particular interest. Of course, in this case (K3)
implies (K5). The by far best studied finite structure are thefinite pre-
topologies: these are the simple directed graphs. More precisely, if (X,c)
is a finite pretopological space, the associated graph has vertex setX and
(x,y) is a directed edge iffy∈ c({x}). Conversely, given a graph this recipe
defines a finite pretopology onX [73]. Graphs that correspond to topologi-
cal spaces are considered e.g. in [13].

Several of the topological concepts outlined above have independently
have been developed in graph theory. Continuous function, for instance, co-
incide with graph homomorphisms [46], i.e., functionsf : (X,E) → (Y,F)
such that(x,y) ∈ E implies ( f (x), f (y)) ∈ F or f (x) = f (y). The usual
graph-theoretical definition of connectedness is also the same as pre-topological
connectedness: a two-element subset{x,y} is connected if and only if
(x,y)∈E or (y,x)∈E. Furthermore, connectedness and path-connectedness
is the same [26]. The (R0) symmetry axiom, furthermore, characterizes
undirected graphs. On the other hand, it appears to be unknown if strong
connectedness in digraphs has a straightforward interpretation as a topolog-
ical property.

The strong product of graphs coincides with the product of generalized
topological spaces, while the inductive product is the sameas the Cartesian
graph product. For graphs, products have been studied in particular w.r.t.
to the conditions under which a graph has a unique prime factorization.
We refer to the book [40] for an extensive discussion of this topic. Inter-
estingly, thinness conditions play an important role in this context. Local
and approximative product structures have been explored recently [47, 48]
motivated by the interpretation of characters as local factor spaces of phe-
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notype space [80].
As mentioned in the introduction, topological spaces are typically stud-

ied in terms of their closed sets, i.e., the collectionC = {A|c(A) = A}. If
(K1) to (K4) are satisfied, we have (I1)X ∈ C , (I2) arbitrary intersections
of closed sets are closed, and (I3) the union of two closed sets is closed.
In lattice theory more general so-calledintersection structuresare consid-
ered that fulfill only (I2) see e.g., [14], in graph theory thesame structures
appear as convexities [11]. Since neither idempotency nor additivity of the
closure function readily applies to the examples in the introduction we will
not consider them further in this contribution.

Not much is known about finite neighborhood spaces. They correspond
to theN-systemsintroduced in [50]. Consider a pair(X,N) consisting of
a nonempty finite setX and a functionN : X → P(P(X)) that associates
to eachx∈ X a collectionN(x) = {N1(x),N2(x), . . . ,Nd(x)} of d(x) subsets
of X with the following properties:

(N0) N(x) 6= /0.

(N1) Ni(x) ⊆ N j(x) implies i = j.

(N2) x∈ Ni(x), for 1≤ i ≤ d(x).

N-systems are by construction exactly the finite neighborhood spaces, when
theNi(x) are interpreted a minimal neighborhoods, i.e.,N ∈ N (x) if and
only if there isN′ ⊆N with N′ ∈N(x). We may also interpret them as a spe-
cial type of directed hypergraphs with hyperedges of the form ({x},Ni(x)).
Axiom (N1) ensures that it is simple.

The characterization of connectedness in 2-point sets [26]suggests to
associate a graph~Γ(X,c) with vertex setX with a given finite neighborhood
space(X,c) such that(x,y) is a (directed) edge ify∈ c({x}). If c is addi-
tive, than~Γ is exactly the graph representation of the pretopological space
(X,c). In finite neighborhood spaces every path consists of a finitenumber
of connected 2-point sets consisting of consecutive points. Thus a subset of
X is path-connected if and only if the corresponding induced subgraph of
~Γ is path connected [26]. Connectedness is strictly weaker property since
a connected set with three points does not necessarily contain connected
pairs. Finite neighborhood spaces admit a unique prime factorization w.r.t.
to the usual topological product under certain conditions on~Γ [50].
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Finite isotone spaces, finally, have not been considered as combinatorial
objects to our knowledge.

DIRECTED HYPERGRAPHS AS TOPOLOGICAL STRUCTURES

It may come as a surprise that hypergraphs have remained virtually unstud-
ied from a topological perspective. While the interpretation of graphs as
finite pretopological spaces is quite natural, we will see below that there
does not seem to be a unique canonical translation for hypergraphs.

A directed hypergraphH consists of a vertex setX and a setE of di-
rected hyperedges, each of which is a pairE = (E−,E+) with E−,E+ ⊆ X.
A hypergraph is simple if no edge is properly contained in another one, i.e.,
if E− ⊆ F− andE+ ⊆ F+ impliesE = F . One way of defining undirected
hypergraphs as a special case of directed ones is to requireE+ = E− for all
E ∈ E .

Given a directed hypergraphH, it appears natural to consider the clo-
sure function

c(A) :=
⋃

E :E−⊆A

E+ (6)

or
c(A) := A∪

⋃

E :E−⊆A

E+ (7)

depending on whether we want to insist thatc is enlarging or not. This ap-
proach indeed has been taken in [5] to describe chemical reaction networks.
These constructions, however, become trivial for undirected hypergraphs
since the conditionE+ = E− for all hyperedges ensures thatc(A) ⊆ A.

As a possible remedy one might identify undirected hypergraphs with
directed ones that satisfy the following symmetry condition:

(SH) For every directed hyperedgeE = (E−,E+) every pair(A,B) of non-
empty sets withA∪B = E−∪E+ is also a hyperedge.

In particular, in this case({x},E) with E := E− ∪E+ and anyx ∈ E is a
hyper-edge. Thus, for a given hyperedgeE , if E− ⊆ A then therex∈ E∩A
and hence({x},E) also contributes toc(A). Thus equ.(6) can be rephrased
as

c(A) =
⋃

E :E∩A6= /0

E (8)

18



This expression also makes perfect sense for undirected hypergraphs. It
is equally unsatisfactory, however, since this closure function is obviously
additive and hence describes a (symmetric) graph with adjacency relation
x∼ y iff there a hyperedgeE such thatx,y∈ E.

An alternative approach is to consider hyperedges as minimal neighbor-
hoods in the sense of theN-systems introduced in the previous section. In
finite pretopologies, i.e. directed graphs, the intersection of all N ∈ N (x)
is again a neighborhood ofx. It coincides with the “in-neighborhood” ofx,
given by

N(x) = {y∈ X|x∈ c(y)} (9)

For directed hypergraphs, one would analogously postulatethat hyper-edges
that “produce”x are the minimal neighborhoods ofx, i.e.,

N ∈ N (x) ⇐⇒ ∃E : x∈ E+ andE−∪E+ ⊆ N (10)

It is straightforward to compute the corresponding closurefunction

c(A) =
{

x|∃E : x∈ E+ implies(E−∪E+)∩A 6= /0
}

(11)

An undesirable feature remains, however. If we specialize this construction
to directed graphs, i.e., so thatE− andE+ consist of two distinct points for
each hyperedge, thenN ∈ N (x) iff there is an arc(y,x) such thatx,y∈ N.
The associated closure function isc(A) = A∪{z|Nin(z) ⊆ A}. This is in
general not additive.

A possibly fruitful alternative is to start from the notation of hypergraph
homomorphisms(X,E ) → (Y, mathcalF), i.e., mapsϕ : X → X′ so that
for every(E−,E+) ∈ E there is(F−,F+) ∈ F so thatϕ(E−) ⊆ F− and
ϕ(E+) ⊆ F+. One may then ask if there exist isotonic closure functions so
that the hypergraph homomorphisms are exactly the continuous function as
in the case of graphs. To our knowledge, this question is open.

We have to conclude that at present there is no satisfactory interpretation
of hypergraphs a topological objects.

DYNAMICAL ASPECTS

The notion oftopological dynamical systems, see e.g. [16] does not seem
to have explored in systematic way for generalized topological spaces. A
natural starting point would be flows of the formω : T ×X → X whereT
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is suitable (topological) semigroup such as the non-negative integers and
(ı,x) 7→ x, whereı denotes the neutral element ofT. Orbits, for instance,
are well-defined in this setting:Ω(x) = {tx|t ∈ T} ⊆ X, wheretx denotes
the action of the semigroup elementt on the pointx. Similarly, trajectories
are simply functions of the formξ : T → X such thatt 7→ ξ (t) = tx0 for a
fixed “initial condition” x0. In [73], for instance, conditions are explored
under which trajectories of phenotypic evolution are continuous. It turns
out that this matches well with intuition developed earlierin [28, 29] in the
context of the evolution of RNA secondary structures.

Combinatorial vector fields offer a more specialized alternative formal-
ization. LetM be a simplicial complex constructed over the setK of sim-
plices, see e.g. [51]. We writeσ < τ if the simplexσ lies in the bound-
ary of the simplexτ. A combinatorial vector fieldon M [30] is a map
η : K → K∪{∅} such that

1. If η(σ) 6= ∅ thendimη(σ) = dim(σ)+1, andσ < η(σ).

2. If η(σ) = τ 6= ∅, thenη(τ) = ∅.

3. For allσ ∈ K, |σ−1| ≤ 1.

We remark that combinatorial vector fields can in fact be defined on the
much more general CW-complexes [30].

Combinatorial vector fields come with a natural notion ofη-paths as
the analog of trajectories, namely a a finite sequence of simplices γ =
(σ0,τ0,σ1,τ1, . . .σn−1,τn−1,σn) such thatη(σi) = τi for 0 ≤ i < n and
σi+1 < τi. A rest point is a simplexσ such thatη(σ) = ∅ andη−1(σ) = /0.
The rest points and the closedη-paths together form the so-called chain-
recurrent setR of η . These play the role of attractors. All other trajectories
lead towardsR.

A Lyapunov functionof the combinatorial vector fieldη is a function
F : M → R such that

1. if σ /∈ R andτ > σ then

(a) F(σ) < F(τ) if τ 6= η(σ)

(b) F(σ) ≥ F(τ) if τ = η(σ)

2. if σ ∈ R andτ > σ then
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(a) F(σ) = F(τ) if σ ∼ τ
(b) F(σ) < F(τ) if σ 6∼ τ

A combinatorial version of Conley’s theorem ensures that there is Lya-
punov function for every combinatorial vector field [30]. Combinatorial
vector fields thus form discrete analog for gradient vector fields.

In [71] this observation was used to consider a the collection of com-
binatorial vector fields on a graphG (with vertex setX) for which a given
function F : X → R is a Lyapunov function. In this context, the function
F is interpreted as energy function. The combinatorial vector field, on the
other hand, can be interpreted as a partial orientationP on G so that{x,y}
is directed fromx to y iff η(x) = {x,y}. Conversely a system of directed
edgesP with the properties

1. (x,y) ∈ P implies{x,y} ∈ E (consistency withG)

2. (x,y) ∈ P and(x,z) ∈ P impliesy = z (uniqueness)

3. (x,y) ∈ P implies(y,x) /∈ P (antisymmetry)

corresponds to a combinatorial vector field onG. A trajectory inη is then
given by a sequence of vertices(xi), i = 1, . . .k so that(xi ,xi+1) ∈ P.

These combinatorial vector fields provide a convenient description of
the system of adaptive (downhill) walks on the energy landscape(G,F) and
admits an alternative approach towards characterizing basins, barriers, and
their hierarchical structure. In particular, they highlight the complications
in the analysis of landscapes arising from degeneracies in the energy func-
tion. GivenF , denote byGF the subgraph ofG with edges{x,y} ∈ E(G)
if F(x) = F(y). The connected componentsGF(x), the so called shelves of
the landscape, provide the main complication for practicalcomputations,
Fig. 7. While the vector fields for whichF is a Lyapunov function nec-
essarily point downwards between shelves, it is complicated to handle the
possible orientations with a single shelf since edges may beoriented in both
directions depending on the particular choice ofη .

A direct connection to the topology of the landscape(G,F) is obtained
by mean of the following construction:
Definition. A point y is reachable fromx in (G,F) if there is a combina-
torial vector fieldη for which F is a Lyapunov function and that admits a
trajectory fromx to y. LetC(x) be the set of vertices reachable fromx.

21



F

Figure 7: Shelves, i.e., maximal connected sets on which theenergy func-
tion F is constant are indicated by dotted boxes. Edges ofG that are ori-
ented by the combinatorial vector fieldη are shown as arrows, the remain-
ing edges ofG are shown in gray. Edges between shelves are either not
oriented or point downwards in any combinatorial vector field for which
F is a Lyapunov function. Both orientations are possible for edges within
shelves. Figure adapted from [71].

As shown in [71],C can be extended to an additive closure function that
satisfies all of Kuratowski’s axioms and hence defined a finitetopological
space on the vertex setX. This topology is intimately related with the bar-
rier structure of the landscape by means of the notion of a valley: A valley
in (G,F) is a maximal connected closed set with respect to the reachability
topology. Equivalently a valleyW is a maximal connected subset ofX so
that no vertexy /∈W is reachable from anyx∈W.

CONCLUDING REMARKS: COARSE GRAINING

Accessibility is of particular interest in the context of “constructive sys-
tems”, i.e., models comprising a set combinatorial objectsand set of rules
with which they can be combined. This was pioneered e.g. in the work of
Fontana and Buss [27] usingλ -calculus as a modelling platform for ab-
stract chemistry. The state spaceX in such models is usually not finite.
In simulations of (evolutionary) processes on such models,families of ob-
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jects emerge that share many regularities and differ essentially in size only
[27]. In chemistry, polymers are the most obvious example. Naturally, the
question arises whether there are coarse-grained representations.

In the analysis of the fine structure of the Network of OrganicChem-
istry, it has turned out that so-called one-pot reactions, i.e., reactions that
can be performed concurrently without the need to purify intermediates and
hence are of practical interest in practice, play an important role [36]. Since
one-pot reaction lumps together individual reactions intosequences they
can be seen as a form of coarse-graining of the chemical space. Recently,
we have started to explore [3], from an algebraic perspective, whether com-
positions of transformation rules can be employed to capture families such
as homologous series (i.e., groups of chemicals with analogous properties
that differ only in the number of simple structural units) based on their re-
active capabilities.

Coarse-graining is an import issue also in the analysis e.g. of fitness
landscapes. A rather simple example is the use of barrier trees, which rep-
resent a partition of state spaceX. Quotient spacesX/∼, obtained by iden-
tifying ∼equivalent points ofX, thus appear to be a natural formal structure
to consider in this context. To our knowledge, this avenue has not been ex-
plored systematically for any of the model systems discussed above. It will
be interesting to see if the intuitive connection of rule compositions and
quotient spaces can be given a precise topological meaning.
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