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Abstract

We construct and analyze a discrete fitness landscape called
metabolic adjustment landscape, from sub-networks covered
by different productive flux distributions of a metabolic net-
work. The topological structure of this landscape, i.e., the lo-
cal minima and saddle points, can be compactly represented
as a hierarchical structure called barrier tree. The switching
from one local optimal flux pattern to another one is accom-
panied by adjustment costs, since genes have to be turned on
or off. This phenomenon gives raise to saddle points in the
metabolic adjustment landscape. Our approach allows calcu-
lating the minimal cost pathway that connects any two local
minima in the landscape. Furthermore, our method yields a
detailed ordering which reactions have to be (de-)activated to
switch from one flux distribution to another one with minimal
adjustment costs. Such a mechanistic hypothesis can guide
experimental verification. We apply our approaches to a net-
work describing the central carbon metabolism of E. coli.

Introduction
In recent years information from high-throughput sequenc-
ing and metabolomics has been integrated into genome-
scale high quality reconstructions of metabolic networks of
various organisms (Thiele and Palsson, 2010). These net-
works are a valuable computational resource in areas such
as metabolic engineering, white biotechnology or synthetic
biology. In particular questions how changes in the genetic
setup of organisms influence the distribution of mass fluxes
through the metabolic network have shifted into the focus of
research. Flux balance analysis (FBA) (Orth et al., 2010) is
among the most popular computational techniques to calcu-
late flux distributions for metabolic networks. Since FBA is
an optimization method, the organismal phenotype is usu-
ally defined in the form of a biological objective function
(Feist and Palsson, 2010) which is optimized under addi-
tional constraints that balance or impose bounds on the sys-
tem.

Another set of fundamental question, very appealing to
theorists, focus on how catalyzed reaction networks, i.e.
metabolisms, evolve and how novel reaction chemistry
emerges during the evolutionary process. In Forst et al.

(2006) it was shown that the structure of metabolic net-
works at the level of the individual chemical reactions, con-
tains enough information for the accurate reconstruction of
the phylogenetic relationships. In Flamm et al. (2010) a
graph grammar based computational framework for the co-
evolution of the enzymes and the metabolic network was
described and several scenarios of metabolic network evo-
lution were analyzed. Complexity questions on how to find
chemical motifs in chemical reaction networks were ana-
lyzed in Andersen et al. (2012). In Schuetz et al. (2012)
a large data set of flux distributions measured with 13C-
labeling experiments was analyzed to unveil the principles
that govern the distribution and change of metabolic fluxes
in E. coli under varying conditions. A multi-objective opti-
mization approach together with FBA was used since a com-
bination of several competing objective functions turned out
to be best suited for the analysis of the entire data set. In-
terestingly the study found that flux distribution in E. coli is
governed by the principle of maximizing production only up
to the degree where an easy switch of nutrients is still possi-
ble. This behavior seems to be a perfect adaption of E. coli’s
metabolism to a fluctuating environment where a sudden de-
ficiency of a set of nutrients can be compensated by a switch
to other ones accompanied by an easy restructuring of the
original flux distribution to the new situation. This comes at
the cost that production of compounds (e.g. for building up
biomass) in the metabolic network can never be fully maxi-
mized to the theoretical limit within the metabolic network
of E. coli.

While there are several sophisticated computational meth-
ods to assign one “optimal” flux distribution to a metabolic
network (for a review see Lewis et al. (2012)), to the best
of our knowledge, this is the first study that analyzes the en-
tire variety of (optimal) flux distributions over a metabolic
network with a fixed genetic setup, but varying activity for
subsets of genes in the discrete landscape metaphor.

The brief outline of this paper is as follows: we will first
introduce barrier trees for discrete fitness landscapes. Then
we will explain different methods how to create metabolic
adjustment landscapes, which we use for barrier tree ana-



lyzes. We expect the reader to be familiar with the concept
of FBA, for an in depth introduction we refer to (Palsson,
2006). In the results section we will first present an artificial
example to illustrate our approaches, and then analyze two
metabolic adjustment landscapes of E. coli.

Barrier Trees
The switching between different productive flux distribu-
tions is accompanied by flux adjustment costs, since genes
have to be regulated to achieve the change in the flux dis-
tribution. This raises saddle points which connect basins
associated with optimal (productive) flux distributions. It
seems therefore natural to apply the theory of discrete fitness
landscapes to characterize the discrete landscape induced by
flux adjustment costs and to get a deeper understanding of
its topological and functional structure.

Formally, we define a landscape as a triple (X;N ; f) con-
sisting of a set of configurations X , a topological structure
N that determines the mutual accessibility of configurations,
and a cost or “fitness” function f : X → R. In our case ele-
ments in X will be metabolic networks. The neighborhood
relation N is typically defined by the “move set”. In this
contribution we will restrict ourselves to the simplest case
in which the configuration space (X;N) is a finite directed
graph G = (X;E) with vertex set X and edge set E. Here
edges connect configurations that can be inter-converted by a
single move. (If the move-set is symmetric, (X;N) can also
be represented as an undirected graph.) The fitness value of
the lowest saddle point separating two local minima x ∈ X
and y ∈ X is

f̂ [x, y] = min
p∈Pxy

max
z∈p

f(z) (1)

where Pxy is the set of all paths p connecting x and y by a
series of consecutive operations from the move set.

If the fitness function is non-degenerate, i.e., two config-
urations have distinct fitness values, then there is a unique
saddle point s = s(x, y) connecting x and y characterized
by f(s) = f̂ [x, y]. The extension to degenerate fitness func-
tions is discussed in detail in Flamm et al. (2002). To each
saddle point s there is a unique collection of configurations
B(s) that can be reached from s by a path along which the
fitness value never exceeds f(s). In other words, the con-
figurations in B(s) are mutually connected by paths that
never go higher than f(s). This property warrants calling
B(s) the valley or basin below the saddle s. Furthermore,
suppose that f(s) < f(s′). Then there are two possibili-
ties: if s ∈ B(s′) then B(s) ⊆ B(s′), i.e., the basin of
s is a “sub-basin” of B(s′), or s /∈ B(s′) in which case
B(s)∩B(s′) = ∅, i.e., the valleys are disjoint. This property
arranges the local minima and the saddle points in a unique
hierarchical structure which is conveniently represented as a
tree, termed barrier tree.

Landscapes of Metabolic Adjustment
Networks

A metabolic (reaction) network, is usually represented as a
hyper-graph, where the nodes indicate the set of chemical
compounds that are connected by hyper-edges correspond-
ing to the set of chemical reactions R. The power-set of R
induces a whole series of “smaller” instances of metabolic
networks, where a subset of reactions is removed from the
original metabolic network. A metabolic adjustment land-
scape is a directed graph (X,E) with a vertex set (or config-
urations) X , where each vertex x corresponds to one of the
metabolic network induced by an element of the power-set
of R. The topological structure of the metabolic adjustment
landscape is defined by the neighborhood functionN , which
determines how the “different” metabolic networks are con-
nected via operations from the move set. In the simplest case
the move set is defined by adding or removing exactly one
reaction. An edge is labeled with the name of the reaction
that has been added or removed (see right of Fig. 1). If the
reaction is removed, there is a “-” in front of the name. Two
vertices are connected by two edges going in opposite direc-
tions, if it is possible to go from one network to the other
by adding/removing a reaction. The aforementioned con-
figurations space is converted into a discrete landscape by
assigning a fitness value f(x) to each configuration x. How-
ever, some of the networks are not “viable” in the sense, that
these networks cannot support flux between predefined input
and output nodes. The viability of a network is decided by
running a FBA with a predefined objective function. If the
network is viable the assigned fitness value is the number of
reactions in that network and infinity otherwise. The rational
behind this fitness function is, that the expression of genes,
to provide the corresponding chemical transformation in the
network in the form of enzymes, is a costly process. In that
sense the chosen fitness function quantifies the active or ex-
pressed portion of the genetic setup i.e. all possible enzymes
encoded in the genome of an organism. More formally

f(x) =

{
|x| if network x is viable
∞ otherwise,

(2)

where |x| is the number of reactions (or hyper-edges) in a
metabolic network x ∈ X .

Unrestricted and Restricted Landscapes
Furthermore, we distinguish two cases of metabolic adjust-
ment landscapes. First, the unrestricted case, where any ac-
tive reaction can be removed and any inactive reaction may
be added. In other words two networks are connected if their
symmetric difference consists of exactly one reaction. Since
any reaction can be removed or added networks can be gen-
erated which cannot support flux between source and sink
nodes. Hence, unviable networks are valid configurations
in unrestricted metabolic adjustment landscapes. Second,



the restricted case, where adding and removing reactions is
constrained by the following rationales: (i) reactions which
would cut the last connection between source and sink nodes
cannot be removed (this guarantees, that every network is
viable) (ii) reactions can be inserted if all their reactants are
produced by “other” reactions already in the network (iii)
reactions can be removed if they do not disable following
reactions. A reaction is disabled if no other reaction pro-
duces its reactants.

Fitness Functions for Networks in Metabolic
Adjustment Landscapes
The standard fitness functions used for FBA are usually de-
fined via a deviation to a given target flux, aiming at biomass
production, or aiming at maximizing the production of one
or more products. For a critical assessment of the assump-
tions made in FBA see Schuster et al. (2008). All these fit-
ness functions do not account for the fact, that adding a re-
action to a metabolic network induces costs (i.e., the genetic
setup needs to be more complicated, as the corresponding
enzymes need to be available). More formally this can be
phrased as a Lemma.

Lemma 1. Within the landscape of a metabolic adjust-
ment network, any of the standard fitness functions for FBA
(Schuetz et al., 2007) leads to a barrier tree with exactly one
leaf node.

Proof. A landscapes of metabolic networks has a barrier tree
with exactly one leaf node (i.e., a barrier tree without any
barriers) iff the landscape is (possibly weakly) unimodal. To
show the unimodality, consider a flux balance analysis on
a metabolic network x that reaches an optimal fitness score
f(x, v) with a certain optimal flux distribution v (the flux
vector v assigns fluxes to all reactions). The core observa-
tion to be made is, that extending network x to a network x′

can not lead to a worse fitness score, as the flux induced by
v in the extended network reaches at least the fitness score
f(x, v) in the network x′. Adding all possible reactions suc-
cessively will therefore always lead to the best possible fit-
ness score (without the need to cross a barrier) and two strict
local minima can not exist in the metabolic adjustment land-
scape.

Based on the above observation that no barriers can ap-
pear if a standard fitness functions for a FBA is used to an-
alyze metabolic adjustment landscape, we use as a natural
motivation in creating a new fitness function, that adding
a reaction needs to be penalized, i.e., the genetic setup is
more complicated. We therefore defined the fitness function
as given in Eqn. 2. Note, that this ensures that extending
a metabolic network by a reaction leads to a worse fitness
score, even if the added reaction is not used in an optimal
flux in the extended network (where optimal is meant wrt. to
the objective function used for the FBA) .
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Figure 1: Toy example for a restricted metabolic adjustment land-
scape: The four given reactions are R1, . . . , R4, educts are c1 and
c6 (green circles), and the target compounds are c5 and c7 (blue
circles). Left: the metabolic network consisting of all reactions.
Right: the resulting restricted metabolic adjustment landscape.

Fig. 1 shows an illustrative example with four reactions
R := {R1, . . . , R4}, the set of educts is {c1, c6} (sources),
and the set of products is {c5, c7} (sinks). The restricted
landscape has two nodes only, the fitness values of the two
metabolic networks are 3 (in the network without reaction
R2) and 4 (in the network with R2). The unrestricted land-
scape consists of 2|R| = 16 metabolic networks. The addi-
tional 14 metabolic networks are all unviable, since removal
of reactions R1, R3 or R4 disconnects the last path between
the source and the sink nodes, rendering a productive flux
impossible. Therefore the fitness value of these networks is
set to∞.

Results
In the first part we will present results for an artificial ex-
ample to illustrate our approach to infer a barrier tree from
a metabolic adjustment landscape. In the second part we
will apply our approach to the metabolic adjustment land-
scape derived from the main reactions in the central carbon
metabolism of E. coli.

Artificial Example
We used a network of 23 compounds and 25 reactions as
depicted in Fig. 2. Compound c17 is the only substrate
(source) and compound c5 is the only product (sink) com-
pound to be produced in a quantity of 0.1. We computed
the restricted metabolic adjustment landscape, which con-
sists of 561 metabolic networks. This is relatively small in
contrast to the unrestricted landscape which is comprised of
225 networks, the majority of these networks are unviable.
The restricted landscape was analyzed: it has 5 local min-
ima, all of them reach a fitness value of 10 reactions. Note,



that any local minima can not have an unused reaction in an
optimal flux distribution, as this reaction could be removed
(leading to a better fitness in the metabolic adjustment land-
scape) while keeping the same fitness for the FBA of the
reduced network. The barrier tree is shown in Fig. 3, the
metabolic networks that correspond to minima 1 and 2 are
depicted in Fig. 2 (the red nodes and edges, are only shown
for illustration purposes and are not part of the solution net-
works which correspond to the local minima 1 and 2, these
parts are shown in green). The barrier tree calculation allows
backtracking the minimum cost path between any two min-
ima in the barrier tree. Such a minimum cost path leading
from minimum 1 to minimum 2 on the restricted metabolic
adjustment landscape would (i) add the reactions with in-
dices 10, 13, and 15, (ii) remove the reactions with indices
7, 8, and 12 (this became possible since step (i) introduced
a parallel path connecting the source to the sink node keep-
ing the network viable). This minimum cost path results in
a barrier of 13 (denoted as B1 in Fig. 3) between the two lo-
cal minima 1 and 2 since the saddle point network contains
exactly 13 active reactions. The relations between the local
minima and the minimum saddle points in the metabolic ad-
justment landscape can compactly be represented as a bar-
rier tree Fig. 3. The internal tree nodes are the minimum
saddle points between local minima which are located at the
leaf nodes. For a change to a flux pattern that uses only the
pathway via reaction indices 20, 19, ..., a barrier of height 20
needs to be crossed. This barrier is denoted as B2 in Fig. 3.

The Central Carbon Metabolism as a Restricted
Landscape
The Central Carbon Metabolism (CCM) is a union of well
known catabolic pathways, such as glycolysis and tricar-
boxylic acid cycle (TCA), and a minimal number of “in-
terface reactions” to important anabolic pathways, found in
all three kingdoms of life. The representation of the net-
work we use originates from de Figueiredo et al. (2008).
Their network has 37 reactions, provided that both direc-
tions of reversible reactions are counted separately. The tar-
get compound is glucose-6-phosphate (G6P). The network
can “feed” on different substrates (source compounds) to
achieve the production of G6P (target compound). Among
them are Acetyl coenzyme A (AcCoA) created as degrada-
tion product of the fatty acids metabolism, the two amino
acids Alanine (Ala) and Aspartic acid (Asp), or Pyruvate
(Pyr), the simplest α-keto-acid derived as end-product of
Glycolysis. We pruned unused reactions from the original
network to increase computational speed. For this an ele-
mentary mode (EM) analysis (Papin et al., 2004) of the CCM
with and without Isocitrate lyase EC 4.1.3.1 (ICL) and the
Malate-Aspartate shuttle (MAS) using each substrate was
conducted. (An elementary mode is a certain feasible flux
distribution; all elementary modes can be created by com-
bining the extreme pathways (EPs) of the network, which
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Figure 2: Minima 1 (left) and 2 (right) of the artificial example.
Target is ”c 5 cell”. c 17 cell is a substrate. Note that the red
nodes are not in the corresponding metabolic network, but are only
depicted for illustration reasons.

are formally derived from the basis vectors of the null-space
of the stoichiometric matrix of the network. The EPs are
therefore a subset of the elementary modes.) From the set
of all possible EMs it can be seen that some directions
of reversible reactions are never used. We also removed
the linear pathway for creation of ”G6P” from Fructose-
1,6-bisphosphate (F1,6PP) using the 3 enzymes Fructose-
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Figure 3: Barrier tree for the metabolic adjustment landscape of the
artificial example: minima 1 and 2 (both reaching objective value
10, cmp. Fig. 2) are connected via the lowest saddle B1, which has
an objective value of 13. The barrier B2 has objective value 20.

bisphosphatase EC 3.1.3.11 (FBP1), Phosphofructokinase
EC 2.7.1.11 (PFKL) and Glucose-6-phosphate-isomerase
EC 5.3.1.9 (PGI), as any solution capable of producing
”G6P” would use ”F1,6PP” and this pathway. After prun-
ing the network contains 22 reactions, having ”F1,6PP” as
target compound. The pruned network is depicted in Fig. 7.

Barrier Tree We use our approaches to determine the
restricted metabolic adjustment landscape for the network
given in Fig. 7. For the FBA ”F1,6PP” served as target com-
pound and AcCoA, Ala, Asp and Pyr as individual source
compounds. We used the tool FASIMU (Hoppe et al., 2011)
to convert the reaction networks into the integer linear pro-
grams (ILPs), which were solved using IBM’s commercial
program IBM ILOG CPLEX (2012) (currently freely avail-
able for academic purposes). It took 2.2 seconds to build
the restricted metabolic adjustment landscape, which con-
tains 12853 vertices. It took 36 minutes for FASIMU and
CPLEX to formulate and run all 12853 simulations, i.e. on
average 5.95 simulations per second. The resulting barrier
tree can be seen as Fig. 4. The barrier tree has 8 local min-
ima, the flux distributions of minima 1, 7, and 8 are depicted
in Fig. 5.

Minima Although the biological discussion of the results
is out of the scope of this paper, it should be noted that the
barrier tree nicely illustrates the shift from using the gly-
oxylate shunt in CCM (minima 8 (cmp. Fig. 5) and 6 (not
depicted)) towards not using it (all other minima).

Barriers The leaf nodes of the barrier tree show the CCMs
different abilities to produce ”F1,6PP”. The barriers are
marked B1 to B7. Their fitness indicates the least amount
of reactions a network needs to have when passing a barrier
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Figure 4: Barrier tree from the restricted metabolic adjustment
landscape of CCM for ”F1,6PP” production as objective function.
Barriers are marked B1 to B7. Min 1: Use Asp. Min 2: Use Ala.
Min 4: Use Asp, identical to Min 3, but with ME1 1 and ME1 2
blocking each other from being removed. Min 3: Use Ala. Min
5: Use Glu (utilize pathway from OG to MAL). Min 7: Use Glu
(utilize pathway from OG to MAL). Min 6: Utilize AcCoA via
ICL/MAS straight to OAA from Mal. Min 8: Utilize AcCoA via
ICL/MAS detour over ME1 1 and PC fro Mal to OAA.

that is necessary to connect two metabolic networks.
Let M7 (resp. M8) be the network that minima 7 (resp.

8) represent. Imagine we want to modify M7 such that it
becomes M8, while always being able to maintain ”F1,6PP”
production and minimizing the maximal fitness of all inter-
mediate networks. The computed minimal cost path is as
follows:

1 Minima 7 Score : 11
2 Add GPT 1 Saddle B3 Score : 12
3 Remove ME1 1 Score : 11
4 Remove FH 1 Score : 10
5 Remove SDHA, SDHB, SDHC, SDHD 1 Score : 9
6 Remove SUCLG2 , SUCLG1 , SUCLA2 1 Score : 8
7 Remove OGDH, DLST ,DLD Minima 2 Score : 7
8 Add GOT1 1 Saddle B7 Score : 8
9 Remove PC Score : 7

10 Remove GPT 1 Minima 1 Score : 6
11 Add CS Score : 7
12 Add ACO1, ACO2 1 Score : 8
13 Add ICL Score : 9
14 Add SDHA, SDHB, SDHC, SDHD 1 Score : 10
15 Add FH 1 Score : 11
16 Add MDH1, MDH2 1 Score : 12
17 Add MAS Saddle B2 Score : 13
18 Remove GOT1 1 Score : 12
19 Remove GLUD1 2 Minima 6 Score : 11
20 Add ME1 1 Score : 12
21 Add PC Saddle B1 Score : 13
22 Remove MDH1, MDH2 1 Minima 8 Score : 12

The path never goes above 13 reactions. Although, based on
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Figure 5: Minima 8 (top), 7 (middle), and 1 (bottom). Note, that
the red nodes are not in the corresponding metabolic network, but
are only depicted for illustration reasons.

the “closeness” of minima 7 and 8 in the barrier tree, one
might think that connecting the two minima while not using
more than 13 reactions would result in a short path, the ex-
ample shows this is in general not trivial. It takes 22 steps
of adding and removing a reaction. First ”GPT 1” is added
to enable a shift of substrate from ”Glu” to ”Ala”. Using
”Ala” means the 4 reactions along the path from ”OG” to
”OAA” are no longer needed. These are removed, as well
as ”ME 1”, which is not needed either. Now ”GOTH1 1” is
added to switch from using substrate ”Ala” to ”Asp”. This
removes the need for ”PC” and ”GPT 1”. Now all the re-
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Figure 6: Barrier B2. Note, that the red nodes are not in the corre-
sponding metabolic network, but are only depicted for illustration
reasons. The black lines depict reactions that are in the metabolic
network but are not used in the optimal flux distribution.

actions part of the glyoxylate cycle are added, 2 of which
had been removed just some steps ago. Now a shift from
using ”Asp” to using ”AcCoA” as a substrate can be made.
This transition state is barrier ”B2” and is shown in Fig. 6.
”GOT1 2” and ”GLUT1 2” is now no longer needed. Last
thing needed is to use ”ME1 1” and ”PC” to reach ”OAA”
from ”Mal”, instead of using ”MDH1,MDH2 1”.

The Shift from Using Fatty Acids to Amino Acids
as an Unrestricted Landscape
This section presents results that illustrate how our ap-
proach is used in order to analyze the shift between differ-
ent given fluxes. Using this method instead of finding all
sub-networks reduces the number of simulations, but also
requires some sensible choices for the two networks. Here,
we choose the networks such that both networks are subsets
of the CCM and produce ”F1,6PP”, but one does it using
fatty acids (”AcCoA”), and the other one does it using amino
acids(”Ala”, ”Glu”, or ”Asp”). For a biochemical discussion
on the usage of fatty acids or amino acids to produce glucose
see de Figueiredo et al. (2008). Both networks are shown
in Fig. 7. Note, that in contrast to the restricted case, we
disallow here the removal of reactions that appear in both
networks (depicted as yellow hyper-edges in Fig. 7). We
use the unrestricted transformation method in order to ana-
lyze the metabolic adjustment landscape. To transform the
base networks topology to the target networks, 6 reactions
must be removed and 6 reactions must be added. It took
0.6 seconds to build the resulting landscape, which contains
212 = 4096 vertices. It took 10 minutes for FASIMU and
CPLEX to formulate and run all 4096 simulations (i.e., on
average 6,83 simulations per second).

Barrier Tree The barrier tree for the metabolic adjustment
landscape is depicted in Fig. 8. The tree has 4 minima that
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Figure 8: Barrier tree illustrating the shift from utilizing amino
acids (minima 1, 2, and 3) to utilizing fatty acids (minima 4).

nicely illustrates the usage of amino acids (minima 1-3) or
fatty acids (minimum 4) as source compounds to produce the
target compound ”F1,6PP”. While changing the flux pattern
between different amino acids requires passing only a small
barrier of 1-2 additional reactions, switching to a flux pattern
that utilizes fatty acids, in contrast, requires to pass a rather
high barrier of additional 4 reactions.

Minima 2 of the four minima are depicted in Fig. 9. Reac-
tions that have been removed from the network are marked
red, and the flux distribution is shown in green. Each min-
imum uses different substrates. Minima 1 and 2 show op-
timal use of both ”Ala” and ”Asp”. They both avoid using
the metabolic pathway from ”OG” to ”MAL”, and also do
not use ”ME1 2”. The reason for the large amount of un-
used “black” reactions is, that they are not allowed to be
removed since they are present in the intersection of the two
networks. Minima 3 uses ”Glu” as source compound and
requires the usage of part of the TCA cycle (from ”OG” to
”MAL”) to connect to the target compound ”F1,6PP”. The
barrier tree again suggests that using ”AcCoA” as the only
substrate requires more active enzymes than in the case of
”Ala” or ”Asp”. In other words the amino acids are a “much
cheaper” resource to produce ”F1,6PP” from then ”AcCoA”.

Conclusions
We introduced a systematic approach to characterize the flux
landscapes of a metabolic network. The genetic setup of the
metabolic networks is the always same (forming a super-
network); embedded are different optimal flux distributions
for varying substrate usage and/or target compound produc-
tions. Switching between different flux distributions is ac-
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Figure 9: Minima 1 (top): Only uses substrate ”Ala” in an optimal
fashion by avoiding the metabolic pathway from ”OG” to ”MAL”.
Minima 4 (bottom): Only uses AcCoA as substrate and utilizes
the glyoxylate shunt by activating the reactions ”ICL” and ”MAS”.
Note, that the red nodes are not in the corresponding metabolic
network, but are only depicted for illustration reasons. Black edges
are unused existing edges in the optimal flux distribution.

companied by adjustment costs since inactive genes have
to be activated and active genes have to be deactivated.
From the networks induced by the subset of active reac-
tions (genes) a discrete landscape can be constructed, which
we termed metabolic adjustment landscape. This landscape
is analyzed in terms of local minima and connecting sad-
dle points, and can be efficiently visualized in a hierarchi-
cal structure called barrier tree. The analysis allows us to
find the cost for changing from one optimal flux pattern to
another. Furthermore, for the first time, we can calculate
in mechanistic detail how this minimal cost pathway looks
like, in particular in which order the reactions have to be
(de-)activated to achieve the change in the flux distribution.
This mechanistic hypothesis can be tested by experimental
approaches.
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Rohrschneider, M., Sauer, S., Scheuermann, G., Klemm,
K., Hofacker, I. L., and Stadler, P. F. (2010). Evolution of
metabolic networks: a computational frame-work. J Systems
Chem, 1(4).

Forst, C. V., Flamm, C., Hofacker, I. L., and Stadler, P. F. (2006).
Algebraic comparison of metabolic networks, phylogenetic
inference, and metabolic innovation. BMC Bioinformatics,
7(67).

Hoppe, A., Hoffmann, S., Gerasch, A., Gille, C., and Holzhütter,
H.-G. (2011). FASIMU: flexible software for flux-balance
computation series in large metabolic networks. BMC Bioin-
formatics, 12:28.

IBM ILOG CPLEX (2012). High-performance mathematical
programming engine. v12.5, http://www.ibm.com/
software/integration/optimization/cplex.

Lewis, N. E., Nagarajan, H., and Palsson, B. Ø. (2012). Constrain-
ing the metabolic genotype-phenotype relationship using a
phylogeny of in silico methods. Nature Reviews Microbiol-
ogy, 10:291–305.

Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). What is flux
balance analysis? Nature Biotechnology, 28(3):245–248.

Palsson, B. (2006). Systems Biology: Properties of Reconstructed
Networks. Cambridge University Press, first edition.

Papin, J. A., Stelling, J., Price, N. D., Klamt, S., Schuster, S., and
Palsson, B. Ø. (2004). Comparison of network-based path-
way analysis methods. Trends Biotechnol., 22(8):400–405.

Schuetz, R., Kuepfer, L., and Sauer, U. (2007). Systematic evalu-
ation of objective functions for predicting intracellular fluxes
in Escherichia coli. Molecular Systems Biology, 3:119.

Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., and
Sauer, U. (2012). Multidimensional optimality of microbial
metabolism. Science, 336(6081):601–604.

Schuster, S., Pfeiffer, T., and Fell, D. A. (2008). Is maximization
of molar yield in metabolic networks favoured by evolution?
J Theor Biology, 252:497–504.

Thiele, I. and Palsson, B. Ø. (2010). A protocol for generating a
high-quality genome-scale metabolic reconstruction. Nature
Protocols, 5:93–121.


