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ABSTRACT

Summary: Chemical mapping experiments allow for nucleotide

resolution assessment of RNA structure. We demonstrate that

different strategies of integrating probing data with thermodynamics-

based RNA secondary structure prediction algorithms can be

implemented by means of soft constraints. This amounts to

incorporating suitable pseudo-energies into the standard energy

model for RNA secondary structures. As a showcase application

for this new feature of the ViennaRNA Package we compare three

distinct, previously published strategies to utilize SHAPE reactivities

for structure prediction. The new tool is benchmarked on a set of

RNAs with known reference structure.

Availability and implementation: The capability for SHAPE directed

RNA folding is part of the upcoming release of the ViennaRNA

Package 2.2, for which a preliminary release is already freely

available at http://www.tbi.univie.ac.at/RNA.

Contact: michael.wolfinger@univie.ac.at

Supplementary information: Supplementary data is attached.

1 INTRODUCTION

Beyond its role as information carrier from genome to proteome,

RNA is a key player in genome regulation and contributes to

a wide variety of cellular tasks. The spatial structure RNA

plays an important role in this context because it critically

influences the interaction of RNAs with proteins and with

nucleic acids. Knowledge of RNA structure is therefore crucial

for understanding various biological processes. Chemical and

enzymatic probing methods provide information concerning the

∗to whom correspondence should be addressed

flexibility and accessibility at nucleotide resolution. They are based

on the observation that RNA can be selectively modified by small

organic molecules, metal ions or RNAse enzymes, resulting in

formation of an adduct between the RNA and the small compound

or RNA cleavage. Subsequent primer extension mediated by RT

enzymes typically terminates at the modified sites. The resulting

cDNA fragments thus inform directly on the RNA structure by

identifying, depending on the particular reagent, paired or unpaired

sequence positions.

The first chemical probing workflows were developed in the

1980ies (Peattie and Gilbert, 1980; Stern et al., 1988), followed

by novel approaches in the last 10 years, including protocols

based on hydroxyl radicals (Tullius and Greenbaum, 2005), in-

line probing (Regulski and Breaker, 2008), dimethyl sulfate

(DMS) (Cordero et al., 2012), and selective 2’-hydroxyl acylation

analyzed by primer extension (SHAPE) (Merino et al., 2005;

Weeks, 2010), which have recently been applied in vivo (Zemora

and Waldsich, 2010; Wildauer et al., 2014; Kwok et al., 2013).

Structural characterization of multiple RNAs in high throughput

sequencing has been reported in different assays, including

FragSeq (Underwood et al., 2010), PARS (Kertesz et al., 2010),

SHAPE-seq (Lucks et al., 2011), and Mod-seq (Talkish et al., 2014).

Moreover, a model-based approach for in silico assessment and

characterization of large-scale NGS structure mapping approaches

has recently been reported (Aviran and Pachter, 2014).

As chemical probing is becoming a frequently used technology

to determining RNA structure experimentally, there is increasing

demand for efficient and accurate computational methods to

incorporate probing data into secondary structure prediction tools.

Efficient dynamic programming algorithms, as implemented in the

ViennaRNA Package (Hofacker et al., 1994; Lorenz et al.,

c⃝ The Authors 2015. 1
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2011), rely on the standard energy model for RNA folding, which is

based on the assumption that the free energy of a given structure is

composed of the free energies of its loops (Xia et al., 1998). While

such a thermodynamics-based approach yields excellent prediction

results for short sequences, accuracy decreases to between 40% and

70% for long RNA sequences. This discrepancy is mainly caused by

imperfect thermodynamic parameters and the inherent limitations

of the secondary structure model, such as tertiary interactions,

pseudoknots, ligand binding, or kinetics traps. To alleviate the gap

in available computational tools we have developed a framework for

incorporating probing data into the structure prediction algorithms

of the ViennaRNA Package by means of soft constraints in

order to improve prediction quality.

2 METHODS

Compared to the application of hard constraints (Mathews et al., 2004),

which restrict the folding space by forcing certain nucleotides to either being

paired or unpaired, the incorporation of soft constraints is a less stringent

approach. Soft constraints guide the folding process by adding position

specific or motif specific pseudo-energy contributions to the experimentally

determined free energy values of specific secondary structure motifs. This

amounts to a distortion of the equilibrium ensemble of structure in favour

of structures that are consistent with experimental data. Positive energy

contributions are used to penalize mismatching motifs, while negative

energy contributions give a “bonus” to those features that agree between

prediction and experimentally determined pairing pattern.

The first approach that applied SHAPE directed RNA folding uses the

simple linear ansatz

∆ GSHAPE(i) = m ln(SHAPE reactivity(i) + 1) + b.

to convert SHAPE reactivity values to pseudo energies whenever a

nucleotide i contributes to a stacked pair (Deigan et al., 2009). A positive

slope m penalizes high reactivities in paired regions, while a negative

intercept b results in a confirmatory “bonus” free energy for correctly

predicted base pairs. Since the energy evaluation of a base pair stack involves

two pairs, the pseudo energies are added for all four contributing nucleotides.

Consequently, the energy term is applied twice for pairs inside a helix and

only once for pairs adjacent to other structures. For all other loop types the

energy model remains unchanged even when the experimental data highly

disagrees with a certain motif.

A more consistent model considers nucleotide-wise experimental data in

all loop energy evaluations (Zarringhalam et al., 2012). First, the observed

SHAPE reactivity of nucleotide i is converted into the probability qi that

position i is unpaired by means of a non-linear map. Then pseudo-energies

of the form

∆ GSHAPE(x, i) = β |xi − qi| ,

are computed, where xi = 0 if position i is unpaired and xi = 1 if i is

paired in a given secondary structure. The parameter β serves as scaling

factor. The magnitude of discrepancy between prediction and experimental

observation is represented by |xi − qi|.
These two methods incorporate pseudo-energies even when the observed

data are consisted with an unaided secondary structure prediction. In

a different approach, Washietl et al. (2012) suggested to phrase the

choice of the bonus energies as an optimization problem aiming to find

a perturbation vector ϵ⃗ in such a away that the discrepancy between the

observed and predicted probabilities to see position i unpaired, respectively,

is minimized. At the same time, the perturbation should be as small as

possible. The tradeoff between the two goals is naturally defined by the

relative uncertainties inherent in the SHAPE measurements and the energy

model, respectively. An appropriate error perturbation vector thus satisfies

F (⃗ϵ) =
∑

µ

ϵ2µ

τ2
+

n∑

i=1

(pi (⃗ϵ)− qi)2

σ2
→ min .

Here, ϵµ is the perturbation energy for a certain structural element µ and

the variances τ2µ and σ2
i serve as weighting factors for the relative influence

of the structure predicted from the standard energy model compared to the

experimental data.

In this setting, the energy model is only adjusted when necessary. If

the thermodynamic model already yields a perfect prediction, the resulting

perturbation vector vanishes and the folding recursions remain unbiased.

Otherwise the perturbation vector is used to guide the folding process by

adding a pseudo-energy ϵi whenever nucleotide i appears unpaired in the

folding recursions. Since the pairing probabilities are derived from the whole

ensemble of secondary structures, the algorithm of Washietl et al. (2012)

tends to decrease structural diversity only slightly, which makes it applicable

to RNAs with several distinct low free energy structures. Furthermore, the

inferred perturbation energies identify sequence positions that require major

adjustments of the energy model to conform with the experimental data.

High perturbation energies for just a few nucleotides are therefore indicative

of posttranscriptional modifications or intermolecular interactions that are

not explicitly handled by the energy model. A major drawback of this

approach is its asymptotic time complexity of O(n4), which renders it very

expensive for long sequences. This can be alleviated by a sampling strategy

for estimating the gradient of the error functional F and provides a viable

alternative to the exact numeric solution that reduces the time complexity to

O(n3) again.

Implementation. All three methods outlined above have been

implemented into the ViennaRNA Package. Additional functionalities

are available through the API of the ViennaRNA Library and through

the command line interface of the application RNAfold. The required

changes to the folding recursions and technical details of handling both

hard and soft constraints in ViennaRNA will be described elsewhere in full

detail. The key feature for our purposes is the consistent incorporation of

a user defined position dependent energy contribution for each nucleotide

that remains unpaired. The novel standalone tool RNApvmin dynamically

estimated this vector of pseudo-energies that minimize model adjustments

and discrepancies between observed and predicted pairing probabilities.

Once this perturbation vector has been calculated, the pseudo-energies in the

vector can be used to constrain folding with RNAfold. This setup makes is

easy for users to incorporate alternative ways of computing bonus energies,

e.g. along the lines of Eddy (2014), or to use the software with other types

of probing data. The additional strategies for probing data/bonus energy

incorporation into the folding recursions introduce a variety of parameters.

These need to be chosen carefully. We refer to the supplement material for

a detailed summary of the default parameters. The new features have been

included into the ViennaRNA Websuite (Gruber et al., 2008), a Web

server which provides many functionalities of the ViennaRNA Package

and is available at http://rna.tbi.univie.ac.at.

3 RESULTS

We applied the methods to a benchmark set with known reference

structures (Hajdin et al., 2013). The test set contains 24 triples

of sequences, their corresponding SHAPE data, and reference

structures. The reference structures were derived from X-ray

crystallography experiments or predicted by comparative sequence

analysis.

The use of soft constraints derived from SHAPE data leads

to improved prediction results for many RNAs. This is clearly

visible in the predictions from our benchmark data set (see

Figure 1, and Supplementary data). However, for some of the RNAs

within our benchmark data the additional pseudo-energy terms

lead to worse predictions. This may be due to two factors. First,
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Fig. 1. Secondary structure prediction of E.coli 5S rRNA from our

benchmark data set. A Structure reference, B prediction by RNAfold with

default parameters, and C prediction by RNAfold with guiding pseudo-

energies obtained from SHAPE reactivity data using RNApvmin. Structure

plots created using the forna webserver (Kerpedjiev and Hammer, 2015).

Grey nucleotides correspond to missing SHAPE reactivity data.

experimental data always comes with a certain inaccuracy. Second,

the underlying energy model excludes pseudoknotted structures,

which are present in approximately half of the benchmarked RNAs.

Hence, pseudoknot interactions are not only present in the reference

structure, but also influence the SHAPE reactivities.

Incorporation of probing data not only affects the minimum

free energy structure, but also the entire ensemble of structures.

Consequently, the predicted pairing probabilities are shifted towards

the observed reactivity pattern. However, the effect is less distinct

when applying the method of Washietl et al. (see Supplementary

Figure 11). The incorporation of SHAPE reactivities into the folding

recursion via soft constraints produces prediction results closer to

the experimentally observed reference structures. However, none

of the three approaches consistently outperforms the other two

methods in terms of prediction sensitivity.

As an additional example, we compare the three methods using

sequence and probing data of an artificially designed theophylline

sensing riboswitch (Qi et al., 2012), see Supplementary data 4.

The generalized handling of soft constraints in the ViennaRNA

Package as of version 2.2 enables to directly include the ligand

binding free energy of theophylline to the aptamer.
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Lorenz, R., Bernhart, S. H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler,

P. F., and Hofacker, I. L. (2011). ViennaRNA package 2.0. Algorithms Mol Biol,

6(1).

Lucks, J., Mortimer, S., Trapnell, C., Luo, S., Aviran, S., Schroth, G., Pachter, L.,

Doudna, J., and Arkin, A. (2011). Multiplexed RNA structure characterization with

selective 2-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-

seq). Proceedings of the National Academy of Sciences of the United States of

America, 108(27), 11063–11068.

Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., and Zuker, M. (2004).

Incorporating chemical modification constraints into a dynamic programming

algorithm for prediction of RNA secondary structure. PNAS, 101, 7287–7292.

Merino, E. J., Wilkinson, K. A., Coughian, J. L., and Weeks, K. M. (2005). RNA

structure analysis at single nucleotide resolution by selective 2’-hydroxyl acylation

and primer extension (SHAPE). JACS, 127, 4223–4231.

Peattie, D. and Gilbert, W. (1980). Chemical probes for higher-order structure in RNA.

Proceedings of the National Academy of Sciences of the United States of America,

77(8), 4679–4682.

Qi, L., Lucks, J. B., Liu, C. C., Mutalik, V. K., and Arkin, A. P. (2012). Engineering

naturally occurring trans-acting non-coding RNAs to sense molecular signals.

Nucleic acids research, 40(12), 5775–5786.

Regulski, E. and Breaker, R. (2008). In-line probing analysis of riboswitches. Methods

in molecular biology (Clifton, N.J.), 419, 53–67.

Stern, S., Moazed, D., and Noller, H. (1988). Structural analysis of rna using chemical

and enzymatic probing monitored by primer extension. Methods in Enzymology,

164, 481–489.

Talkish, J., May, G., Lin, Y., Woolford Jr., J., and McManus, C. (2014). Mod-seq:

High-throughput sequencing for chemical probing of RNA structure. RNA, 20(5),

713–720.

Tullius, T. and Greenbaum, J. (2005). Mapping nucleic acid structure by hydroxyl

radical cleavage. Current Opinion in Chemical Biology, 9(2), 127–134.

Underwood, J., Uzilov, A., Katzman, S., Onodera, C., Mainzer, J., Mathews, D.,

Lowe, T., Salama, S., and Haussler, D. (2010). Fragseq: Transcriptome-wide

RNA structure probing using high-throughput sequencing. Nature Methods, 7(12),

995–1001.

Washietl, S., Hofacker, I. L., Stadler, P. F., and Kellis, M. (2012). RNA folding with soft

constraints: reconciliation of probing data and thermodynamics secondary structure

prediction. Nucleic Acids Research, 40(10), 4261–4272.

Weeks, K. (2010). Advances in RNA structure analysis by chemical probing. Current

Opinion in Structural Biology, 20(3), 295–304.

Wildauer, M., Zemora, G., Liebeg, A., Heisig, V., and Waldsich, C. (2014). Chemical

probing of RNA in living cells. Methods in Molecular Biology, 1086, 159–176.

Xia, T., SantaLucia, Jr, J., Burkard, M. E., Kierzek, R., Schroeder, S. J., Jiao, X.,

Cox, C., and Turner, D. H. (1998). Thermodynamic parameters for an expanded

nearest-neighbor model for formation of RNA duplexes with Watson-Crick base

pairs. Biochemistry, 37(42), 14719–35.

Zarringhalam, K., Meyer, M. M., Dotu, I., Chuang, J. H., and Clote, P. (2012).

Integrating chemical footprinting data into RNA secondary structure prediction.

PLOS ONE, 7(10).

Zemora, G. and Waldsich, C. (2010). RNA folding in living cells. RNA Biology, 7(6),

634–641.

3



[SHAPE directed RNA folding]

- Supplementary Material -

Dominik Luntzer 1, Ronny Lorenz 2,1, Ivo L. Hofacker 1,3,4

Peter F. Stadler 1,2,4,7,8,9, and Michael T. Wolfinger 1,5,6,⇤

1Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17/3, A-1090
Vienna, Austria.

2Department of Bioinformatics, University of Leipzig, Härtelstraße, 16-18, 04109 Leipzig,
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1 Availability

The performed benchmark can be downloaded at http://github.com/dluntzer/
shapebenchmark and may be of further use when a novel method should be
compared against the existing approaches.

2 Metrics

2.1 Minimum free energy structure

In order to rate the quality of RNA secondary structure prediction results in
terms of prediction accuracy, the predicted minimum free energy structures are
usually compared to known reference secondary structures. Suboptimal folds,
yielding a free energy within a certain range from the minimum free energy
structure, may also contain structures with similar or even better quality than
the MFE structure. However, there is no way to rate the quality of suboptimal
folds when the reference structure is unknown, which is usually the case. As
a result suboptimal folds can not be used to rate the quality of a secondary
structure prediction algorithm.

⇤to whom correspondence should be addressed
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The correctness of the minimum free energy structure prediction is rated by
comparing the predicted base pairs against the base pairs determined from the
reference structure. In order to rate the quality, two parameters are commonly
used to describe the amount of correct and wrong base pair predictions. The
Sensitivity represents the percentage of base pairs in the reference structure,
which are also found in the prediction. However, many RNA secondary structure
prediction algorithms tend to predict additional pairs, which can not be verified
with experimental methods. As a result the Positive predictive value (PPV ),
which represents the percentage of predicted pairs found in the reference struc-
ture, is used to rate the amount of false positives.

Sensitivity =
Number of correctly predicted base pairs

Number of base pairs in the reference structure

Positive Predictive Value =
Number of correctly predicted base pairs

Number of predicted base pairs

(1)

2.2 Partition function

In contrast to the MFE structure, the partition function approach is used to
model the whole ensemble rather than just predicting one or a few promising
secondary structure candidates. Nevertheless, various parameters can be used
to describe the agreement of the predicted ensemble with the known reference
structure.

The Pairing Probability Score is defined as the arithmetic mean of the pre-
dicted pairing probabilities pij of all pairs contributing to the reference structure
S and shows the agreement of the pairing probability matrix derived from the
ensemble of all possible structures with one single reference structure.

Pairing Probability Score =

P
(i,j)2S

pij

n
(2)

The Ensemble Diversity hdi shows the mean distance between predicted
pairs, which can be obtained from the predicted pairing probabilities. Since the
algorithms for incorporating experimental data tend to favor motifs that are
in agreement with the observed experimental data, while penalizing disagree-
ing motifs, the Ensemble Diversity is used to illustrate to which extent the
shift towards the experimental data influences the variability of the secondary
structures represented by the ensemble. The Ensemble Diversity of a ther-
modynamic based prediction depends on the energy model and its parameters.
Since the incorporation of additional experimental information is usually done
by adding additional constraints, a decrease in the Ensemble Diversity in con-
trast to the thermodynamic based prediction is expected. Since the amount of
possible pairs raises with growing sequence lengths, the Ensemble Diversity is
normalized through division by the length n of the RNA to ensure comparability
between RNAs of di↵erent size.

hdi =

P
i,j

pij(1� pij)

n
(3)

2



The distance between the ensemble and the reference structure, hd(S)i, is
a quantitative measure for the agreement of the predicted ensemble with the
accepted target structure. In contrast to the Pairing Probability Score, which
focuses on the predicted pairing probabilities for base pairs present in the target
structure, the probabilities for all possible basepairs are taken into account.
Since the incorporation of experimental data into prediction algorithms tends
to prefer structures being in accordance with the determined structural features,
the ensemble distance can be used to quantify the expected shift of the whole
ensemble towards the reference structure.

hd(S)i =

P
i,j2S

1� pij +
P

i,j 62S
pij

n
(4)

3 Benchmark Data

The test set created by Hajdin et al. (2013) was used for benchmarking the ac-
curacy of secondary structure predictions including SHAPE data (http://www.
chem.unc.edu/rna/data-files/ShapeKnots_DATA.zip). The test set contains
24 sequences with their corresponding SHAPE data sets and reference struc-
tures, which are required to rate the prediction results. The reference structures
were derived from X-ray crystallography experiments or predicted by compar-
ative sequence analysis. As shown in Figure 1, the benchmark shows a high
diversity regarding the length and prediction Sensitivity of the involved RNAs.
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Figure 1: Length and MFE prediction Sensitivity of RNAs used for bench-
marking.

The mentioned test set has been designed for benchmarking the prediction of
secondary structures containing pseudoknots, which scales at O(n6). In contrast
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to secondary structure prediction without pseudoknots, which scales at O(n3),
the computational e↵ort is growing much faster with growing sequence lengths.
As a result the longest RNA sequences in the test set have a length of about
500 nucleotides. Nevertheless, the benchmark also contains structures without
pseudoknots. A perfect prediction for structures containing pseudoknots is not
possible, since the ViennaRNA Package does not support pseudoknots. There-
fore, we applied a simple optimization strategy that removes pseudo-knots from
the reference structures while keeping the number of base pairs maximal.

All three implemented methods depend on a set of carefully adjusted param-
eters. While we use the published default parameters for the methods of Deigan
et al. (2009) (m = 1.8, b = �0.6) and Zarringhalam et al. (2012) (� = 0.8), we
performed an exhaustive evaluation of the parameter space for the method pre-
sented by Washietl et al. (2012), see Figure 2. Based on this data, we selected
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Figure 2: Parameter space evaluation for the method of Washietl et al. (2012).
Plotted are the mean positive predictive values (PPV) for the entire benchmark
data set using di↵erent parameter settings. For the sake of clarity, only three
di↵erent values for the minimizer tolerance ✏m, namely 0.1, 0.01, and 0.001, are
depicted, while for each of them a large range of ⌧/� -ratios is used. The polygon
surrounding each line of mean values indicates the standard deviation of PPVs
within the entire set of predictions for the corresponding parameter setting. The
dashed, purple, vertical line highlights the ⌧/� -ratio used as default value for
RNApvmin.

the following default parameter combinations for this approach: ⌧/� = 2.0, min-
imizer tolerance ✏m = 0.001, initial step size of the minimizer method sm = 0.01.
Furthermore, our implementation of the method by Washietl et al. (2012) in the
program RNApvmin defaults to an estimation of the gradient by drawing 1000
sample structures from the Boltzmann ensemble. This not only considerably
speeds up the optimization routines, but also enables their application to rugged
landscapes where an exact gradient approach could easily trap the optimization
process in a local minimum. The benchmark results for all three methods that
correspond to their beforementioned default parameters are listed in Table 1.
RNApvmin results need to be updated in the following table
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4 Theophylline sensing riboswitch

As an additional, particular example for comparing the three presented meth-
ods we selected the artificially designed RNA switch theo-P-is10, taken from Qi
et al. (2012). This RNA consists of a theophylline sensing aptamer part followed
by a ncRNA expression platform. The switching principle follows a regular ON-
switch behavior, where under su�ciently high concentrations of theophylline,
the aptamer part of the structure is thermodynamically favored, and the down-
stream located ncRNA part of the sequence folds into its active state. On the
other hand, in the absence of theophylline, the expression platform misfolds into
an inactive state.

In the original design theo-P-is10 forms a pseudoknot interaction between
the aptamer stem and the expression platform in the inactive state. However, by
using RNAfold we explicitly exclude pseudoknots, which is also true for almost
all other secondary structure prediction programs available. Nevertheless, the
data that comes with the work of Qi et al. (2012) provides a rich source of
interesting SHAPE probing data, since it consists of normalized reactivities
from two experiments: (i) the RNA folds in theophylline free solution, and (ii)
the RNA folds in the presence of 0.5 mM theophylline, respectively. Since the
designed pseudoknot is only present in the inactive state of the RNA switch, i.e.
in theophylline-free solution, we do not emphasize too much on the correctness
of the structure prediction in this case.

To compare the di↵erent variants of guided RNA secondary structure predic-
tion through SHAPE reactivity data incorporation for theo-P-is10, we computed
the ground state structures, and base pair probabilities for the two correspond-
ing experimental data sets. Instead of using two dotplots for comparison, we
create di↵erential RNAbow plots (Aalberts and Jannen, 2013) to visualize the
di↵erence in base pair probability predictions. Here, a di↵erential RNAbow plot
consists of two sets of arcs located on the upper and lower half of the horizon-
tally aligned nucleotide sequence, showing the predictions for both experiments,
respectively. The strength/width of the arcs represents the pairing probability
(thicker lines mean higher probability), whereas arcs are colored with an inten-
sity corresponding to the absolute value of di↵erence in predictions (red in the
upper half, blue in the lower half) only, if pairing probability is higher when com-
pared to the other experiment. For better visualization we restrict the RNAbow

plots to pairing probabilities of 0.1 and above.
Figure 3 outlines the two ground state structures of the designed RNA switch

together with their corresponding pairing probabilities in form of a bowplot.
Results of the predictions using the method of Deigan et al. (2009) with default
parameters, the parameters used in Qi et al. (2012), the method of Zarringhalam
et al. (2012) with default parameters, and the method of Washietl et al. (2012),
are shown in Figures 4, 5, 6, and 7, respectively. It can be easily seen that
the method of Deigan et al. (2009) using default parameters clearly misses the
proposed ground state structures and essentially yields results as obtained by
RNAfold without incorporation of SHAPE reactivities. On the other hand, using
the two parameters m = 3.4, and b = �0.5, both SHAPE reactivity data sets
yield high probabilities for the aptamer pocket and the functional ncRNA part,
although only in presence of theophylline the aptamer pocket is fully formed.
Using the method of Zarringhalam et al. (2012) both predicted ground state
structures again correspond to the active conformation of the designed RNA
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switch. However, the proposed pseudoknot interaction between the two hairpin
loops of the inactive state becomes visible in the base pair plot. This e↵ect is
even more pronounced when using the method of Washietl et al. (2012). Here,
the pairing probabilities for the pseudoknot interaction are much higher in the
absence of theophylline, whereas the probabilities of the base pairs involved
in the formation of the aptamer pocket and the ncRNA part are increased in
the presence of theophylline. Nevertheless, both ground state structures are
virtually identical and represent the active conformation.

In contrast to the above methods, the implementation of so-called soft-

constraints in the ViennaRNA Package 2.2 (published elsewhere) also allows for
a direct inclusion of binding free energies of the ligand to the aptamer pocket.
For this purpose, the ensemble of structures is modified such that all structures
that exhibit the aptamer pocket receive an additional stabilizing free energy of
Es = �9.22 kcal/mol, according to the dissociation constant of Kd = 0.32µM
taken from Jenison et al. (1994). The resulting constrained secondary structure
prediction is shown in Figure 8. Here, the shift towards the functional ligand
binding state of the RNA switch under presence of theophylline is clearly visible
in the base pair probabilities.
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SHAPE reactivity Probability for being unpaired

<0.25 0.00 - 0.35
0.25 - 0.30 0.35 - 0.55
0.30 - 0.70 0.55 - 0.85

>0.70 0.85 - 1.00

Table 2: Linear mapping classes used to convert SHAPE reactivities to proba-
bilities for being unpaired according to Zarringhalam et al.

5 Mapping SHAPE reactivities to pairing prob-
abilities

While the approach of Deigan et al. directly converts SHAPE reactivities to
pseudo energies, the methods of Zarringhalam et al. and Washietl et al. both
require experimentally determined pairing probabilities as input data. However,
converting raw reactivity values to pairing probabilities is not a trivial task and
both approaches use di↵erent methods to calculate pairing probabilities based on
given SHAPE reactivities. While Washietl et al. used a simple cuto↵ approach
to distinguish between paired and unpaired positions, Zarringhalam et al. used
a more sophisticated method where the normalization is carried out in a stepwise
linear fashion (See table 2).

In this benchmark a common method was used to compute the required
pairing probabilities based on the experimentally determined SHAPE reactiv-
ities. The application RNAplfold was used to predict the pairing probabilities
for all sequences of the benchmark. The predicted pairing probabilities of all
nucleotides were then compared with the determined SHAPE reactivities. The
dataset containing about 4500 observations showed a significant correlation be-
tween the logarithm of the SHAPE reactivity and the probability for a certain
nucleotide to be unpaired. However, as shown in figure 9, the experimental
signal shows a high variation and high reactivities can also be observed for
paired nucleotides, and vice versa. Nevertheless, a linear model is suitable for
converting the logarithm of the SHAPE reactivity to the probability for being
unpaired.

q =
log(SHAPE reactivity) + 2.29

1.6
(5)

Since the equation above may also lead to results lower than 0 and higher
than 1, all results exceeding those limits are mapped to the corresponding
boundary value.

6 Runtime

The impact of the incorporation of additional soft constraints onto the required
amount of computational time was benchmarked for the whole dataset using
a workstation (Intel Core 2 Quad 2.83 GHz, GCC 4.8.2). The runtime for
the folding recursion was averaged over 10 runs. As shown in figure 10, the
incorporation of additional constraints results in a slight increase of the required
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Figure 9: Relation of measured SHAPE reactivities to predicted probabilities
for being unpaired

computational time. However, the e↵ect is less distinct for the approach of
Deigan et al. which may be explained by the fact that in contrast to the other
approaches, which apply pseudo energies for every paired/unpaired nucleotide,
the free energy is only adapted when evaluating stacked pairs.

The overall runtime for the prediction according to Washietl et al. can be
separated into two phases. First, a perturbation vector is calculated by numer-
ically minimizing an objective function. This step requires most of the compu-
tational resources since the exact evaluation of the gradient at various points
of the minimization algorithm scales at O(N4). However, the evaluation can
be done much faster when the gradient is estimated from a number of sampled
sequences. Second, the calculated perturbation vector is used to constrain the
secondary structure prediction.
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Figure 11: Change of the positive predictive value (PPV) of the minimum free
energy structure due to constrained folding compared to unconstrained fold-
ing. Reference structures that contain pseudoknots are marked with by a su-
perscripted asterisk and light-red background. The poor performance of the
Washietl et al. (2012) method in the case of E.coli TPP riboswitch is caused by
an inconsistency between SHAPE reactivity and proposed reference structure.
On the other hand, the PreQ1-riboswitch in B.subtilis is an extremely short,
heavily pseudoknotted example where a prediction using the Washietl et al.

(2012) method yields almost no base pairs.
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Figure 12: Ensemble Diversity and distance between ensemble and reference
structure for unconstrained and constrained structure predictions
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