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Abstract

We consider a model of platform adaptation in spatial voting focussing on the effect
of abstention on the stability of the mean voter equilibrium. Two distinct approaches
for modeling abstention are explored: (1) voters abstain if party platforms are too
similar to each other and (2) voters abstain if both party platforms are far away
from their ideal points.
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1 Introduction

Voting models are a common tool in the fields of Economics and Political
Science. In the language of politics, spatial references (e.g. “moving right,
left, centrist”) are intuitively used to describe political issues, platforms or
voters’ ideologies. The theory of spatial voting is based on the assumption
that political issues as well as voter preferences can be quantified. Early work
on this subject was done by Hotelling in the 1920s [1]; the core of the theory
was developed in the 1940s and 1950s by Smithies [2], Downs [3], and Black
[4]. For recent reviews see [5, 6]. A statistical physics approach to voting can be
found in [7]. Only very rarely was research focussed on its dynamical aspects.

A dynamical system describing the platform adaptation of two opportunistic
political parties is analyzed in [8], based upon earlier computer simulations
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that showed a similar tendency towards stability [9, 10]. A generalization to
multi-party systems is introduced in [11]. Globally stable equilibria were found
in the dynamical models under rather general assumptions despite the general
lack of stable equilibria in the game theoretic approaches [12, 13, 14, 15].

In this work we focus on the influence of abstention on the platform dynamics
of a two-party model, generalizing previous work in this direction [16].

2 The Model

The basic idea of this model is that voters and candidates are seen as points in
the Euclidean space R

I , the dimension of which is determined by the number
I of different issues. It is assumed that the voter is rational in the sense that
she has a certain opinion on every issue to be voted on, thus defining her
position in issue space. This position is referred to as the voter’s ideal point

and will be denoted by the vector xv ∈ R
I . We assume that a voter’s position

remains fixed for the duration of the campaign. Party platforms are seen as
points in the issue space as well. Throughout this work, we consider models
with two parties. The utility of party p = 1, 2 for a given voter v is measured
by a function uv(y

p), which is assumed to be decreasing with the distance from
the voter’s ideal point and has its maximum at the voter’s ideal point.

The probability that voter v votes for party p is described by the response

function P0(zv), where zv = uv(y
p) − uv(y

q) is the utility difference between
party p and party q for voter v. It is assumed that a voter will most likely
cast her vote for the party that yields the largest utility for her. If a voter is
completely informed about the party positions, P0(zv) will be a step function
with value 0 for zv < 0, i.e. if party q yields the larger utility, the probability of
voting for party p will be zero; its value will be 1 for zv > 0, i.e. the voter will
certainly vote for party p if it yields the larger utility, and P0(zv) = 1

2
if both

parties yield the same utility for voter v which illustrates that the voter drops
a coin in this case. We will assume here that in mass elections, the voters will
generally not be completely informed and therefore P0(zv) will be a sigmoidal
function, independent of the individual voter v.

The slope P ′

0(0) of the response function at 0 is a measure of how critical the
voters are. A steep slope indicates critical voters, who react strongly to small
changes in platform positions, while a flat slope indicates uncritical voters
whose behavior is more indifferent to small changes in platform positions.

In general, the voters are confronted with making a decision between par-
ticipating in the election and thus voting for one of the competing parties,
and abstaining from the election. In order to model voter abstention we as-
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sume that there are two different motives that cause voters to abstain from
the election: For once, we will assume that the voter might loose her interest
in casting a ballot if the party platforms are far away from her ideal point.
We model this effect by the non-voting probability µ(z) that depends on the
utility differences and satisfies the following conditions:

1 µ(z) is symmetric, i.e. µ(z) = µ(−z). This reflects that the parties appear
to be exchangeable to a person who does not vote at all.

2 µ(z) is decreasing for z > 0.
3 µ(z) shall be twice differentiable. This assumption is made for technical

simplicity.

As an immediate consequence, µ′(0) = 0 and µ′′(0) ≤ 0.

Furthermore, we also assume that a voter will abstain if the party platforms
are far away from her ideal point. In this case, abstention depends explicitly
on the utilities of the two parties for each voter. This effect can be modelled
by a probability function Ψ(u) that is increasing with the voter utility u. Since
u is negative and decreasing with the distance from the voter’s ideal point,
Ψ(u) is also decreasing with the distance from the voter’s ideal point.

The two parties, or candidates, are the active players in our model. Their
positions are described by the vectors y1 ∈ R

I and y2 ∈ R
I. Parties are allowed

to modify their positions in order to gain more votes. In this contribution, we
want to model an interplay of both abstention motives. A party’s payoff is the
expected fraction of votes it gets. In a model with V voters the payoff for each
one of the parties is given by:

E1(y
1, y2) =

1

V

∑

v

P0(zv)(1− µ(zv))Ψ(uv(y
1)

E2(y
1, y2) =

1

V

∑

v

P0(−zv)(1− µ(zv))Ψ(uv(y
2)

(1)

Complete voter participation corresponds to setting µ(z) = 0 and Ψ(uv(y
p)) =

1 for p = 1, 2.

In order to gain more votes, each party makes small corrections to its platform
along the gradient of the payoff function in its own coordinates.

Thus, the dynamics of platform adaptation is of the following form:

ẏ1 = ∇y1

1

V

V
∑

v=1

P0(zv)(1− µ(zv))Ψ(uv(y
1))

ẏ2 = ∇y2

1

V

V
∑

v=1

P0(−zv)(1− µ(zv))Ψ(uv(y
2))

(2)
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It is easy to see thatH2, the manifold in which both party platforms are equal,
is invariant under the dynamics since ẏ1 = ẏ2 holds.

We get the following Jacobian for a point on H2:

∂ẏj
1

∂yk
1
|zv=0 = −1

2
µ′′(0)

1

V

V
∑

v=1

Ψ(uv(y))∂kuv(y)∂juv(y)

+ 2(1− µ(0))P ′

0(0)
1

V

V
∑

v=1

Ψ′(uv(y))∂kuv(y)∂juv(y)

+
1

2
(1− µ(0))

1

V

V
∑

v=1

Ψ′′(uv(y))∂kuv(y)∂juv(y)

+ (1− µ(0))P ′

0(0)
1

V

V
∑

v=1

Ψ(uv(y))∂k∂juv(y)

+
1

2
(1− µ(0))

1

V

V
∑

v=1

Ψ′(uv(y))∂k∂juv(y)

∂ẏj
1

∂yk
2
|zv=0 =

1

2
µ′′(0)

1

V

V
∑

v=1

Ψ(uv(y))∂kuv(y)∂juv(y)

− (1− µ(0))P ′

0(0)
1

V

V
∑

v=1

Ψ′(uv(y))∂kuv(y)∂juv(y)

∂ẏ1

∂y1
|zv = 0 =

∂ẏ2

∂y2
|zv = 0

∂ẏ1

∂y2
|zv = 0 =

∂ẏ2

∂y1
|zv = 0

(3)

Note that ∂juv(y) denotes the j-th component of the vector ∇uv(y).

The dynamics on H2 is given by the differential equation

ẏ = (1− µ(0))
1

V

V
∑

v=1

[

P ′

0(0)Ψ(uv(y)) +
1

2
Ψ′(uv(y))

]

∇uv(y
p) (4)

Little can be said about the general case. For discrete voter distributions, the
expressions become rather unhandy.

We will therefore analyze two models using simple continuous voter distribu-
tions ρ(x) in order to illustrate the dynamics of (2) and restrict ourselves to
the one-issue-case.

We assume the Enelow-Hinich-type voter utility function

u(y, x) = −(y − x)2 (5)
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and an exponentially decaying voting probability of the form

Ψ(uv(y)) := exp(kuv(y)) (6)

For the moment, we will not specify the symmetric non-voting probability
function µ.

At first, let us assume that the voters are normally distributed with mean 0
and variance σ2.

The dynamics on H2 is given by

ẏ =
1

σ
√

2π
(1− µ(0))

∫

∞

−∞

[

P ′

0(0) +
1

2
k
]

e−x2/(2σ2)−k(y−x)2(−2)(y − x) dx (7)

With the abbreviations

a =

√

2σ2k + 1

2σ2
b =

−ky

a
c = ky2 − b2 (8)

we may write the exponent in the form (ax + b)2 + c. Setting w = ax + b, we
obtain the following expression:

ẏ = −(1− µ(0))
(2P ′

0(0) + k)(a2 − k)eb2

a3σ
√

2
y exp(−ky2) (9)

Since a2 − k = 1/(2σ2) > 0, equ.(9) is of the form ẏ = −Cy exp(−ky2) with a
positive constant C. Thus, the mean voter point y = 0 is the only fixed point.
It is stable within H2.

The Jacobian at y = 0 can be obtained from equ.(3) by evaluating similar
integrals:

∂ẏ1

∂y1
=

1√
2a3σ



− µ′′(0) + (1− µ(0))4kP ′

0(0)

+ (1− µ(0))k2 − (1− µ(0))2a2P ′

0(0)− (1− µ(0))ka2





∂ẏ1

∂y2
=

1√
2a3σ

[−µ′′(0)− (1− µ(0))2kP ′

0(0)]

(10)

Rewriting equ.(10) in matrix form yields:
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J(y, y) =
−µ′′(0)√

2a3σ







1 −1

−1 1





+
(1− µ(0))2kP ′

0(0)√
2a3σ







2 −1

−1 2







+
(1− µ(0))√

2a3σ
[k2 − 2a2P ′

0(0)− a2k]







1 0

0 1







(11)

It is easy to see that the matrices M =







1 −1

−1 1





 and N =







2 −1

−1 2





 have

the same eigenvectors. The eigenvalues of M are 0 and 2, those of N are 1
and 3. Thus, the eigenvalues of the Jacobian are

λ1 =
(1− µ(0))√

2a3σ

[

(k − a2)(2P ′

0(0) + k)
]

λ2 =
(1− µ(0))√

2a3σ

[

2P ′

0(0)(3k − a2) + k(k − a2)
]

− 2µ′′(0)√
2a3σ

(12)

Taking into account that k − a2 = −1/2σ2, we see that the first eigenvalue,
λ1, is always negative. Substituting 3k − a2 = (4kσ2 − 1)/2σ2, the conditions
for the second eigenvalue λ2 to be negative can be rewritten in the form:

2P ′

0(0)(1− µ(0))(4kσ2 − 1) < k(1− µ(0)) + 4σ2µ′′(0) (13)

There are the following cases to distinguish:

Case I. k <
1

4σ2

In this case λ2 < 0 is fulfilled for

P ′

0(0) >
1

2(4kσ2 − 1)

[

k +
4σ2µ′′(0)

1− µ(0)

]

= P∗ (14)

For k > −4σ2µ′′(0)
1−µ(0)

the term in the square brackets on the right hand side

of equ.(14) is positive. Thus for −4σ2µ′′(0)
1−µ(0)

< k < 1
4σ2 the second eigenvalue

is always negative and the mean voter equilibrium is stable independent of
P ′

0(0).
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For k < −4σ2µ′′(0)
1−µ(0)

the term in the square brackets on the right hand side of

(14) is negative. Thus we get a bifurcation at the mean voter equilibrium
for P ′

0(0) = P∗. The mean voter equilibrium becomes thus stable for critical
voters.

Case II. k >
1

4σ2
.

In this case, λ2 < 0 is fulfilled for P ′

0(0) < P∗.

If the term under the square brackets on the right hand side of equ.(14) is
negative, then the condition λ2 < 0 cannot be fulfilled, since P ′

0(0) has to be
positive.

Thus, for 1
4σ2 < k < −4σ2µ′′(0)

1−µ(0)
the mean voter equilibrium is always unstable

independent of P ′

0(0).

If the term under the square brackets on the right hand side of (14) is positive,
we get a bifurcation at the mean voter equilibrium for P ′

0(0) = P∗.

Thus, the mean voter equilibrium is stable for uncritical voters and becomes
unstable for critical voters.

Let us now assume that the voters are uniformly distributed on the interval
[−1, 1].

The dynamics on H2 is given by the equation:

ẏ =
1

2

[

P ′

0(0) +
k

2

]

∫ 1

−1
e−k(y−x)2(−2)(y − x)dx (15)

With the substitution w = y − x, the above equation reads:

ẏ = −
[

P ′

0(0) +
k

2

]

∫ y+1

y−1
e−kw2

wdw (16)

Evaluating the integral, we get:

∫ y+1

y−1
e−kw2

wdw = − 1

2k
e−k(y+1)2(1− e4ky) (17)

Thus, the dynamics on H2 is given by:

ẏ = [P ′

0(0) +
k

2
]
1

2k
e−k(y+1)2(1−e4ky) (18)

It is easy to see that ẏ = 0 iff e4ky = 1, i.e. y = 0. Thus, y = 0 is the only
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fixed point of equ.(15). The Jacobian at y = 0 is given by:

∂ẏ1

∂y1
= [−µ′′(0) + 4k(1− µ(0))P ′

0(0) + k2(1− µ(0))]
∫ 1

−1
x2e−kx2

dx

− (1− µ(0))(P ′

0(0) +
k

2
)
∫ 1

−1
e−kx2

dx

∂ẏ1

∂y2
= [µ′′(0)− 2k(1− µ(0))P ′

0(0)]
∫ 1

−1
x2e−kx2

dx

(19)

With the substitution µx2 = t2 and using the definition of the error function
we find

∫ 1

−1
x2e−kx2

dx = −e−k

k
+

1

2k

√

π

k
erf(

√
k) (20)

Therefore, we get the following Jacobian at y = 0:

J =
(

2k(1− µ(0))P ′

0(0)− µ′′(0)
)

(

1

2k

√

π

k
erf(

√
k)− e−k

k

)







1 −1

−1 1







+ (1− µ(0))

[

(2kP ′

0(0) + k2)

(

1

2k

√

π

k
erf(

√
k)− e−k

k

)

− (P ′

0(0) +
k

2
)

√

π

k
erf(

√
k)

]







1 0

0 1







(21)

The eigenvalues of the first matrix are 0 and 2. Thus, the eigenvalues of the
Jacobian are:

λ1 = −(1− µ(0))(2P ′

0(0) + k)e−k

λ2 = (1− µ(0))2P ′

0(0)

(

−3e−k +

√

π

k
erf(

√
k)

)

+
µ′′(0)

k

(

2e−k −
√

π

k
erf(

√
k)

)

− k(1− µ(0))e−k

(22)

It is easy to see that the first eigenvalue, λ1, is always negative, while λ2 may
change its sign.

In order to simplify the analysis we will choose the function µ(z) = µ0e
−z2

.
Then µ′′(0) = −2µ0. In the system with both abstention parameters, the
expression for the eigenvalue λ2 is of the following form:

λ2 = (1− µ0)2P
′

0(0)(

√

π

k
erf(

√
k)− 3e−k)

+

(

2

k

√

π

k
erf(

√
k) +

k2 − 4

k
e−k

)

µ0 − ke−k
(23)

8



We have the following cases to distinguish:

Case I.

√

π

k
erf(

√
k)− 3e−k < 0 which is equivalent to k < 0.586109.

Then the eigenvalue λ2 is negative iff

P ′

0(0) >
−µ0

(

2
√

π
k
erf(

√
k) + (k2 − 4)e−k

)

+ k2e−k

2k(1− µ0)(
√

π
k
erf(

√
k)− 3e−k)

= P∗ (24)

We observe

2

√

π

k
erf(

√
k) + (k2 − 4)e−k > 0 . (25)

Thus, the numerator of (24) is positive for

µ0 < µ∗(k) =
k2e−k

2
√

π
k
erf(

√
k) + (k2 − 4)e−k

(26)

In this case, the expression on the right hand side of (24) is negative. Since
P ′

0(0) > 0, λ2 is always negative which means that the mean voter equilibrium
is stable.

For µ0 > µ∗(k) we get a bifurcation at the mean voter equilibrium for P ′

0(0) =
P∗, such that λ2 < 0 holds for P ′

0(0) > P∗. Thus, the mean voter equilibrium is
stable for critical voters and it becomes unstable if the voters are not critical.

Case II.

√

π

k
erf(

√
k) > 3e−k which is equivalent to k > 0.586109.

Then λ2 is negative for P ′

0(0) < P∗. If µ0 > µ∗(k) then the numerator of P∗

is negative. Since P ′

0(0) > 0, the condition for λ2 to be negative cannot be
fulfilled. Thus, the mean voter fixed point is always stable independent of the
value of P ′

0(0). If, on the other hand, µ0 < µ∗(k) then the numerator of P∗ is
positive. A bifurcation on the mean voter equilibrium occurs at P ′

0(0) = P∗.
Thus, the mean voter equilibrium is unstable for critical voters and it is stable
as long as the voters are not critical.

3 Conclusions

We have extended the models of two-party platform dynamics incorporating
voter abstention described in [16] to a setup which corresponds to an interplay
of both abstention mechanisms.
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We assume that voting becomes uninteresting if either the utility differences
between the parties are small or the party positions are far away from the
voter’s ideal point and so the probability of voting for a particular party de-
pends both on the value of the utility difference between the two parties and
on the distance between voter and party platform. We model the mechanism of
voting for party p by the product of voting probabilities P0(z)(1− µ(z))Ψ(u),
where P0(z) is the probability of voting for p in the case of complete participa-
tion, µ(z) is a non-voting probability that depends on the utility differences,
and Ψ(u) is a voting probability decreasing with the distance of party p’s
platform from voter v’s ideal point.

We find a stable mean voter equilibrium for a moderately decreasing function
Ψ and a small non-voting probability µ. For large µ we find that if Ψ is
moderately decreasing the mean voter equilibrium is stable for critical voters,
while it becomes unstable if the voters are not critical. For small µ and strongly
decreasing Ψ the mean voter equilibrium is stable for uncritical voters and it
becomes unstable if the voters are critical. If both µ is large and Ψ is strongly
decreasing, the mean voter equilibrium is always unstable.
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