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Abstract. The central vertices in complex networks are of particular interest be-
cause they might play the role of organizational hubs. Here, we consider three differ-
ent geometric centrality measures, eccentricity, status, and centroid value, that were
originally used in the context of resource placement problems. We show that these
quantities lead to useful descriptions of the centers of biological networks which often,
but not always, correlate with a purely local notion of centrality such as the vertex
degree. We introduce the notion of local centers as local optima of a centrality value
“landscape” on a network and discuss briefly their role.
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1. Introduction

Complex networks occur in diverse areas from metabolic and gene regulation networks
in each cell, food webs in ecology, transportation networks, economic interactions and
the organization of the internet, just to mention a few examples. Starting with the
seminal paper by (Watts & Strogatz, 1998), it has been recognized that these real life
network differ qualitatively from the classical random graph models (Erdős & Rényi,
1960; Bollobás, 1985) by the so-called small-world property: while the graphs are
very sparse on average, the mutual distances between their vertices are nevertheless
much shorter than expected.

The recent review by (Albert & Barabási, 2002) indicates that current research focuses
on the one hand evolving graphs with various preferential attachment rules and,
on the other hand, on characterizing new empirically determined graphs in terms
of a small number of parameters, in particular their degree distribution, clustering
coefficient, and average path length. The vertex degree is typically used as a measure
of centrality in these networks. In the graph evolution models, high vertex degrees
usually indicate “old” vertices. (Fell & Wagner, 2000; Wagner & Fell, 2000) indeed
show that the metabolites with the highest connectivity are part of the oldest “core”
metabolism.

It is a bit surprising, however, that classical graph-theoretical properties of such large
real-life networks so far have not been studied systematically, although at least some
of them are easily within the reach of present-day computer facilities. In this con-
tribution, we consider three notions of centrality that were originally designed for
resource location problems. As such, these measure seem to be particularly appropri-
ate for the study of metabolic and signaling networks, which after all have probably
evolved to solve the tasks of efficiently allocating resources to required metabolites
and of controlling a cell’s biochemistry with as little time delay as possible.

This contribution is organized as follows: In section 2 we provide some background
on the global structure of networks and introduce centrality measures and their basic
properties. These measures are compared in the subsequent section, where we also
introduce the notion of a local center in a graph. Applications to three different types
of biological networks are discussed briefly in section 4, namely metabolic networks,
protein interaction networks, and protein domain networks.

2. Network Structure

2.1. Basic Definitions. A network is conveniently modeled as a graph G which
consists of a set V of vertices and a set E of edges which we regard as un-ordered pairs
of distinct vertices. Hence we consider only simple undirected graphs in the language
of (Berge, 1985). A path in G is an alternating sequence (x0, e1, x1, . . . , e`, x`) of
vertices and edges, where the ei = {xi−1, xi} are the edges connecting subsequent
vertices. The length of a path is its number edges. The set of neighbors of x is
denoted by ∂{x} = {y ∈ V |{x, y} ∈ E}.
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The degree of a vertex x is the number of edges that contain x, i.e., the number of
neighbors of x:

deg(x) = |{e ∈ E|x ∈ e}| = |{y ∈ V | {x, y} ∈ E}| = |∂{x}| , (1)

where |A| denotes the cardinality (number of elements) of the set A. Equivalently,
we may define deg(x) as the number of edges incident with x.

The distance d(x, y) is the length of the shortest path in G connecting x with y. If
a path connecting x and y does not exist we set d(x, y) = ∞. Thus, the graph G is
connected if and only if d(x, y) is finite for all x, y ∈ V .

We remark that our approach can trivially be extended to weighted graphs. So,
simply define deg(x) as the sum of the weight of the edges that contain x and define
the length of a path as the sum of the weights of each edges.

2.2. Degree Distributions. (Amaral et al., 2000) showed that there are (at least)
three structurally different classes of networks that are distinguished by the distribu-
tion P (k) of the vertex degrees k = deg(x):

(a) Single-Scale Networks with a sharp distribution of vertex degrees exhibiting
exponential or Gaussian tails. This class includes also the Erdős-Rényi model
of uncorrelated random graphs (Erdős & Rényi, 1960; Bollobás, 1985).

(b) Scale-Free Networks with a power law distribution P (d) ∼ d−γ. A simple
model for this type of networks was introduced recently by Barabási et al.
(Barabási & Albert, 1999; Barabási et al., 1999). Metabolic networks (Wagner
& Fell, 2000; Jeong et al., 2000) and food-webs (Montoya & Solé, 2002) belong
to this class.

(c) Broad-Scale Networks for which P (d) has a power-law regime followed by a
sharp cut-off, e.g. exponential or Gaussian decay of the tail. An example is
the movie-actor network described in (Watts, 1999)

The Erdős-Rényi model (ER) (Erdős & Rényi, 1960) assumes a fixed number n = |V |
of vertices and assigns edges independently with a certain probability p. For details
see the book by (Bollobás, 1985). In many cases, ER random graphs turn out the
be quite different from a network of interest. The Watts-Strogatz (SW) (Watts &
Strogatz, 1998) model of small-world networks starts with a deterministic graph,
usually a circular arrangement of vertices in which each vertex is connected to k

nearest neighbors on each side. Subsequently, edges are “rewired” (in the original
version) or added (Newman & Watts, 1999; Newman et al., 2000) with probability p.
Both ER and SW graphs exhibit an approximately Gaussian degree distributions.

The other extreme is the scale-free model (BA) (Barabási & Albert, 1999; Barabási
et al., 1999) with a degree distribution of the form P (d) ∼ k−3. Starting from a
small core graph, at each time step a vertex is added together with m edges that are
connected to each previously present vertex k with probability

Π(k) = d(k)
/

∑

k

d(k) , (2)

where d(k) is the degree of vertex k. A recent extension of the model allows the
tuning of the scaling exponent γ in the range 2 ≤ γ ≤ 3 (Albert & Barabási, 2000a).
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The vertex degrees are an intrinsically local characterization of a graph. Consequently,
they allow a meaningful interpretation only when the graph is a typical instance of a
known statistical ensemble such as the ER model or the BA model.

It is therefore necessary to consider additional characteristics of G that are preferably
not closely related to the degree distribution. A quantity that is commonly used in
the literature on the small-world networks is the clustering coefficient that measures
how close the neighborhood of a each vertex comes on average to being a complete
subgraph (clique) (Herzel, 1998; Barrat & Weigt, 2000; Watts & Strogatz, 1998).
Again, this measure is intrinsically local. A more global measure is the average length
`(G) of a path between two vertices, see e.g. for an extensive discussion (Newman
et al., 2000). The distribution of short cycles, i.e., detours, may be regarded as an
intermediate case (Gleiss et al., 2001).

2.3. Geometric Centrality. Geometric notions of centrality are closely linked to
facility location problems. Suppose, we are given a graph G representing, say, a traffic
network. We may then ask questions such as the following:

(A) What is the optimal location of a hospital such that the worst case response
time of an ambulance is minimal?

(B) What is the optimal location of a shopping mall so that the average driving
time to the mall is minimal?

(C) What is the optimal location of a shop if customers buy at the nearest shop,
and there will be a competitor placing its shop after we have placed ours?

These three classical facility local problems can be recast as optimization problems
based on the distance matrix D = (d(x, y)) of G. Their solutions define three dif-
ferent notions of “central” vertices. The distance matrix D can be computed rather
efficiently e.g. using Dijkstra’s algorithm with time complexity O(|V |2 ln |V |), see e.g.
(Cormen et al., 1990).

The excentricity of a vertex x in G and the radius ρ(G), respectively, are defined as

e(x) = max
y∈V

d(x, y) and ρ(G) = min
x∈V

e(x) (3)

The center of G is the set

C(G) = {x ∈ V |e(x) = ρ(G)} . (4)

C(G) is the center to the “emergency facility local problem” (A) which is always
contained in a single block of G (Harary & Norman, 1953).

The status d(x) of a vertex (Harary, 1959) and the status σ(G) of the graph G,
respectively, are defined as

d(x) =
∑

y∈V

d(x, y) and σ(G) = min
x∈V

d(x) . (5)

The median (Slater, 1980) of G is the set

M(G) = {x ∈ V |d(x) = σ(G)} . (6)

The median is the solution of the “service facility location problem” (B). Both the
center and the median of a graph were already considered by (Jordan, 1869). Instead
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of the status, one may of course use the average distance `(x) of a vertex from x.
Clearly, d(x) = (|V | − 1)`(x). The Wiener index (Wiener, 1947) is

W (G) =
1

2

∑

x∈V

d(x) =
1

2

∑

x,y∈V

d(x, y) =

(

n

2

)

`(G) , (7)

where `(G) is the mean path length in G. It provides an important characteristic of
molecular graphs. For details, see (Gutman et al., 1996).

For any pair of distinct vertices u, v ∈ V , u 6= v, define

Vxy = {w ∈ V |d(x, w) < d(y, w)} , (8)

i.e., Vuv is the set of vertices that are closer to u than to v. The competitive location
problem (C), which was first considered by (Slater, 1975), is then solved by the
vertices x that maximize |Vxy| − |Vyx| over all possible locations of the competitor y.
The following identity

d(x) + |Vxy| = d(y) + |Vyx| (9)

holds for all connected graphs (Entringer et al., 1976). Following (Slater, 1975) we
define centroid value of a vertex and the graph G itself as

f(x) = d(x) − min
y 6=x

d(y) and ϕ(G) = min
x∈V

f(x) . (10)

The centroid of G is the set

Z(G) = {x ∈ V |f(x) = ϕ(G)} . (11)

We have inverted the sign of f(x) compared to the discussion in Slater’s work (Slater,
1999) as we prefer the centrality measure f(x) to be minimal at the most central
vertices in analogy to d(x) and e(x).

The mutual location of the three types of “central” vertices is of obvious interest.
The median M(G) and the centroid Z(G) are always contained in the same block of
a connected graph G (Smart & Slater, 1999). Both, the center and the centroid may
serve as the root of a distance preserving spaning tree (Barefoot et al., 1997).

The centroid value f(x) may, perhaps surprisingly, become 0 or even negative. If
this is the case, then d(x) = miny d(y) = σ(G). It follows that f(x) < 0 for at most
one vertex x∗, in which case d(x∗) is the unique minimum of d(x), hence Z(G) =
M(G) = {x∗}. If f is non-negative then f(x) = 0 iff d(x) is minimal and there are at
least two distinct vertices minimizing d. Again we have Z(G) = M(G). Conversely,
if ϕ(G) > 0 then the minima of d(x) do not minimize f(x) and hence median and
centroid are disjoint. Such graphs are called secure graphs. It is shown in (Slater,
1976) that there are no secure graphs with |V | < 9 vertices. An example with |V | ≥ 9
is given (Smart & Slater, 1999, Fig.4).

It is shown in (Smart & Slater, 1999) that C(G), M(G), and Z(G) may be pairwise
disjoint and even separated by arbitrary distances if G is large enough (Slater, 1999).

A slightly different, much less studied notion of centrality is introduced in (Nieminen,
1984). An induced subgraph H of G is convex if it contains a shortest path (in G)
between any two of its vertices. A branch of G at a vertex x is a maximal convex
induced subgraph that does not contain x. The branch weight b(x) is the maximum
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number of vertices in a branch of G at x. The branches of a tree T at a vertex x

are thus the connected components of the forest obtained by deleting the vertex x.
The convex center or branch weight center B(G) is the set of vertices that minimize
b(x). (Zelinka, 1968) showed that for any tree T the convex center and the median
coincide. We shall not consider the branch weight center in this contribution because
there does not seem to be a convenient way to compute b(x) in large graphs.

Betweenness centrality (Freeman, 1977) is a distant relative of the resource placement
centralities discussed above. Originally designed to measure a person’s influence in a
society, it is quantified in terms of the number of shortest paths that run through a
given vertex. Most recently, a classification of scale-free networks based on the scaling
of betweenness centrality has been proposed (Goh et al., 2002). A comparison of this
measure with resource placement centralities will be described elsewhere.

3. Properties of Centrality Measures

3.1. Correlations. Both the vertex degree and the three geometric measures d(x),
e(x), and f(x) are defined with a notion of centrality in mind. It is not surprising,
therefore, that there are strong correlations between them. Intuitively, there should
also be a strong correlation between a large vertex degree and a short average distance
to the other nodes of the network, and hence to various measures of centrality. In
Fig. 1, we compare the behavior of a ER random graph with a scale-free graph with
the same average degree. The results are essentially the same for different numbers
of vertices and average vertex degrees (data not shown). The scale-free networks are
connected by construction. This is not true in general for the ER graphs where we
consider only the giant component.

We observe that the centrality measures correlated linearly with the logarithm of
the vertex degree. For both status and centroid value the regression coefficients are
about 0.99. The lower quality of the fit for the excentricity is a consequence of the
granularity of this measure. The random graphs fit slightly better to the exponential
distributions and have smaller standard deviations.

Interestingly, the relative location of ER and BA models differs between status d(x)
and centroid value f(x): Surprisingly, the centroid values are smaller in ER graph
than in scale-free networks. Both status d(x) and excentricity e(x) directly measure
path length which we expect and observe to be significantly smaller in the scale-free
case. In contrast, f(x) tries to optimize also the distance from a competitor due
to the longer path lengths in scale-free graphs compared to ER random graphs, we
observe larger values of f(x) as well.

3.2. Landscapes on Graphs. The concept of a fitness landscape originated in the
1930s in theoretical biology (Wright, 1932; Wright, 1967) as a mean of visualizing
evolutionary adaptation. The same abstract concept arise naturally in many other
areas of scientific study, for instance the physics of disordered systems, combinatorial
optimization, protein folding, and evolutionary computation; for a recent review, see
(Reidys & Stadler, 2002). In the simplest case, a landscape can be defined as function
F : V → R that assigns a number to each vertex of a graph G. In this sense, we can
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Figure 1. Correlation of excentricity (left), status (middle), and centroid value (right) with
the degree of nodes. We compare a scale-free graph (◦) and a corresponding random graph
(�) with 3000 vertices and 12000 edges, respectively. The scale-free network is generated
by means of preferential attachment (Barabási & Albert, 1999). Best fits are obtained in
the form y = A − B ln x with the following parameters:
Excentricity: A = 5.47, B = 0.35 (scale-free); A = 7.01, B = 0.94 (random).
Status: A = 12585, B = 1053 (scale-free); 15276, B = 1505 (random).
Centroid Value: A = 5736, B = 1056 (scale-free); A = 4537, B = 1512 (random).

regard the excentricity e(x), the status d(x), and the centroid value f(x) as landscapes
on G.

This idea suggest the definition of local centers, medians, and centroids as local min-
ima x̂ of the cost function, i.e.,

g(x̂) ≤ g(y) for all y ∈ ∂{x̂} (12)

where g = d, e, f . Furthermore, we may consider the hierarchical structure of the local
centers, and one may ask for connecting paths between local centers that are them-
selves as central as possible. The program barriers

1 that was originally designed to
investigate the structure of the energy landscape of RNA molecules (Flamm et al.,
2000; Flamm et al., 2002) can be used to solve exactly this problem. Starting from
a list of vertices that is sorted by the value of the cost function g(x), barriers iden-
tifies all local minima and the saddle points that connect them. In Fig. 2 we show
the barrier trees for the three centrality measures d(x), e(x), and f(x) for the ER
random graph in Fig. 1.

Interestingly, with all three measures we do not find local centers in the scale-free
BA graphs. This indicates that the BA graphs are arranged around a unique central
structure.

An alternative approach to describe the geometry of a landscape g(x) is the consid-
eration of its level sets

Vg(u) = {x ∈ V |g(x) ≤ u} (13)

1Available from http://www.tbi.univie.ac.at/~ivo/RNA/Barriers/.
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Figure 2. Barrier trees for excentricity (left), status (middle), and centroid value (right)
for an ER random graph with 3000 vertices and 12000 nodes.

or the associated induced subgraph G[Vg(u)] which consists of the vertex set Vg(u)
and all edges of G connecting two vertices of Vg(u). Note, that G[Vg(u)] is connected
for levels u if the landscapes does not have no local minima. On the other hand, if
there are local mimima, then G[Vg(u)] decomposes into disconnected components for
some values of u. This behavior is illustrated for the centroid value on the r.h.s. of
Fig. 3.

The behavior of |Vg(u)| as a function of the level u can be used to quantify the
robustness of the center, median, or centroid. The level sets with small centroid
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Figure 3. Level sets Vf (u) of the centroid value. L.h.s.: Number of connected components
of the level set graph G[Vg(u)] as a function of the centroid value u. R.h.s.: Size of the level
sets |Vg(u)| as a function of the centroid value u. We compare an ER graph (dashed line)
and an AB scale-free graph (full line) with 3000 vertices and 12000 edges each.
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values are smaller in the AB model indicating a tighter near central subgraph than
in the ER model. Not surprisingly, the ER model is more homogeneous on average.

4. Applications

4.1. Metabolic network. In metabolic networks, the meaning of centrality is ob-
vious: The central metabolites are the crossroads of the networks and, in the spirit
of the graph evolution models, also the historically oldest ones. Centrality therefore
should reflect both age and importance. Local centers, if they exists, therefore are
likely the remnants of a previous merging, while the absence of local centers indicated
a continuous, step-wise, growth the network.

(Fell & Wagner, 2000) assembled the central routes of the energy metabolism and
small-molecule building block synthesis in E. coli and constructed a substrate graph
with the metabolites as vertices and edges connecting any two metabolites that ap-
pear in the same reaction. In their analysis, ATP and H2O was excluded. (Jeong
et al., 2000) considered metabolic networks of 43 different organisms including E.
coli. Unlike (Fell & Wagner, 2000), a bipartite graph was used in which both the
substrates and the reactions are vertices, and edges connect substrates with the re-
actions they are taking part in. Both studies report a power-law degree distribution
characteristic for scale-free networks.

In Table 1, we list the center C(G), median C(G), and centroid Z(G). We find that the
results are identical for the substrate graph of (Fell & Wagner, 2000) and the bipartite
reaction graph of (Jeong et al., 2000). Following the proceedure of (Fell & Wagner,
2000), we deleted ATP and H2O from this graph because they are connected with
almost every other metabolite. Not surprisingly, we are left with inorganic phosphate
Pi and ADP at the next most connected vertices.

Interestingly, the most coarse grained measure, the center C(G) yields a good intuitive
estimate of the most centered substrates. Among these are ATP, ADP and AMP which
are obviously the most central substrates to the energetics and signaling pathways
of the cell. In this regard, the frequent occurrence of Pi and PPi fits the picture
perfectly. Furthermore, NADP and NADPH appear in a similar context. Among
the most popular metabolites, succinate SUCC, glutamate GLU, pyruvate PYR, and
coenzyme A COA appear in the center. These metabolites indeed play a “central”
role in well known pathways emphasizing glycolysis and the citrate cycle.

A comparison of the nodes degree with their corresponding centrality measures shows
that a highly linked vertex has small numbers of the geometric centrality measures
(see Table 2). It is striking that all three centrality measures e(x), d(x), and f(x)
yield very similar rank orders close to the central vertices, despite the fact that these
measures may disagree significantly for non-central vertices, although the three no-
tions of geometric centrality are conceptually quite different from each other. In fact,
the rank of all metabolites listed in table 2 are the same for d(x) and f(x).

4.2. Protein Networks. A second class of networks that have received particular
attention recently are networks of (direct) protein interaction (Jeong et al., 2001;
Wagner, 2001). The likelihood that the elimination of a protein from the genome is
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Table 1. Central nodes in the metabolic network of E. coli. For the full network, the results
from the substrate graph and the bipartite reaction graph coincide. For comparison, we also
give the centers for the complete networks without removing any vertex.

Network G C(G) M(G) Z(G)
(Fell & Wagner, 2000) AMP, ADP, T3P1 Pi, PPi, Pi Pi

(Jeong et al., 2000) CO2, NH3, NAD, NADH, NADP,
NADPH,PYR, SUCC, AC, HEXT,
GLU, THR, GLY, NMN

complete ATP, H2O ATP, H2O ATP, H2O

Table 2. Nodes in the metabolic network of E. coli (Fell & Wagner, 2000) arranged to
increasing numbers of their degree deg(x). For comparison, we also added the respective
numbers of excentricity, e(x), status, d(x), and excentricity value, f(x).

Substrate deg(x) e(x) d(x) rank f(x) rank
Pi 451 4 1151 1 -4 1
ADP 451 4 1155 2 4 2
PPI 229 4 1375 9 224 9
CO2 217 4 1323 4 172 4
GLU 192 4 1340 5 189 5
HEXT 186 4 1285 3 134 3
NAD 174 4 1352 7 201 7
NADH 162 4 1379 10 228 10
NADP 155 4 1387 11 236 11
PYR 154 4 1344 6 193 6
NADPH 151 4 1387 11 236 11
CoA 117 5 1462 21 311 21
NH3 106 4 1367 8 216 8
GLN 100 5 1461 20 310 20
AMP 96 4 1478 26 327 26

lethal for the organism has been reported to correlate with its degree in the protein
network (Jeong et al., 2001). This finding is easy to interpret: It does not come as
a surprise that the interruption of a large number of direct interactions increases the
probability of breakdown. A recent re-evaluation of the available data indicated, how-
ever, that lethal proteins cannot be cleanly distinguished from viable ones by their
degree alone (Wuchty, 2002). In the same vein, (Hahn et al., 2002) show that connec-
tivity is not related to robustness against aminoacid substitutions in protein networks.
This poses the question whether the correlation of lethality and connectivity is a local
or an organizational phenomenon.

Fig. 4 shows that, somewhat surprisingly, there is almost no difference in the dis-
tribution of excentricities between essential and non-essential proteins, i.e., essential
proteins are organizationally not more central than others. In other words, the long-
range impact of the loss of a given protein apparently can be compensated by the
rest of the network, but this robustness tends to break down at the level of direct
interaction partners. The question whether a deletion of a protein is lethal or leads to
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Figure 4. Frequency proteins with given excentricity values for ◦ all, N non-lethal, and H

lethal deletion mutants. There is no significant difference between the three datasets. The
protein network graph is not connected, hence the distribution of the eccentricity, which we
compute as the superposition of the eccentricities of the individual components is bi-modal:
One peak reflects the small components and the other, larger peak refers to the main (giant)
component of the network.

a viable phenotype therefore will require a gradual answer. A promising approach in
this direction was recenly undertaken by (Jeong et al., 2002), who found correlations
of phenotypic effects of single gene deletions in Yeast with fluctuations in the corre-
sponding mRNA expression levels, functional classification of gene products and the
number of interactions in the underlying protein-protein interaction network. Based
on these qualitative measurements, they were able to predict gradual phenotypic
effects that are in good agreement with already known experimental results. The de-
pendence of the degree of lethality on multiple factors, including the functional class
of the protein, highlights the limitations of purely structural approaches to network
analysis.

4.3. Domain Sequence Network. Many proteins consist of a number of recogniz-
able domains that appear in oftentimes many different proteins. A graph G can be
constructed that has the domains as its vertices and edges between them whenever
two domains co-occur in a protein. Essentially, they give a tentative insight into
the structure of the proteome since they were found to exhibit scale-free behavior.
Thus, domains which prove to be highly connected since they frequently occur in mul-
tidomain proteins shape the backbone of the proteome of the underlying organism.
Similar to the metabolic networks, highly connected domains might have shaped an
evolutionary core of proteomes.
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Figure 5. Level set sizes |Vf (u)| of the centroid value for protein interaction networks of
E.coli, S.cerevisiae, A.thaliana, D.melanogaster, C.elegans and H.sapiens.

The connectivity of domains that are involved in cell-cell contacts and signal trans-
duction increases with the complexity of the organism. In Fig. 5, we compare the level
sets Vf(u) of the centroid value of the domain networks of a number of prokaryotic
and eukaryotic organisms. The fraction of “more central” domains, indicated e.g.
by the position of the inflection point of the sigmoidal curves, increases significantly
from unicellular organism to vertebrates. These data are in good agreement with the
results of (Wuchty, 2001), which were obtained using vertex connectivity.

In Table 3, we list the ten domains with the smallest centroid value, i.e., the ones that
are most central, for six different organism. Again, the data are in good agreement
with the previous study (Wuchty, 2001) and show that the central-most domains are
predominantly those that take part in cell-cell contacts and signal transduction. We
find here a stronger emphasis on signaling domains with kinases and zinc-fingers.

5. Discussion

Here, we considered the application of three different geometric centrality measures,
excentricity, status, and centroid value to various kinds of biological networks. These
three measures arise in the context of slightly different resource placement problems.
By construction, they measure geometric or structural centrality in contrast to the
vertex degree, which is a purely local measure. There is a significant correlation be-
tween vertex degree and the geometric centrality measures; in specific cases, however,
they may differ significantly. This allows us to distinguish between purely local effects
(such as the vertex degrees of essential proteins) from organizational effects (such as
the identification of central metabolites).
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Table 3. Centroids Z(G) and the 9 next most centroidal domains from different organisms.

E.coli S.cerevisiae A. thaliana D.melanogaster C.elegans H.sapiens

AAA WD-40 ZF-C3HC4 PRICHEXTENSN ZF-C3HC4 PRICHEXTNSN
PAS SER/THR-PKINASE EUK-PKINASE EGF EUK-PKINASE EUK-PKINASE
CBS EUK-PKINASE SER/THR-PKINASE ANK ANK LRR

HTH-FIS ZF-C3HC4 PRICHEXTENSN ZF-C2H2 PH IG-MHC
SIG54 HEAT HELICASE C ZF-C3HC4 EF-HAND PH

RES-REG FHA PPR SH3 ZF-C2H2 C2
GAF C2 TYR-PKINASE PDZ BTB/POZ EGF
FMN DEAD/DEAH DEAD/DEAH SER/THR PKINASE PRICHEXTENSN FN3

DEAD/DEAH CLATHRIN TPR LDL-RECEPTOR DAG-PE BIND TYR-PKINASE
EF-HAND EGF ZF-C3HC4
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Since measures of centrality can be assigned to individual vertices of the networks,
we can define not only global centers as the vertices that minimize (or maximize) a
centrality measures, but we obtain as a natural definition of local centers in terms
of local optima of the centrality value landscape on the network. In the connected
examples that we have considered here, as well as the generic examples of scale-free
networks, we did not encounter local centers; on the other hand, local centers are
abundant in random networks.

Another important implication of local centers is that they are indicative of a modular
organization and possibly also of a modular origin of the network. If the network in
question does not resemble a ER random graph, then local centers could be interpreted
as the centers building blocks that were merged together. The absence of local centers
is then a strong indication for the stepwise growth of the network.

Acknowledgments. We thank Hawoong Jeong for supplying his protein-protein
interaction data.
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