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Abstract. The concept of a fitness landscape arose in theoretical biology, while that
of effective fitness has its origin in evolutionary computation. Both have emerged
as useful conceptual tools with which to understand the dynamics of evolutionary
processes, especially in the presence of complex genotype-phenotype relations. In
this contribution we attempt to provide a unified discussion of these two approaches,
discussing both their advantages and disadvantages in the context of some simple
models. We also discuss how fitness and effective fitness change under various trans-
formations of the configuration space of the underlying genetic model, concentrating
on coarse graining transformations and on a particular coordinate transformation
that provides an appropriate basis for illuminating the structure and consequences of
recombination.

1. Introduction

Evolution theory has as its cornerstone the concept of fitness. Fitness is traditionally
defined as the relative reproductive success of a genotype as measured by survival,
fecundity or other life history parameters. This definition is less than satisfactory,
however, when one is confronted with the problem of actually measuring fitness in
a given system. In its simplest form fitness is quantified as the relative number of
fertile offspring produced by one genotype versus another [1] (“reproductive fitness”).
However, there are many components that affect this number, such as the probability
to survive to reproductive age [2] (“survival fitness” or “viability”), differences in
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mating success or in the average number of produced offspring (“fertility” [3]). In
evolutionary computation, fitness is typically portrayed in terms of viability.

These two approaches to quantifying fitness are quite different. First of all, survival
fitness is a property of an individual, in that it does not depend on other genotypes,
even though the reproductive fitness function may reflect “environmental” effects.
Reproductive fitness is much less straightforward than it might appear, since it de-
pends on what counts as an offspring. As long as selection is the dominating genetic
operator and mixing operators such as mutation and recombination can be neglected,
all offspring will be identical copies of the parent; in this case survival fitness and
reproductive fitness can be scaled to have the same numerical values. When mixing
operators dominate, as in the case of neutral evolution, however, the two concepts
can be very different. For instance, it is not even clear whether one should count any
offspring or only identical copies. Notions of lineage fitness [4] and inclusive fitness
[5, 6, 7], where the fitness of an allele or set of alleles is measured not only by its
effect on an individual but also by its effect on related individuals that also possess
it, have their origin in this question. Thus, in talking about fitness one must distin-
guish between individuals and populations, as selective values of genotypes are based
on competition among genotypes, but may not adequately reflect their effect on the
population, such as in the case of altruism.

Fitness landscapes [8] have played an important role in improving our understanding
of evolutionary dynamics. Given the many different meanings and associated math-
ematical representations of fitness however, we need to understand exactly which
fitness is being represented. Fitness landscapes are by construction a static con-
cept that assign fitness values to the points of an underlying configuration space and
hence do not represent (except in some approximation) situations where the repre-
sented fitness measure is dynamical. Irrespective, the ultimate goal is to understand
population flows on the configuration space. Standard intuition views a fitness land-
scape as a rugged terrain where populations flow towards fitness peaks. Thus, natural
selection can be viewed as a type of “hill climbing” on this topography. Although, a
very powerful paradigm it behooves us to critically analyze under what circumstances
this intuitive picture is valid and, in cases where it is not, to see if there exists an
alternative conceptual framework.

Although the fundamental level is the “microscopic” genotypic one, fitness, and hence
the corresponding fitness landscape, is usually taken as acting at the more “macro-
scopic” phenotypic one. The action of selection on the genotype is then determined
via a genotype-phenotype map, which may or may not be simple (in biology it is
almost inevitably exceedingly complex while in evolutionary computation it is almost
always trivial). All genotypes corresponding to the same phenotype have the same
survival fitness and hence, perhaps somewhat loosely, we may talk of a genotype-
phenotype “symmetry” which can be broken “spontaneously” via finite size effects,
i.e. neutral drift. The phenotype then, seen from the genotypic level, is a coarse
grained effective degree of freedom as far as selection is concerned. Again, when we
consider a simple model consisting of a small number of loci, this too corresponds
to a coarse graining where we imagine having averaged over the effects of other loci,
supposing that for the observables of interest only the loci under consideration are
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of relevance. The fitness landscape on this reduced space is posited as being static.
That is part of the model. However, this is pure supposition. The nature of the coarse
grained landscape should in principle be derived by coarse graining the landscape of
the underlying more fundamental model. As we shall see, this inevitably, except in
some approximation, leads to a coarse grained fitness landscape where the fitness of
an individual depends on the state of the rest of the population.

Additionally, the classical fitness concept, and associated fitness landscape, do not
take into account the important effect the mixing genetic operators may have in de-
termining the complete reproductive success of an individual. In particular, the effect
of these genetic operators, as we shall see below, can be such that population flows on
the standard fitness landscape cannot be understood with any degree of intuition. In
fact, the flows can be quite counterintuitive, leading to situations where populations
flow against the fitness gradient. The mixing operators can also lead to directed flows
on neutral networks due to an “induced” breaking of the genotype-phenotype symme-
try and leading to a self-organization of the genotype-phenotype map [9, 10, 11, 12].
Such phenomenon, unlike the case of population flow due to positive selection cannot
be naturally understood in terms of “hill climbing” on a standard fitness landscape.
However, all these phenomena can be intuitively understood within the framework
of a different paradigm - effective fitness [13, 14, 15, 16], albeit at a cost: effective
fitness is not a constant quantity but rather depends on the state of the entire system
and hence is intrinsically time dependent, see section 7. However, as we emphasized
above, any coarse grained fitness landscape is dynamic, and only approximately static
in some regimes. Effective fitness also provides a quantitative measure for the degree
of symmetry breaking of the genotype-phenotype map by mixing operators.

2. Evolutionary Dynamics

Before passing to a discussion of fitness landscapes let us remind ourselves of the task
at hand: to understand the dynamical evolution of a population of “types”1, x ⊂ X,
where X is the configuration space of types and has dimensionality dim(X). Since
genetic variation is generated independently from the natural selection acting on it,
the generic structure of an evolutionary model in discrete time can be written as

P(t+ 1) = S (P(t), f) ◦ T (P(t), p) , (1)

where P(t) is the vector of type frequencies at generation t [17, 3]. As usual, ◦ denotes
the Schur (Hadamard, component-wise) product of vectors. The transmission term
T(P (t), p) describes the probability of transforming one type into another one by
mutation, recombination, or other genetic operators [18] and hence determines the
structure on the set of all vectors of haplotype frequencies, which is a simplex of the
form

{

(P1, . . . , Pdim(X))

∣

∣

∣

∣

∑

x

Px = 1, Px ≥ 0 ∀x
}

(2)

1which can either be quantitative phenotypic traits (such as weight or length of limb) or a discrete
genetic structure
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Figure 1. Fitness and Genotype-Phenotype map. Redrawn after [20]

where Px is the frequency of type x. This structure can be understood in terms of
certain classes of algebraic structures [19] that depend on the details of the transmis-
sion mechanism that is encoded by the parameters p. The term S(P, f) describes the
selection forces acting on P . The parameters f determine the fitness function.

An important element in understanding the dynamics is a notion, X , of neighborhood,
nearness, distance, or accessibility on X. As we shall see, different genetic operators
are often most naturally associated with different notions of nearness.

The mathematical representation of the different genetic operators is fairly simple.
For selection we introduce a fitness function associated with types, fX : X −→ R

+.
The real domain of fX of course may be different from R

+; e.g. the integers over a
finite interval. It is conventional to consider fitness as a function of the phenotype,
hence, if we wish to know how fitness acts at the level of genotypes one must define
a phenotype-genotype map, φ : X −→ Y , where X and Y are the genotype and
phenotype configuration spaces respectively. The existence of φ and fY allows one
to define on X a fitness function, fX = fY • φ, induced by the action of φ and
fY . In the case of selection only dynamics fX gives a direct measure of the total
reproductive success of a type, i.e. the total number of offspring of a type. However,
in the presence of other operators it is more correctly interpreted as a measure of
the viability (probability to survive to reproductive age) of a type and is but one
component in determining the total reproductive success of a type.

Whenever the genotype-phenotype map is non-injective (many-to-one) the function
fY will be degenerate, many genotypes corresponding to the same fitness value, and
hence non-invertible, Fig. 1. This may also occur for other reasons. Thus, fitness
defines an equivalence relation on X. The members of such an equivalence class are
equivalent or neutral w.r.t. selection, i.e. they’re all equally fit. In the language of
physics one may refer to this equivalence of a set of genotypes under the action of
reproductive selection as a “symmetry” between them. By definition, reproductive
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Figure 2. Three different coarse grainings of RNA structures. The sequence at the top
forms the atomic structure on the right. The secondary structure on the left is defined by
the Watson-Crick and GU base pairs that from when the molecule folds back onto itself.
An intermediate level of description is the “ribbon-structure” in the middle. This ribbon
structure corresponds also to the resolution of many models of proteins.

selection preserves this symmetry. A simple example of this would be the standard
synonym symmetry of the genetic code. A similar artificial genotype/phenotype
system is used in [21] for genetic programming.

To what extent a GP-map is many-to-one is of course a matter of resolution. In the
case of RNA molecules and proteins, for instance, each structure that is specified
at atomic resolution uniquely determines the sequence. In many cases, however, a
coarse grained representation is more useful, e.g., for the comparison of protein folds
or the analysis of conserved features in functional RNAs [22]. In the case of RNA a
very natural and particularly useful level of description is that of secondary structure,
Figure 2. Secondary structures, are routinely used to display, organize, and interpret
experimental findings, they are oftentimes conserved over evolutionary times scales,
and in vitro selection experiments with RNA more often than not yield families of
selected sequences that share distinctive secondary structure features. Furthermore,
secondary structures are folding intermediates in the sense that the secondary base
pairs typically form before so-called tertiary contacts complete the formation of the
three-dimensional structure. Different secondary structures typically lead to distinct
3D shapes although there are examples of RNA molecules with significantly different
secondary structure which exhibit similar 3D structures and the same function [23].

Whether there exists a non-trivial genotype-phenotype map is therefore to a large
extent problem dependent. The notion of a protein fold, for instance, necessarily
implies a level of coarse graining since it makes no sense to say that “two different
sequences have the same structure” at atomic resolution. Once we have fixed a level
of resolution we implicitly assume that differences at finer scales are irrelevant for
the dynamic processes at hand. Computational investigations of the GP-map of both
RNA [24, 25, 26, 27, 28, 29] and proteins [30, 31, 32, 33] show that the coarse graining
has far-reaching consequences. The coarse graining process defines a partition of the
type space X into classes of genotypes with the same phenotype. Not surprisingly,
the organization of these classes in genotype space is crucial for the dynamics. We
will return to this topic again in section 5.
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Mutation is conveniently defined via an operator M whose entries Mxy are the prob-
abilities that a type y mutates to a type x. An often used representation for Mxy

is
Mxy = pdH(x,y)(1 − p)N−dH(x,y), (3)

where dH(x, y) is the Hamming distance between types x and y and p is the mutation
rate. Similarly, we may represent recombination via an operator Rxyz(m) where the
first index represents the target (child) type and y and z are the parent types. The
argument m refers to the fact that a recombination operator is not uniquely specified
by the target and parents. For instance, the target type 1111 can be obtained from
parents 1101 and 1011 by combining the first and second loci of the first parent
with the third and fourth of the second. Alternatively, it may be obtained by taking
the first and third loci from the second parent and the second and fourth from the
first parent. A convenient way of representing many types of recombination operator
is via a recombination “mask”, m, which is an N -bit binary sequence wherein a 1

signifies take the allele from the corresponding locus of the first parent type while a
zero signifies take it from the second parent type. For example, with the mask 1010

and parent types 1111 and 0000 the resultant offspring are 1010 and 0101. There
are 2N possible masks.

Generically, one may write Rxyz(m) in the form pc(m)Cxyz(m) where pc(m) is the
probability to implement the mask m and Cxyz(m) depends purely on the configu-
rations of the types x, y and z and the mask m. The explicit form of the Cxyz(m)
depends on how we wish to model the set of possible recombination events. Often, it
is used only to model “construction events”, i.e., recombination events that lead to
an increase in the number of type x, such as in the above example when the target
type is 1010. In this case Cxyz(m) = 1 iff x can be formed from y and z via the mask
m. Generically, this is very unlikely as the vast majority of recombination events do
not lead to the desired target.

The structure of recombination operators has been investigated from an algebraic
point of view in [19, 34, 35, 36] and more recently as in the context of generalized
topologies [37, 38]. It is interesting to note that recombination operators are closely
related to so-called “betweenness relations” and “transit function” in graph theory
[39, 40].

We will not follow this line of investigation here and restrict ourselves to a matrix rep-
resentation. For binary alleles, for a given x and m, Cxyz(m) is a (2N −1)-dimensional
square matrix2. However, only of the order of 2N matrix elements are non-zero. Thus,
the microscopic representation is very inefficient, there being very few ways of creating
a given target type by recombination of parent types. The vast majority of recom-
bination events are neutral in that they lead to no non-trivial interaction. These
comments also hold for more complicated type representations, such as by variable-
length strings or by trees, as in the case of Genetic Programming. The Cxyz(m) can
also be used to model “destruction events”, such as in the above example again but
now taking as target type 1111. Now, Cxyz(m) = −1 iff y = x or z = x and x in the
parental generation is destroyed via the action of the mask m. Both construction and

2We omit the trivial case where x is one or both of the parent types as in this case there is no
net gain, hence the dimension is only 2N − 1.
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destruction events, and hence all non-trivial recombination events that lead to losses
or gains, can be modeled for a given target x via one 2N -dimensional square matrix
Cxyz(m), where Cxxx(m) = 0, destruction events appear in the elements Cxxz(m) and
Cxyx(m) and construction events in the rest of the matrix. Usually, Mxy and Rxyz

possess the symmetry properties Mxy = Myx and Rxyz = Rxzy.

Note that both selection and mutation are essentially unary operators, taking only
one input whereas recombination is binary taking both “parent” types as input. If we
take a given ordering for the operators we may write a more explicit equation than
that of equation (1). Taking the ordering

selection → recombination → mutation

we may write

Px(t+ 1) =
∑

y

MxyP
c
y (t) (4)

where P c
x(t) is the proportion of type x after selection and recombination. Explicitly

P c
x(t) is given by

P c
x(t) = (1 − pc)P

′
x(t) +

2N
∑

m=1

∑

y,z

Rxyz(m)P ′
y(t)P

′
z(t) (5)

where P ′
x(t) is the proportion of type x after selection only and pc =

∑

m pc(m) is the
probability to recombine via any mask. Normally in biological applications pc = 1.
In the case of proportional selection P ′

x = (fx/f̄(t))Px, where

f̄(t) =
∑

x

fxPx(t) (6)

is the average population fitness. By writing the above in this form Rxyz(m) models
both non-trivial (y 6= x, z 6= x) and trivial (y 6= x, z = x; y = x, z 6= x; y = x, z = x)
construction events. Once again, however, we emphasize that, for a given x, Rxyz(m)
is a very sparse matrix and hence the microscopic representation is very inefficient in
practice.

Note that, although we have written down (4) and (5) for the case of fixed-length rep-
resentations and homologous recombination representable by masks, the same func-
tional form is valid for more general type representations, such as variable-length
chromosomes and trees, and also for more general recombination operators, such as
sub-tree crossover. In the case of non-homologous recombination recombination dis-
tributions must be modeled by recombination “modes” which are more general than
masks.

Usually, selection is taken to be the dominant operator and this is certainly the
standard neo-Darwinian point of view. However, there are many important situations,
such as neutral evolution, where this is not the case and hence any intuition gleaned
from the selection dominant case, as we shall see, can be quite misleading.

For concreteness, we will frequently restrict attention to the case of a fixed number of
genetic loci, N , binary alleles and haploid reproduction. In this case we may naturally
represent X as a N -dimensional hypercube. A natural metric in this case is Hamming



P.F. Stadler and C.R. Stephens: Landscapes and Effective Fitness 8

distance, types associated with adjacent vertices being Hamming distance one apart.
The N loci form a complete orthonormal basis for the hypercube.

3. Coarse graining and Coordinate Transformations

Given that genetic dynamics takes place on a configuration space X there are two
important questions to answer: first, for a given model, what is X?; and secondly,
given an X what is the most appropriate “coordinate” system, MX , for X? Both of
these questions are intimately related to what are the appropriate effective degrees
of freedom of the model, as both the choice of X and MX affect how easily the
dynamics may be written in terms of them. We will generically consider three types
of transformation: coarse grainings, “coordinate” transformations, and embeddings,
concentrating mainly on the first two.

3.1. Coarse Graining. The generic dynamics discussed in the previous section,
taking the case of haploids with binary alleles, is described by 2N coupled, non-linear
difference equations representing the microscopic degrees of freedom, i.e. the com-
pletely specified sequences themselves. In the absence of recombination, the equations
are essentially linear and the problem reduces down to finding the eigenvalues and
eigenvectors of the selection-mutation matrix. However, save in very simple problems,
such as a linear fitness landscape, even this simpler problem is formidable. Recombi-
nation adds yet another layer of complexity. Naturally, in such problems one always
wishes to find the correct effective degrees of freedom so as to be able to affect an
effective reduction in the dimensionality of the problem. Such a reduction can be
affected by an appropriate coarse graining.

We can formalize these considerations by introducing a general coarse graining op-
erator, R(η, η′), which coarse grains from the variable η ∈ Xη to the variable η′ ∈
Xη′ ⊂ Xη. Thus, the action of R is a projection. Given two such coarse grainings we
have

R(η, η′)Pη(t) = Pη′(t) R(η, η′′)Pη(t) = Pη′′(t) (7)

However, given that R(η′, η′′)Pη′(t) = Pη′′(t) we deduce that

R(η, η′′) = R(η, η′)R(η′, η′′) (8)

i.e., the space of coarse grainings has a semi-group structure. This type of structure
is well known in theoretical physics and is known, by an abuse of language, as the
Renormalization Group, see e.g. [41]. The naturalness of a particular coarse graining
transformation will be to a large extent determined by how the transformed dynamics
looks.

Considering (1), then given that R(η, η′)Pη(t) = Pη′(t) the dynamics under a coarse
graining is governed by R(η, η′)S (Pη(t), f) ◦ T (Pη(t), p), where S (Pη(t), f) and
T (Pη(t), p) are the dynamical operators associated with the variables η. If this can
be written in the form S (Pη′(t), f ′) ◦ T (Pη′(t), p′) with suitable “renormalizations”,
f −→ f ′ and p −→ p′ of the model’s parameters, then the dynamics is form covari-
ant or invariant under this coarse graining. In the case of selection only, the coarse
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graining transforms the fitness

fη −→ fη′ = R(η, η′)fη =
∑

η∈η′

fηPη(t)/
∑

η∈η′

Pη(t). (9)

An important point to note here is that, generically, a coarse graining gives rise to a
time dependent coarse-grained fitness.

Of course, there are many types of coarse graining procedure all of which lead to a
dimensional reduction. Such reductions can sometimes come about in a relatively
“trivial” fashion, such as in the case of the genotype-phenotype map. The dynamics
in invariant e.g. in this case of selection in the absence of mixing operators. In
fact, it is strictly invariant not just form invariant, as there is no renormalization
necessary of any parameter or variable and we have fη′ = R(η, η′)fη = fη, where,
here, η′ represents the phenotype and η the genotype. A concrete example is that of
the Eigen model [42, 43], where the fitness landscape is degenerate for all genotypes
except one, the master sequence. At the level of selection only, given that there are
only two phenotypes, there is a reduction in the size of the configuration space from
2N to 2, i.e. a reduction in the number of degrees of freedom from N to 1. However,
if we include in the effect of mutation we see that there is an induced breaking of
the genotype-phenotype symmetry due to the fact that sequences close to the master
sequence in Hamming distance have more offspring than the equally fit genotypes that
are further away. As we shall see, this has a ready interpretation in terms of “effective”
fitness. In this case R(η, η′)S (Pη(t), f) ◦ T (Pη(t), p) 6= S (Pη′(t), f ′) ◦ T (Pη′(t), p′).

Another important class of coarse grainings is that corresponding to “schemata”,
which we will denote3 by α, and which represent specific, fixed subsets of loci. The
marginal probability, Pα(t), represents the relative frequency of the schema α at time
t. A specific schema is determined by summing over all possible allele values at
those loci that are not part of the schema. In this case the action of the coarse
graining operator is: R(x, α)Px(t) = Pα(t) =

∑

x∈α Px(t). One may denote a locus
that has been summed over by a ∗. Thus, 11∗ represents the two chromosomes 111

and 110. The number of definite loci of the schema defines its order, N2, while the
distance between the outermost defining loci defines its length l. Thus, ∗11 ∗ ∗0 ∗ ∗
has N2 = 3 and l = 5. Schemata have a simple geometric interpretation in the binary
case, a particular schema being represented by an (N −N2)-dimensional hyperplane
in X which passes through the 2N−N2 vertices that represent the loci that have been
coarse grained. A schema partition then consists of 2N2 of such 2N−N2-dimensional
hyperplanes. Thus, there is an effective dimensional reduction from a 2N -dimensional
configuration space X to a 2N2-dimensional one, Xα, and a corresponding reduction
in the number of degrees of freedom from N to N2.

Unlike the simple case of the coarse graining to phenotype, in this case the coarse-
grained, or schema, fitness is time-dependent, with the “renormalized” fitness now
being a highly non-trivial function of the original microscopic fitness, being defined
as fα = R(x, α)fx =

∑

x∈α fxPx(t). It may be shown [44], in the case of a flat fitness
landscape, that an analog of equation (4) is form invariant without renormalizations
under the coarse graining to an arbitrary schema; recombination and mutation acting

3We will use letters from the beginning of the Greek alphabet to represent schemata.
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only on the partition associated with the definite schema loci. Hence, in this case
Xη is of dimension N and Xη′ of dimension N2. We will see momentarily that there
exists a wider form invariance if one passes to a transformed basis for the dynam-
ics. Also, as there exist 3N possible schemata a full schema basis is over-complete
and non-orthonormal. However, the space of schemata is not the natural one for
recombination, as we shall see.

3.2. Embeddings. In the case of embeddings one passes from a lower to a higher
dimensional configuration space. An example would be that of passing from a repre-
sentation where types are represented by variable-length strings, of up to maximum
size Nm with binary alleles, to a fixed length representation of size Nm, by including
a third allele value that specifies that there was no corresponding bit in the variable
length case. The original configuration space would be of dimension 2(2Nm −1), how-
ever, due to the addition of a third allele the dimension of the embedding space is
3Nm . Of course, for these more general transformations development of the operators
and the corresponding theory necessary to maintain syntactic correctness of the off-
spring is a totally open issue. In this case, one might be better off using the theory
for variable length structures already developed in Genetic Programming.

3.3. Coordinate Transformations. Transformations of the coordinate system are
a standard tool in the mathematical analysis of physical models. The goal is to choose
a set of variables that is well-adapted to the internal structure of the model and hence
simplifies the structure of the equations that have to be analyzed. For our purposes
we will only need linear transformations which can be described in terms of matrices.
We restrict our discussion of explicit examples to the case of binary strings, which we
will denote by x = (x1, . . . , xN) with xi = ±1. The alternative encoding as a binary
string x̃ is obtained by setting x̃i = 1 iff xi = 1 and x̃i = 0 iff xi = −1.

Let us start with the standard basis, which we have been using up to now, δ = {δz|z ∈
X}. It consists of the δ-functions

δz(x) =

{

1 if x = z
0 if x 6= z

(10)

As an example, the quasispecies model takes its usual form

Ṗx(t+ 1) =
1

f̄

∑

y

MxyfyPy(t) (11)

in this coordinate system. The three alternative bases we will consider: the Walsh
basis, the Taylor basis and the Building Block Basis are all related to the standard
basis via linear transformations. In Figure 3 we show the explicit transformation
matrices for the case of three loci.

Walsh (Fourier) Basis. Probably the most important alternative basis is the Walsh
basis ψ, consisting of Walsh functions

ψI(x) = 1/
√

|X|
∏

j∈I

xj (12)
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where I is a subset of {1, . . . , N}. The order of a Walsh function is |I|, the number
of loci that are multiplied. The Walsh functions are normed and orthogonal. The
Walsh-transform, f̂ , of a function f is defined implicitly by

f(x) =
∑

I

f̂(I)ψI(x) (13)

Multiplying with ψK(x) and summing over all x ∈ X we obtain
∑

x∈X

f(x)ψK(x) =
∑

I

f̂(I)
∑

x∈X

ψI(x)ψK(x) =
∑

I

f̂(I)δIK = f̂(K) (14)

In matrix form we obtain the compact expression f̂ = Ψf , where the matrix Ψ

has the Walsh functions ψK as its rows. Conversely, we have f = Ψ+f̂ . The most
important property of the Walsh functions, at least for our purposes, is that they are
eigenfunctions of the mutation operator (3)

MψI = (1 − 2|I|/N)ψI (15)

The mutation operator is therefore diagonal in the Walsh basis, see [45, 46]. Eqn. (4)
reads in these coordinates

P̂I(t + 1) =
∑

x

(ΨM)IxP
c
x =

(

1 − 2
|I|
N

)

P̂ c
I (16)

We can see that the Walsh basis will be particularly useful if the transformed selection-
recombination term P̂ c

I also has a simple form. The Walsh transformation is a special
case of the Fourier transformation on groups. A discussion of this connection in the
context of landscapes can be found in [47]. Approximations to the recombination
operator that become diagonal in the Fourier basis are described in [35, 48].

Taylor Series. While the standard basis δ and the Walsh basis ψ are orthonormal,
this is not necessarily the case in general. In [46], for instance, the Taylor series of a
landscape on the Boolean hypercube is introduced in terms of the polynomials

τI(x) =
∏

i∈I

x̃i (17)

such that f(x) =
∑

I f̃(I)τI(x). Let us write x b I if x̃i = xi = 1 for all i ∈ I. We
define the matrix Υ by ΥIx = 1 if x b I and ΥIx = 0 otherwise, i.e., ΥIx = τI(x).

Thus we can write the Taylor series expansion in the form f = Υf̃ , i.e., f̃ = Υ−1f .
The multi-linear fitness model described in [49] is based on a similar idea.

The matrix Υ is invertible [46] but it is neither normalized nor orthogonal. In other
words, the basis functions τI(x) do not form an orthonormal basis. In fact, we have

∑

x∈X

τI(x)τk(x) = 2N−|I∪K| (18)

since τI(x)τk(x) = 1 whenever xi = 1 for all i ∈ I ∪K, and 0 otherwise.
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The Building Block Basis. Coordinate transformations such as the Walsh transform
are general. Here, however, we wish to consider a particular coordinate transforma-
tion that arises as an almost inevitable consequence of the action of recombination.
We have already seen that representing recombination in terms of the fundamental,
microscopic types is very inefficient due to the sparsity of the interaction matrix.
This is an indication that individual sequences are not the natural effective degrees of
freedom for recombination. So what are? To form the sequence 111 with a recombi-
nation mask 100 one can join strings 111, 110, 101, and 100 with either 111 or 011.
In other words, for the first parent the second and third bit values are unimportant
and for the second the first bit value is unimportant. Thus, it is natural to coarse
grain over those sequences that give rise to the desired target for a given mask.

If one picks arbitrarily a vertex in X, associated with a type x, one may perform a
linear coordinate transformation Λ : X → X̃ to a basis consisting of all schemata that
contain x. For instance, for two bits X = {11, 10, 01, 00}, while X̃ = {11, 1∗, ∗1, ∗∗}.
The invertible matrix Λ is such that Λαx = 1 ⇐⇒ x ∈ α.

We denote the associated coordinate basis the Building Block basis (BBB)4 in that
one may think of the elements of this basis as the BBs5 that are joined together by
recombination to form the type x.6 The BBB is complete but clearly not orthonormal.
Note that the vertex x by construction is a fixed point of this transformation. Apart
from the vertex x, the points in X̃, being schemata, correspond to higher dimensional
objects in X. For instance, 1∗ and ∗1 are one-planes in X while ∗∗ is the whole space.
In the BBB one may transform (5) to find

P̃ c
α(t + 1) = (1 − pc)P̃

′
α(t) +

2N
∑

m=1

∑

β,γ

R̃xyz(m)P̃ ′
β(t)P̃ ′

γ(t) (19)

where R̃αβγ(m) = ΛαxRxyzΛ
−1
βj Λ

−1
γk .

One may ask what is the advantage of this new representation? In the original micro-
scopic basis the properties and symmetries of Rxyz(m) are very hidden. However, this

is not the case for R̃αβγ(m) which has the property that for a given mask only interac-

tions between BBs that construct the target schema are non-zero, i.e., R̃αβγ(m) = 0,
unless γ corresponds to a schema which is the complement of β with respect to α.
Furthermore, R̃αβγ(m) = 0 unless β is equivalent to m, whereby equivalent we mean
that for any 1 in the mask we have a 1 at the corresponding locus in β and for any
0 we have a ∗. These two important properties mean that the two summations over
β and γ in (19) both disappear and we are left with only the sum over masks with
an “interaction” constant pc(m) which depends only on the mask. For example, for
two bits, if we choose as vertex 11, then 11 may interact only with ∗∗, while 1∗ may
interact only with ∗1.

4This basis is implicit in the work [50, 13, 51] but has only been considered in more detail recently
[52].

5Note that these BBs are not the same as their well known counterparts in the theory of Genetic
Algorithms [53] being dynamic, not static, objects. Neither are they necessarily short or fit.

6Given the arbitrariness of the choice of vertex there are in fact 2N equivalent BBBs each trans-
formable to any other by a permutation.
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Λ =

111 110 101 011 100 010 001 000
111 1 0 0 0 0 0 0 0
11∗ 1 1 0 0 0 0 0 0
1 ∗ 1 1 0 1 0 0 0 0 0
∗11 1 0 0 1 0 0 0 0
1 ∗ ∗ 1 1 1 0 1 0 0 0
∗1∗ 1 1 0 1 0 1 0 0
∗ ∗ 1 1 0 1 1 0 0 1 0
∗ ∗ ∗ 1 1 1 1 1 1 1 1

Υ =

ooo loo olo ool llo lol oll lll
111 1 1 1 1 1 1 1 1
110 1 1 1 0 1 0 0 0
101 1 1 0 1 0 1 0 0
011 1 0 1 1 0 0 1 0
100 1 1 0 0 0 0 0 0
010 1 0 1 0 0 0 0 0
001 1 0 0 1 0 0 0 0
000 1 0 0 0 0 0 0 0

Ψ =
1√
8

111 110 101 011 100 010 001 000
111 −1 +1 +1 +1 −1 −1 −1 +1
110 +1 −1 −1 −1 −1 −1 +1 +1
101 +1 −1 +1 −1 −1 +1 −1 +1
011 +1 −1 −1 +1 +1 −1 −1 +1
100 −1 −1 −1 +1 −1 +1 +1 +1
010 −1 −1 +1 −1 +1 −1 +1 +1
001 −1 +1 −1 −1 +1 +1 −1 +1
000 +1 +1 +1 +1 +1 +1 +1 +1

Figure 3. Examples of transformation matrices for N = 3.

In X this has the interesting interpretation that for a target schema α of dimension-
ality (N − d) only geometric objects “dual” in the d-dimensional subspace of X that
corresponds to α may interact. In other words, a k-dimensional object recombines
only with a (N − d − k)-dimensional object. Additionally, a (N − d)-dimensional
object may only be formed by the interaction of higher dimensional objects. In this
sense interaction is via the geometric intersection of higher dimensional objects. For
example, the point 11 can be formed by the intersection of the two lines 1∗ and ∗1.
Similarly, 1111 can be formed via intersection of the three-plane 1 ∗ ∗∗ with the line
∗111 or via the intersection of the two two-planes 11 ∗ ∗ and ∗ ∗ 11.
As mentioned, one of the primary advantages of the BBB representation is that the
sums over j and k disappear thus obtaining

P c
x(t) = (1 − pc)P

′
x(t) +

2N
∑

m=1

pc(m)P ′
xm

(t)P ′
xm̄

(t) (20)
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where P ′
xm

(t) is the probability to select the BB xm (note that the mask uniquely
specifies which element, xm, of the BBB to choose) and P ′

xm̄
(t) is the probability to

select the BB xm̄, which is uniquely specified as the complement of xm in x. Both xm

and xm̄ are elements of the BBB associated with x. The above equation clearly shows
that recombination is most naturally considered in terms of the BBB. In the standard
basis there were of the order of 22N elements of Rxyz to be taken into account for a fixed
x. In the BBB there is only one term. Of course, we must remember that the coarse
grained averages of xm and xm̄ contain 2N terms, still, the reduction in complication
is enormous. Thus, we see that recombination as an operator naturally introduces
the idea of a coarse graining, the natural effective degrees of freedom associated with
recombination being the BBs we have defined. This is an important point as it shows
that evolution is acting in the presence of recombination most naturally at the level
of populations, the BBs representing populations with a certain degree of “kinship”
to the target type.

Inserting (20) in (4) we can try to solve for the dynamics. However, in order to do
that we must know the time dependence of xm and xm̄. Although the number of BB
basis elements is 2N we may generalize and consider the evolution of an arbitrary
schema, α. To do this we need to sum with

∑

x⊃α on both sides of the equation (4).
This can simply be done to obtain [50, 13, 51] again the form (4), where this time
the index α runs only over the 2N2 elements of the schema partition and where again
Mαβ = pdH(α,β)(1−p)N−dH(α,β). In this case however dH(α, β) is the Hamming distance
between the two schemata. For instance, for types with three loci the schemata
partition associated with the first and third loci is {1∗1, 1∗0, 0∗1, 0∗0}. In this case
dH(1, 2) = 1 and dH(1, 4) = 2. P c

α(t) =
∑

x⊃α P
c
x(t) is the probability of finding the

schema α after selection and recombination. Note the form invariance of the equation
after coarse graining. To complete the transformation to schema dynamics we need
the schema analog of (20). This also can be obtained by acting with

∑

x⊃α on both
sides of the equation. One obtains

P c
α(t) = (1 − pcNα)P ′

α(t) +
∑

m∈Mr

pc(m)P ′
αm

(t)P ′
αm̄

(t) (21)

where αm represents the part of the schema α inherited from the first parent and αm̄

that part inherited from the second. N(α) is the number of recombination masks
that affect α, relative to the total number of masks with pc(m) 6= 0, the set of such
masks being denoted by Mr. Obviously, these quantities depend on the type of
recombination implemented and on properties of the schema such as defining length.
Note that the BBB naturally coarse grains here to the BBB appropriate for the
schema α as opposed to the sequence x.

Thus, we see that the evolution equation for schemata is form invariant, there being
only a simple multiplicative renormalization of the recombination probability pc. This
form invariance, first shown in [13], demonstrates that BB schemata in general are a
preferred set of coarse grained variables and, more particularly, the BBB is a preferred
basis in the presence of recombination. It has also been shown [44] that schemata,
more generally, are the only coarse graining that leads to invariance in the presence
of mutation and recombination.
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Considering again the structure of (20) and (21) we see that variables associated with
a certain degree of coarse graining are related to BB “precursors” at an earlier time,
which in their turn ... etc. This hierarchical structure terminates at order-one BBs as
these are unaffected by crossover. Thus, for example, the level one BB combinations
of 111, i.e., BBs that lead directly upon recombination to 111 are: 11∗ : ∗ ∗ 1,
1 ∗ 1 : ∗1∗ and 1 ∗ ∗ : ∗11. The level two BBs are 1 ∗ ∗, ∗1∗ and ∗ ∗ 1. Thus, a
typical construction process is that BBs 1 ∗ ∗ and ∗1∗ recombine at t = t1 to form
the BB 11∗ which at some later time t2 recombines with the BB ∗ ∗ 1 to form the
sequence 111.

In the case of recombination note also that the coarse graining operator associated
with the BBs satisfies

R(η, η′) = R(ηm, η′m)R(ηm̄, η′m̄) (22)

where R(ηm, η′m) represents the action of the coarse graining on the BB § while
R(ηm̄, η′m̄) represents the action on the BB m̄.

4. Fitness Landscapes

The concept of a fitness landscape originated in the 1930s in theoretical biology [54, 55]
as a means of visualizing evolutionary adaptation. A fitness landscape is a kind of
“potential function” on which a population moves, Fig. 4. Implicit in this notion
is both a fitness function f that assigns a fitness value to every possible type (or
organism), and the arrangement of the set of types in some kind of abstract space
that provides some notion of accessibility or reachability.

A significant part of modern population genetics is still based on these ideas. The
basic ingredients are [3] as stated in the previous section: A set X of “types”, a fitness
function evaluating the types and a set of genetic operators that induce a dynamics
on X. (Strictly speaking, this implies that a measure must be defined on the set of
types. Since we will mostly be concerned with the case of a finite set X with the
uniform measure we shall not be concerned with this complication.) A very general
framework for multi-locus models is described in [49].

The mathematical theory of fitness landscapes starts with specifying the three basic
ingredients of the landscape (X,X , f):

(1) A set X of configurations,
(2) a notion X of neighborhood, nearness, distance, or accessibility on X, and
(3) a fitness function f : X → R.

The set X together with the “structure” X forms the configuration space. The
definition of X is purposefully left vague at this point and will be made precise in the
following section.

The intuition behind a fitness landscape is that fitness can be thought of as a “height
function” orthogonal to X and hence higher fitness types are located at “peaks”
and low fitness types in “valleys”. The dynamics associated with selection at the
population level can then be interpreted as “hill climbing” on this topography. This
is a very intuitive and appealing paradigm allowing for a “geometrical” understanding
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Figure 4. The fitness landscape paradigm.

of adaptation under selection. In fact, the average population fitness is a Lyapunov
function in this case. As we have stressed however, generally it is only in the absence
of other genetic operators that the fitness as determined by the landscape measures
the full reproductive success of a type.

Mathematical constructions analogous to a fitness landscape arise naturally in many
other areas of scientific study. For instance, in the physics of disordered systems where
spin-glasses, for example, can be cast into the same form [56, 57]. Each spin config-
uration is assigned an energy by virtue of the Hamiltonian that specifies the model;
the dynamic properties invoke a collection of transitions between configurations. In
biophysics energy landscapes govern the folding of biopolymers, including proteins
[58, 59, 60] and nucleic acids [28, 61]. Conceptually, there is a close connection with
the potential energy surfaces (PES) of theoretical chemistry [62, 63]: As a consequence
of the validity of the Born-Oppenheimer approximation, the PES provides the poten-
tial energy U(~R) of a molecule with n atoms as a function of its nuclear geometry
~R ∈ R

3n. Electoral Landscapes are used to explain party platform behavior in spatial
voting models [64, 65]. In combinatorial optimization the fitness function is usually
referred to as the cost function, and a move-set allows interchange of the elements of
the search space [66]. The application of evolutionary models to combinatorial op-
timization problems has lead to the design evolutionary algorithms such as Genetic
Algorithms, Evolution Strategies, and Genetic Programming [67, 68, 69, 70, 71].

Usually the viability fitness is taken to be static, though this is not a restriction.
The corresponding fitness landscapes are thus static and hence have been principally
studied by focusing on geometric properties such as smoothness, ruggedness, and neu-
trality. This static point of view has been the main focus of two recent reviews [8, 72],
which are complementary to material presented here. Even in this much simplified
setting however, there is no complete classification, or taxonomy, of landscapes. On
the other hand, interesting and important classes of landscapes, such as the Nk mod-
els [70], elementary landscapes [73] (which include the p-spin models), and landscapes
with tunable neutrality [74] (including short range spin glasses) are known and have
been extensively studied. Such a classification, if it exists at all, analogous to the



P.F. Stadler and C.R. Stephens: Landscapes and Effective Fitness 17

classification of phase transitions, catastrophes or critical points, would inevitably be
based on statistical properties of the landscape and would be of great importance.

An important class of landscapes are those for which the coordinate transformations
discussed in the previous section act as projectors. The constant function is an
eigenfunction of the mutation operator (3). The projection of any landscape onto
this eigenspace is the average fitness f̄ = (1/|X|) ∑

x fx of the landscape. A class of
landscapes that is of particular interest are the so-called elementary landscapes for
which f− f̄ is an eigenfunction of M. In this case we have in the Walsh basis f̂(I) = 0
unless I = ∅ or |I| = p for a fixed valued of the interaction order p, see [73, 75]. For a
detailed account of this topic see [8]; we will return to this topic below in section 4.1.

4.1. Coarse Grained and Coordinate Transformed Fitness Landscapes. We
have emphasized that there are many alternative representations to the microscopic
one based on the types themselves. Given the utility of alternative representations it
is important to consider how the corresponding transformed fitness landscapes look.

Coarse Grained Fitness Landscapes. Given a fitness landscape associated with vari-
ables η the coarse grained landscape associated with variables η ′, coarse grained
relative to η, is given by

R(η, η′)fη(t) = fη′(t) =
∑

η∈η′

fη(t)Pη(t)/
∑

η∈η′

Pη(t) (23)

Notice the presence of the probability distribution Pη(t) in the above. By introducing
this probability distribution we are weighting the fη(t) by a factor that is intrinsically
population dependent. The motivation for this is the following: consider the case of
pure proportional selection, under a coarse graining

Pη(t+ 1) −→ R(η, η′)
fη(t)

f̄(t)
Pη(t) =

∑

η∈η′ fη(t)Pη(t)

f̄(t)
=
fη′(t)

f̄(t)
Pη′(t) (24)

The evolution of η′ can be understood either in terms of the microscopic η variables via
the factor

∑

η∈η′ fη(t)Pη(t) or in terms of the coarse grained fitness fη′(t). The latter

preserves the natural interpretation of selection in that η ′-types increase/decrease
when their fitness is greater/less than average.

Note that even if fη is time independent fη′ will depend on time via an implicit depen-
dence on the population distribution. A static coarse grained fitness landscape can be
defined by coarse graining with respect to a particular fixed probability distribution.
The most natural one is probably that associated with a random population. In this
case fη −→ ∑

η∈η′ fη/
∑

η∈η′ 1. Hence, if fη is time independent so is fη′ . Whether a
statically or dynamically generated coarse grained fitness landscape is better depends
on one’s point of view. A static coarse graining has the advantage that the landscape,
which is the underlying substrate on which the population dynamics takes place, is
constant. However, shares with the standard fitness landscape the deficiencies that
we will discuss in section 6. In cases where the coarse graining is associated with
symmetries, such as is the case for the genotype-phenotype map, then the static and
dynamic coarse grained landscapes are the same.



P.F. Stadler and C.R. Stephens: Landscapes and Effective Fitness 18

As emphasized previously, the most obvious example of a coarse grained landscape
is that associated with the phenotype. Given that all genotypes associated with the
same phenotype have the same fitness the phenotypic landscape besides being of lower
dimension will also be more rugged, the genotypic landscape generically containing
neutral networks, a topic we will discuss in more depth in section 5. A simple ex-
ample of such is the Quasispecies model for three loci. The genotypic landscape is
three dimensional and the phenotypic, one dimensional. The non-master sequence
genotypes form a neutral network. Although a degenerate genotype-phenotype map
is necessary to guarantee a neutral network it is not sufficient, as can be simply seen
in the case of a landscape where fitness is additive and proportional to the number
of alleles of a given type.

Another example of a coarse grained landscape is that associated with schemata.
Once again, we may simply illustrate this with the Quasispecies model. If the master
sequence is chosen to be 111 with fitness (1 + δ) while the other genotypes have
fitness 1 then concentrating on only the first two loci the static coarse grained schema
fitnesses are: f11∗ = (1 + δ/2), f10∗ = f01∗ = f00∗ = 1. In this case there is a
“master schema”. This coarse grained landscape would lead one to believe that the
population should ascend the coarse grained fitness peak at 11∗. The dynamic picture
would take as coarse grained fitnesses: f11∗(t) = 1 + (δP111(t)/(P111(t) + P110(t))),
f10∗ = f01∗ = f00∗ = 1. If one were to observe population flows in this model one
would see that the “master schema” has a certain reproductive success. However, its
observed success would be better described by the dynamical rather than the static
coarse grained fitness, i.e. its reproductive success would generally be observed to be
greater than that associated with the static schema fitness.

Walsh Transformed Fitness Landscapes. The Walsh-transform of a landscape high-
lights global features, in particular correlations. It is well known that the total vari-
ation of the landscape is var[f ] =

∑

I 6=∅ f̂(I)2. The quantities

Bp =
1

var[f ]

∑

I: |I|=p

f̂(I)2 (25)

measure the relative importance of the projections of the fitness function f onto the
eigenspaces of the mutation operator M. Elementary landscapes are thus character-
ized by B′

p = 1 for a particular value p′ of p and Bp = 0 otherwise. These landscapes
can be shown to exhibit particular geometric features. For example, all local minima
have a fitness that is smaller than f̄ , while all local maxima have a larger fitness
[76]. Furthermore, a version of Courant’s nodal domain theorem limits the number
of large mountain ranges and valleys [77]. Examples include quadratic spin glasses
and certain combinatorial optimization problems, such as weight partitioning, graph
matching, the traveling salesman problem, and graph coloring.

The distribution of Bp-values, termed the amplitude spectrum e.g. in [78], character-
izes the correlation structure of a landscape, see Fig. 5 for an example. In particular,
the correlation length % of a landscape (defined along a sequence of randomly placed
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Figure 5. The estimated amplitude spectrum for a GC what’s GC landscape with N =
100 under mutation [78]. The most striking feature of the amplitude spectrum of RNA
landscapes is a strong difference between even and odd modes. This can easily be explained
in terms of the physics underlying RNA folding: The major contribution of the folding
energy comes from stacking of base pairs.

subsequent mutations) can be computed as

% =
N

2

∑

p>0

Bp

p
(26)

It is interesting to note that many landscapes in physics and combinatorial opti-
mization are defined in the Walsh basis. For instance, a quadratic spin glass Hamil-
tonian is usually written in the form H(σ) =

∑

i<j Jijσiσj. One easily checks that

Jij = Ĥ(I)/
√
N with I = {i, j}.

Landscapes in the BBB. Once again, one may take a static or dynamic point of view
of the transformation. One uses the BBB transformation matrix Λ. As it is more
natural to consider fitness averages rather than pure sums in the case of a static
transformation we divide the matrix elements of Λ by |α| = 2N−N2, the number of
sequences that contribute to the BB α. For instance, for the three loci Quasispecies
model the fitness landscape in the BBB is: f111 = (1 + δ), f11∗ = f1∗1 = f∗11 =
(1+δ/2), f1∗∗ = f∗1∗ = f∗∗1 = (1+δ/4) and f∗∗∗ = δ/8. Interestingly, in this basis we
see there is no neutral network, there being a steady fitness gradient in the direction
of the master sequence corresponding to a ranking of the fitnesses of the master
sequence’s BBs. In the dynamic picture one replaces the factors of δ/|β|, where |β|
is the number of sequences that contribute to the BB β, with corresponding factors:
δP111(t)/

∑

x⊂β Px(t). Once again, in the dynamic picture the height of each state in
the landscape is a function of time due to the dependence on the population state.
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5. Geometric Characterization of Landscapes: Ruggedness, Neutrality,

and Isotropy

Having discussed the basic elements of fitness landscapes and various relevant trans-
formations on them we pass now to the topic of how to characterize landscapes ge-
ometrically. Geometric characterization of static landscapes, which form a possible
basis for a classification of landscapes, were the topic of recent reviews by one of the
authors [8, 79, 72]; we therefore touch this topic only very briefly. It turns out that
the ruggedness of landscape is intimately related to epistasis [80, 48], where epistasis
is defined as the non-additive component of the fitness function. In the Walsh basis
additive and epistatic interactions are separated: The values of f̂(I) with |I| > 0
describe the epistatic interactions. A straight forward measure of the strength of
epistasis is therefore

ε =
1

var[f ]

∑

I:|I|>1

f̂(I)2 . (27)

The ruggedness of a landscape is most easily quantified by measuring the correlation
of fitness values between “neighboring” positions [81, 46, 82, 73]. It turns out that
many of the paradigmatic combinatorial optimization problems, including the Travel-
ing Salesman Problem, Graph Coloring, Graph Biparitioning, Graph Matching, and
Number Partitioning, belong to a single class of highly correlated landscapes. Prob-
ably the most typical feature of this landscape is the existence of an exponentially
large number of local optima and a strong correlation between the fitness of a local
optimum and the size of its basin of attraction [83, 84].

Biologically relevant fitness landscape apparently are not of this type, however. Their
correlation seem to be less pronounced [25], while on the other hand neutrality plays
a crucial role [26, 85]. Neutrality, i.e., the existence of neighboring configurations with
the same fitness, appears to be just a way of achieving a “smooth” landscape, though
as we have seen in the case of the BBB neutrality depends intimately on how one
defines a neighbor. Therefore it comes as a surprise, that ruggedness and neutrality
are in fact independently tunable parameters [74].

In the case of RNA molecules at least, it is possible to explicitly compute the genotype-
phenotype map and to investigate its global properties explicitly [26]:

(i) Redundancy. For sequence spaces of chain lengths n ≥ 10 there are orders
of magnitude more sequences than structures and hence, the map is many-
to-one. This fact can be proved combinatorially. The GP-map of RNA is
therefore highly redundant.

(ii) Connected Neutral Networks. Neutral networks of common structures
are connected unless specific and readily recognizable special features of RNA
structures require specific non-random distributions in sequence space. A
random graph approach [86, 87] also predicts that the neutral networks are
connected provided the average neutrality, λ̄, exceeds a threshold that only
depends on the nucleic acid alphabet.

(iv) Shape Space Covering. The neutral network G(ψ) is embedded in a com-
patible set C(ψ) which includes all sequences that can form the structure ψ
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at least as a suboptimal conformation. Note that C(ψ) is determined only by
the logic of base pairing in RNA, where only the six combinations AU, UA,
GC, CG, GU, and UG can pair, Fig. 2. Computational studies, e.g. [26, 88, 89],
showed that G(ψ) is well described in many respects by a random induced
subgraph of the compatible part of sequence space Q[C(ψ)]. More explicitly,
the random graph model [86] assumes that the structure of G(ψ) is determined
only by the fraction λ̄ of neutral mutations when restricting the acceptable
mutations to the sequences that are compatible with the structure ψ. On
the other hand, one can prove rigorously that the compatible sets of any two
phenotypes C(ψ) and C(ϕ) have a non-empty intersection [86]. As a result it
is possible to define a spherical ball with a diameter Rcov � N which contains
on the average, for every common structure, at least one sequence that folds
into it.

These predictions are in agreement with experimental findings. For instance, Schultes
& Bartel [90] describe an RNA that simultaneously carries the properties of two
different RNA folds and which is connected by a neutral path with the two sequences
from which it was originally designed. Computational studies based on inverse folding
by means of knowledge-based potentials [91] strongly indicate that all four features
hold for protein spaces as well [30, 31]. Again, there is experimental evidence for the
correctness of this picture, see e.g. [92, 93]. Empirical evidence for a large degree of
functional neutrality in protein space is described e.g. by Wain-Hobson and co-workers
[94].

Neutrality has a number of important impacts on the dynamical behavior of a popu-
lation of replicating individuals. Most importantly, there is a diffusive motion of the
population’s “center of gravity” through sequence space [95]. The diffusion constant
is related to population size n, per digit mutation rate p and the fraction λ of neutral
neighbors [96]. A constant “rate of innovation” is reported in [97] for the landscapes
in which all neutral networks come close together, as in the case of RNA. A population
therefore evolves by producing mutants in the boundary of the neutral network of the
currently dominating species. Short, intermittent episodes of selection interrupt the
diffusive behavior when a fitter mutant invades the population and spreads through
it.

A genotype-phenotype map that leads to neutral networks is thus an evolutionary
advantage because it increases evolvability. In a non-neutral, spin-glass like landscape
with many local optima the population will very quickly get stuck in a locally optimal
configuration from which it can escape only via an advantageous mutant. In contrast
to a population that freely diffuses on a neutral network, however, the exploration
will decrease to almost 0 for a stuck population because it gets harder with time to
produce new mutants that are further and further away from the trap.

A third aspect that is presumably independent of ruggedness and neutrality is the
degree to which a landscape is isotropic or anisotropic, i.e., to what extent different
local subsets are distinguishable. Surprisingly, little progress has been made in this
direction, see however [98, 99].
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There have been several attempts to identify properties of fitness functions that relate
to the action of recombination operators. Probably the most import one is the concept
of a deceptive function [100, 101, 102], see also [103, 79]. A landscape is deceptive
(for a Genetic Algorithm) if the BBs for an optimal schema are less fit than the
corresponding BBs for a non-optimal schema on the same partition. For example, if
the optimum is 11 and the BB 1∗ is less fit than the BB 0∗. Deception has inevitably
been portrayed in the static picture. However, its effects really need to be considered
in the dynamical picture as whether or not it prevents the algorithm from finding the
optimum depends sensitively on the population state. It is interesting to mention,
however, that all fitness functions of practical interest are either closely related to
an additive landscape or deceptive. A more fine-grained classification, which should
reflect the vast differences in difficulty observed in practice, would be highly desirable.

6. Limitations of the Fitness Landscape Paradigm

Despite its wide range of applicability in different fields, the usefulness of the standard
picture of fitness landscapes in understanding either biological evolution or evolution-
ary computation is limited to certain, precisely defined, situations. Whether or not
the dynamics of equ.(1) is consistent with or determined by a fitness landscape de-
pends on the particularities of the selection term. Setting

S(P,w) = P ◦ F (P, f) , (28)

i.e., in component-wise notation, Sx(P,w) = Fx(P, f)Px, we have selection propor-
tional to a growth-rate function Fx for each type x [104]. We suggest that the canonical
fitness landscapes paradigm is only valid when

Fx(P,w) ≈ fx

/

∑

x

fxPx (29)

where fx is a constant that is characteristic of the type x. Otherwise the fitness
(growth rate) Fx of type x depends on, and changes with, the frequencies Py of
all other types y. Models of such co-evolution are sometimes viewed as “coupled
dancing landscapes” [70] where a species x changes the landscape of species y, and
y changes the landscape of x, at the same time scale at which both species adapt
to their respective landscapes. We argue that in this case the standard landscape
metaphor is not useful anymore and prefer to limit the use of the term landscape to
situations in which: (1) fitness is characteristic of a type and (2) constant in time,
at least approximately. More stringently, one might also require that (3) fitness is
approximately a Lyapunov function for the dynamics of equ.(1), i.e., that fitness
increases along evolutionary trajectories.

As we shall see however, effective fitness, is perfectly well-defined in the absence
of a landscape in the above sense. The corresponding concept of an effective fitness
landscape has intuitive value by restoring a notion of hill-climbing even in cases where
the requirements for having a (static) fitness landscape are violated.

The requirement that fitness be a Lyapunov function of equation (1) is very restric-
tive. To see this we consider again Eigen’s quasispecies model [42] described by
equation (11). In the absence of mutation Mxy is the identity matrix. Now, consider
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a population consisting exclusively of individuals that maximize fx. In the presence
of mutation the average fitness of the population will decrease due to the introduc-
tion of disadvantageous mutants. Hence, the average population fitness f cannot be
a Lyapunov function. The model however does have a Lyapunov function, namely
the projection

L(P ) =
∑

x

P ∗
xPx (30)

onto the stationary distribution P ∗ defined by the linear eigenvalue equation

∑

y

MxyfyP
∗
y = fP ∗

x , (31)

see e.g. [43]. On the other hand, f̄ is “sort of” a Lyapunov function for small mutation
rates (off-diagonal elements of the matrix M are small) because in this case P ∗ is
concentrated around the master sequence xms and hence L(P ) ≈ Pxms

. The average
population fitness, on the other hand, also tends to increase with the fraction of
maximally fit individuals Pxms

.

In the canonical quasispecies model with one fitness peak, i.e. one associated quasis-
pecies, one may use as a measure of order in the population the relative concentration
of the master sequence, Pms(t); and in particular in the long time limit, Pms(∞),
where a steady state population is reached — the quasi-species. In this case as is
well known [42] Pms(∞) monotonically decreases as a function of the mutation rate p
until a critical rate, pcri, associated with the error threshold, is reached beyond which
Pms(∞) = 1/2N . i.e. the master sequence is present in the same proportion as it
would be in a purely random population.

It is important to realize that the fitness landscape is constant throughout this behav-
ior. Thus, for p = 0, i.e. in the absence of mutations, the entire population climbs the
fitness peak until f̄(t) ≈ fms, while for p ≥ pcri the population is uniformly dispersed
throughout the entire landscape. Clearly no intuition about these very different types
of population flow endpoints can be gleaned from the structure of the landscape it-
self. In one limit selection dominates, in the other it has no effect. Whether or not
the population will ascend a fitness peak due to selection depends crucially on the
presence of another genetic operator — mutation. Thus, in the presence of muta-
tion we see important regimes where the hill climbing paradigm fails completely. It
is not difficult to construct many other relevant examples [15, 16] where the same
phenomenon occurs.

The one-peak landscape also serves as a good example of induced symmetry breaking.
In this landscape there are only two phenotypes, y0 and yms where the phenotype y0

corresponds to all genotypes save xms. Thus there is a (2N−1)-dimensional degeneracy
associated with the fitness landscape. Hence, in terms of fitness one would expect
to find all genotypes but the master sequence in equal proportions. However, the
steady state population – the quasi-species – exhibits a preference for those sub-
optimal genotypes that are closer in Hamming distance to the optimum. Thus, the
effect of the mutation operator is to lift the large landscape degeneracy. There still
remains a residual symmetry associated with the fact that, at least starting with an
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homogeneous population, all genotypes of a given Hamming distance from the master
sequence will have the same probability of reproductive success.
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Figure 6. Stationary distribution Px on a landscape with two peaks: f(~0) = 1.0, f(~1) =

0.99 and fx = 0.98 for the one-error mutants of the all-1 string ~1. We observe a sudden
jump at p ≈ 0.52 where the effective fitness of the peak at ~1 exceeds the effective fitness of
the absolutely fittest individual ~0.

Similar phenomena occur in the case of a landscape with two fitness peaks, i.e. two
possible quasispecies [105]. In this case it can be shown that the dominating type
may switch with increasing mutation rate from the “individually fittest” xms to an-
other type x∗ with fx∗ < fxms

that is surrounded by a broad plateau of relatively fit
neighbors, see Fig. 6. i.e. that the quasispecies associated with the type x∗ has more
reproductive success than that associated with the master sequence. Once again this
cannot be understood in the context of hill climbing on the fitness landscape.

A second example of this type is evolution towards robustness. In [106] it is shown
that the stationary mutant distribution on a holey landscape [107] (consisting of a
fit neutral network and a non-viable desert) depends on the local connectivity of the
network. Once again, differences in reproductive success associated with different
degrees of local connectivity cannot be understood in terms of hill climbing on the
corresponding fitness landscape. Evidence for evolution towards robustness can be
found e.g. in RNA viruses [108]. The massive effect of neutrality on evolutionary
trajectories is described in some more detail in [109].

As a final example, we will now illustrate the the limitation of the standard land-
scape paradigm in the context of a more complex model [10], a variant of Kitano’s
neurogenetic model [110], that illustrates all of the above discussed weaknesses. In
this type of model the chromosome encodes rules for cellular division and the phe-
notype is a 16-cell organism interpreted as a connectivity matrix for a feed-forward
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neural network (NN). The corresponding artificial ecological environment thus con-
sists of a single species composed of NNs as individuals. A GA is then applied to
the chromosomes present in the population at each epoch which induces a search of
the connectivity matrix space determined by the structure of the NN. Environmental
effects are included in the fitness function that measures the learning capacity of a
particular individual.

Explicitly, a chromosome consists of eight blocks of four genes each one of which is
a three bit structure. Both the blocks and the genes themselves are labeled from
a to h. The reproduction process always begins with block a. Thus, the first
four genes have a privileged role as they label the cells that are going to be repro-
duced in the second step of reproduction. As an example, consider the chromosome
baea.dcaa.defa.becd.aaea.aafh.haec.fgaa. The two step reproduction process speci-
fied by this chromosome can be written as

a −→
(

b a

e a

)

−→









d c b a

a a e a

a a b a

e a e a









↔









0 1 1 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0









(32)

The genotype-phenotype map in this case is highly degenerate. For example, in the
above we can change blocks c, e, f, g and h without changing the resulting phenotype.
It is also a non-local function on the chromosomes since entries of block number one
can target any one of the other blocks irrespective of their distance. To define a fitness
function the learning speed of the NNs on a given test function was measured and a
GA used to find the NN capable of learning this function with the smallest number
of attempts.

Given the highly degenerate nature of the genotype-phenotype map one might expect
to see an optimum phenotype emerge with a random distribution of the corresponding
genotypes. However, this was not the case — certain genotypes were consistently
preferred, thus indicating that the genotype-phenotype symmetry was broken. The
reason for this is that although degenerate genotypes were equivalent in terms of
reproductive selection the mixing genetic operators, mutation and recombination,
broke the symmetry picking out the more robust or less brittle genotypes, i.e. those
that were most likely to lead to other fit NNs.

Remarkably, the induced symmetry breaking in this context can be described in
terms of the emergence of an “algorithmic language” [10]. The first word of the
chromosome governs the grammar of the system by determining the syntax of the
four-word combinations that make up the algorithm that generates the phenotype.
The requirement that a phenotype learns well the test function implies that many
four-word algorithms are “meaningless” in the sense that they lead to phenotypes of
zero or very low fitness. Which words are chosen and their associated syntax is now
crucially important, and one must confront the brittleness problem as mutation and
recombination can convert a very fit phenotype into a very unfit one. It is precisely
in this sense that a preferred language and grammar emerged with respect to which
algorithms are written that lead to fit phenotypes. In particular robustness was an
emergent property via a self-organization of the genotype-phenotype map, robust
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genotypes representing a given phenotype having more reproductive success than
their less robust degenerate counterparts. As a simple illustration of this phenomenon
consider the words “defunct” and “dead”. Both have essentially the same meaning
however, dead is much more robust to one letter mutations than defunct. For instance,
dead can mutate to: read, bead, deed, dear etc. all of which have meaning. On the
other hand it is difficult to find a one mutant neighbor of defunct that has meaning.

In the model at hand, it was found that the switching block, a, which can play
a role as a word as well as a grammatical rule, rarely appeared as a word. This
helped in making the system less susceptible to destructive mutations and hence more
evolutionarily robust. Additionally, structures for this block that after mutation still
formed fit phenotypes were seen to have more reproductive success. For instance,
during the early part of the evolution first blocks of daaa and baaa were common.
Both of these led to fit NNs with appropriate connectivity associated with the genes
in the d and b blocks. However, these genotypes were susceptible to destructive
mutations of the d or b genes in the first block. To counter this the system evolved a
first block of type daba. Even though the resulting phenotype had no fitness advantage
over its predecessors it led to greater reproductive success in that either of the d or b
genes in the first block without creating an unfit phenotype.

7. Effective Fitness

In the previous section we discussed the advantages and disadvantages of the fitness
landscape paradigm. Obviously, it would be of great benefit to have an alternative
that includes the advantages and eliminates the disadvantages. In this section we
introduce and discuss just such a paradigm: effective fitness.

There are several possibilities for such a quantity. For instance, based on the thermo-
dynamic analogy [111] between an inhomogeneous two-dimensional spin model and a
population evolving with respect to reproductive selection and mutation, one could
define quite naturally the free energy per row as an effective measure of fitness. Here,
however, we will use another definition, more directly related to the traditional idea
of fitness in biology.

We define the effective fitness in the case of strings as [13, 50, 51, 14]

Px(t+ 1) =
f eff

x (t)

f̄(t)
Px(t) (33)

One may think of the effective fitness as representing the effect of all genetic operators
in a single value for the viability or survival fitness. f eff

x (t) is the fitness value at time t
required to increase or decrease Px(t) by pure selection by the same amount as all the
genetic operators combined in the context of a survival fitness fx. If f eff

x (t) > fx(t)
the effect of the genetic operators other than selection is to enhance the reproductive
success of type x. Obviously, the converse is true when f eff

x (t) < fx(t). Here, we
have defined effective fitness with proportional selection in mind as the selection
operator. However, effective fitness is obviously applicable in a wider context: i.e. for
a given selection operator, what fitness value in the selection only case leads to the
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same expected number of offspring of a given type as the case where several genetic
operators are acting simultaneously.

Just as with the standard fitness one may represent mathematically the effective
fitness very simply via a map: f eff

X : X −→ R
+, where as before we may work

with phenotypes or genotypes and pass between the two representations using the
genotype-phenotype map such that f eff

X = f eff
Y • φ where X and Y are the genotype

and phenotype configuration spaces respectively. Additionally, we may construct
an effective fitness landscape by using f eff

X as a height function above the space X.
The chief difference here is that f eff

X is almost inevitably time dependent hence the
associated landscape is dynamical. It is also possible to effect the transformations
discussed in section 3 on effective fitness thus leading to coarse grained or coordinate
transformed effective fitness functions and landscapes.

Contrasting with the standard picture we may view population flows on a static
landscape, but where the flows, as seen in the last section can be very counterintuitive,
not related to a hill climbing intuition, or we may consider the flows on a dynamic
substrate wherein the hill climbing paradigm can be seen to be restored. Although,
working with a dynamic landscape might seem like a heavy price to pay, as we have
emphasized, almost any coarse graining leads to a resultant fitness function which is
time dependent anyway.

The exact functional form of the effective fitness obviously depends on the set of
genetic operators involved. For the fairly general case of equation (4) in the case of
proportional selection we have

f eff
x (t) =

f̄(t)

Px(t)

∑

y

MxyP
c
y (t) (34)

Note that it is time dependent and depends on the actual composition of the popu-
lation. However, as we have emphasized, a static landscape in many ways is a rather
artificial concept and only applicable in a certain approximate limit. In the limit
p → 0, pc → 0 (or in more generic circumstances when the strengths of operators
other than reproductive selection → 0) f eff

x (t) → fx.

One is also naturally led to the idea of an effective selection coefficient,

seff
x = f eff

x (t)/f̄(t) − 1 , (35)

which directly measures effective selection pressure. If we think of seff
x as being ap-

proximately constant in the vicinity of time t0, then seff
x (t0) gives us the exponential

rate of increase or decrease of growth of the type x at time t0. In the limit of a
continuous time evolution the solution of the evolution equation (34) is

Px(t) = Px(0)e
∫ t

0
seffdt′ (36)

In the case of a finite population one must interpret differently the right hand side of
the equation for effective fitness. One may say that effective fitness applies to a finite
population if we interpret in equation (34) the sequence proportions on the RHS as
being the actual proportions in the population rather than as expected values. In
other words that the evolution equations relate the actual population proportions at
time t to the expected value at time t + 1. However, this can lead to pathological
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behavior, such as f eff
x (t) → ∞ when Px(t) = 0 and Px(t+1) 6= 0. Additionally, in this

case the corresponding effective fitness landscape will change stochastically in time.
This is not something intrinsic to the reproductive landscape, or the other operators
themselves, but is a finite size effect arising from the limited stochastic sampling. For
these reasons it is more appropriate to think of the effective landscape as being defined
in the infinite population limit where its evolution is completely deterministic. In this
case the effective fitness landscape will give information about the expected evolution
of a population. Of course, the “experimental” effective fitness can be determined by
measuring the proportion of individuals of a given type in two successive generations.
This will not generically compare well with theoretical estimates for small population
sizes due to stochastic sampling effects.

We do not wish to propagate the point of view that definition (34) is unique, nor
even the best definition under all possible circumstances. For instance, in [13, 50]
another natural definition was presented which follows from the split into those terms
of the evolution equation that are linear in Px(t) and those source terms that are
independent of it. For instance, in the case of selection and recombination we have

Px(t+ 1) =
f ′eff

x (t)

f̄(t)
Px(t) + jx(t) (37)

where

f ′eff
x (t) = (1 − pc)

fx

f̄(t)
and jx(t) =

2N
∑

m=1

pc(m)P ′
xm

(t)P ′
xm̄

(t) (38)

The corresponding effective selection coefficient is

s′eff = (1 − pc)
fx

f̄(t)
− 1 . (39)

This effective fitness is intuitively more similar to that of [112, 113, 114, 115] in that
it takes into account only the destructive effect of crossover. Nevertheless, it captures
a rather natural division into terms that lead to a multiplicative renormalization of
reproductive fitness (destruction terms) and those that lead to an additive renor-
malization (creation terms). In this decomposition formal results such as Geiringer’s
theorem follow in a most straightforward fashion [51]7.

The key element behind effective fitness, irrespective of its mathematical definition,
is that population flows in the presence of operators other than pure reproductive
selection are much more readily understood in terms of it. In fact, to go further, even
in the case of pure reproductive selection, if one performs any sort of coarse graining
and considers schemata rather than sequences, then population flow is more readily
understood in terms of an effective landscape rather than the reproductive one. As an
example, for the evolution of a particular order 1 schema in a population of sequences
of N loci it is more natural to consider the time dependent one-dimensional landscape
associated with the schema than the collective dynamics of the 2(N−1) sequences that
go up to make the 1-schema. The job of evolution at the end of the day is to produce

7Extensions of Geiringer’s theorem to more general representations [116, 117], such as variable-
length sequences, and with non-homologous operators have recently been found implementing the
techniques we have outlined in this paper.
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fit offspring which in their turn produce fit offspring which in their turn ... Thus, it is
no use having an individual with high survival fitness that is associated with a high
probability to mutate to a very low survival fitness individual.

In the case of the single peak quasispecies model the effective fitness of the master
sequence, under selection and mutation only, is

f eff
ms(t) = fms(1 − p)N + f1

∑

x6=ms

Px(t)

Pms(t)
pdH

ms,x(1 − p)N−dH
ms,x (40)

where f0 and fms are the fitnesses of the master sequence and the other sequences
respectively. In the limit p → pcri we have f eff

ms(t) → f̄(t). The effective fitness
landscape thus becomes flat, thereby giving an intuitive explanation for the behavior
in the vicinity of the error threshold. We can thus think of evolution as a hill-climbing
process on an effective fitness landscape (which is time dependent). In this model
mutation breaks the genotype-phenotype symmetry among the non-master sequences.
Those sequences that are closer in Hamming distance to the master sequence have
more reproductive success. Once again, this cannot be understood in terms of the
fitness landscape as it is flat for the non-master sequences. The analog of equation (40)
for non-master sequences shows us however that the effective fitness of sequences that
are close to the master sequence is higher than that of distant sequences. Explicitly

∆f eff
xy (t) = (fms − f1)

Pms(t)

Px(t)Py(t)

(

pdH
ms,x(1 − p)N−dH

ms,xPy(t) − pdH
ms,y(1 − p)N−dH

ms,yPx(t)
)

(41)
where ∆f eff

xy (t) is the difference in effective fitness between the two genotypes x and

y. The bigger is (dH
ms,y − dH

ms,x) the greater is the total reproductive success of x
versus y. Effective fitness in this sense is a direct measure of the strength of the
induced breaking of the genotype-phenotype symmetry by the effect of mutation and
hence offers both a qualitative and quantitative framework within which other more
complex symmetry breaking phenomena such as bloat in Genetic Programming [118]
and evolutionary robustness may be understood.

In Figure 7 we see a plot of the effective fitness for the master sequence of the Eigen
model in the steady state as a function of p. In this case fms = 10 and f1 = 1.

For p = 0, f eff
ms(∞) = fms i.e. survival and effective fitness are the same. Note how the

error threshold manifests itself in terms of the effective fitness — that at and above
the threshold f eff

ms(t) → f̄(t) ≈ f1. i.e. once again the effective fitness landscape
will be flat. Thus, the effective fitness itself can serve as an order parameter to
distinguish the selection dominated regime from the mutation dominated one, i.e.
strong selection from weak selection. In the two-peak quasispecies model the fact
that the quasispecies associated with the lower survival fitness can dominate is easily
explainable using the effective fitness paradigm as the higher degree of robustness of
the less fit quasispecies compensates for the fact that it is less viable, the net result
being a higher value of effective fitness for this quasispecies relative to the other.

In the more subtle neurogenetic problem it is more much more difficult to think
of calculating the effective fitness due to the fact that the fitness function has to be
experimentally measured rather than being algorithmically determined. Additionally,
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Figure 7. Graph of effective fitness of the master sequence versus p in the steady state
limit of the single peak quasispecies landscape.

given that in this case the population size is far smaller than the size of the state
space an experimental determination of the effective fitness would be very “noisy”.
However, it is clear that the example has a ready explanation in terms of effective
fitness. Basically, in this context, one can think of the difference between effective
fitness and reproductive fitness as being a measure of the evolutionary robustness
of a genotype. Certain classes of genotypes are picked out from others of equal
reproductive fitness because they are more robust in the presence of mutation and
crossover and therefore enjoy, in the long term, a greater degree of reproductive
success. Thus, genotypes that have block a both as a word and a grammatical rule
have less reproductive success than those where a represents only a grammatical
rule, even though both, in a given generation, lead to the same NN, i.e. the same
phenotype. Thus, there is a population flow along an effective fitness gradient from
genotypes where a plays a dual role to those where it is specialized.

8. Conclusions

Fitness is a central and fundamental paradigm in evolution theory. It has many
different facets and its study is subject to many different pitfalls, both in concept and
measurement. All would agree that it is a measure of reproductive success. However,
to what level of description it applies, and as to how it is most appropriately measured,
there is less consensus. In terms of level of description it is usually applied at the level
of the individual, described by a genotype or phenotype. However, concepts, such as
inclusive or lineage fitness consider fitness at the level of a population. Conceptually
at least it is clear that if it can be applied at the level of the individual then, via a
coarse graining, it may be applied at the level of a population, irrespective of whether
the group exhibits close kinship, or is a looser agglomeration, such as a species or
a family. At the level of molecular evolution these different levels of coarse graining
can be even more abstract — such as passing from linear arrays of amino acids to
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more coarse grained secondary and tertiary protein structures. The mapping between
these different levels of structure is most likely exceedingly complex. A paradigmatic
example would be that of the genotype-phenotype map which can exhibit a very
complex structure.

Considering measurement, we must ask how reproductive success should be measured
and subsequently how this relates to characteristics of the thing who’s fitness is being
considered. We have emphasized that selection is only one contributing factor to
reproductive success. Traditionally it has been considered to be the dominant force.
However, it is clear that frequently, and in important contexts and regimes, this is
not the case. Neutral evolution is one example. However, relatively speaking this
is a somewhat trivial case as the subsequent dynamics is simple: random motion
through the space of neutral types. When considering evolution under the effect of
multiple genetic operators the fitness that traditionally appears in a mathematical
representation of selection is survival fitness or viability. Its role and importance
relative to other operators, such as mutation and recombination, must be carefully
considered.

Fitness landscapes have played an important role in developing an intuitive picture of
evolution as hill climbing on a rugged terrain. Although deducing what is the fitness
landscape for a complex macroscopic evolutionary system is far from our capabilities it
is important to emphasize that important classes of model landscapes can be studied
as well as those associated with biologically relevant micro-systems, such as RNA.
Hill climbing on a static fitness landscape is an adequate metaphor in the case of
evolution dominated by selection. We have emphasized in this paper that when this
is not the case, then the utility of the landscape concept is much diminished. We
gave several examples where population flows could be understood neither in terms
of the hill climbing paradigm nor in terms of a random diffusion process on the
landscape, as in the case of neutral evolution. A particularly important class of such
examples is that where the symmetry between different genotypes that correspond
to the same phenotype is broken by the action of genetic operators such as mutation
and recombination. In this case the system evolves along preferred directions in
the neutral networks that are a consequence of the genotypic degeneracy. A simple
example of this phenomenon is the increased reproductive success of error classes
close to the master sequence in the case of the Eigen model. In the same model, an
even more striking example is that of the error threshold. Above the error threshold
the reproductive success of the master sequence is the same as that of any other
sequence irrespective of the fitness advantage it has over other sequences, the latter
affecting only the mutation rate characteristic of the error threshold not whether or
not it exists.

We discussed the concept of effective fitness showing that in non-selection dominated
regimes it is a more appropriate measure of reproductive success than viability, as
it takes into account on a democratic footing all genetic operators. We showed that
it offered both a qualitative and quantitative framework within which to intuitively
understand population flows in non-selection dominated evolution where it restores
the hill climbing paradigm, populations flowing up to effective fitness peaks. In the
case of the error threshold we saw that the effective fitness of the master sequence
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above and beyond the critical mutation rate/error threshold was equal to that of any
other sequence thus intuitively explaining in terms of flows on an effective fitness
landscape why the population did not climb the master sequence peak.

We noted that effective fitness is almost always time dependent. Although this might
seem like a significant disadvantage we emphasized that, at best, the concept of a
static fitness landscape in the standard picture is an approximation. This can be
understood most simple by realizing that almost any landscape represents a coarse
grained model relative to an underlying more microscopic one. This is certainly true
if one imagines a landscape for a macro-system. However, even at the microlevel
a landscape for coarse grained protein secondary structures should properly be de-
duced from a corresponding landscape at the atomic level. The crucial point here, is
that any coarse graining from a level where a landscape is either fundamentally or
approximately static will take us to a coarse grained landscape that is dynamic, the
time dependence being induced by the population dependence of the coarse graining.
Whether this coarse grained landscape can be considered static or not is either a
question of comparison between theory and experiment or must be addressed from a
more detailed consideration of the coarse graining. Such coarse grained landscapes are
certainly the appropriate arena for considering at a more fundamental level inclusive
fitness and fitness of populations in general.

We also discussed how fitness and effective fitness, and their corresponding landscapes,
transformed under different types of transformation of interest on the configuration
space of the underlying genetic model. In particular we discussed the importance of
coarse graining as this is of crucial importance in being able to pass to a reduced,
more tractable model of reduced dimensionality associated with the appropriate effec-
tive degrees of freedom of the problem. In this context one might conjecture that the
landscape should look less rugged in terms of the right effective degrees of freedom.
We also discussed a coordinate basis that was shown to be particularly appropriate for
recombination where the elements of the basis are the BBs (subsequences) associated
with the construction of a given sequence. In the presence of recombination both fit-
ness and effective fitness, and their corresponding landscapes, are most appropriately
analyzed in terms of this basis.
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[98] Stadler, P. F. and Grüner, W. Anisotropy in fitness landscapes. J. Theor. Biol., 165:373–388,
1993.

[99] Stadler, P. F. and Happel, R. Random field models for fitness landscapes. J. Math. Biol.,
38:435–478, 1999.

[100] Goldberg, D. E. Genetic algorithms and Walsh functions. Part II: deceptiveness and its anal-
ysis. Complex Systems, 3:153–176, 1989.

[101] Liepins, G. E. and Vose, M. D. Deceptiveness and genetic algorithm dynamics. In: Rawlins, G.
J. E., editor, Foundations of Genetic Algorithms, pp. 36–50. Morgan Kaufmann, San Mateo,
CA, 1991.

[102] Whitley, L. D. Fundamental principles of deception in genetic search. In: Rawlins, G., editor,
Foundations of Genetic Algorithms, pp. 221–241. Morgan Kaufmann, San Mateo, CA, 1991.

[103] Naudts, B. and Kallel, L. Comparison of summary statistics of fitness landscapes. IEEE Trans.
Evol. Comp., 2000. To appear.

[104] Weibull, J. W. Evolutionary Game Dynamics. MIT Press, Cambridge MA, 1996.
[105] Swetina, J. and Schuster, P. Self-replication with errors – a model for polynucleotide replica-

tion. Biophys.Chem., 16:329–345, 1982.
[106] van Nimwegen, E., Crutchfield, J. P., and Huynen, M. A. Neutral evolution of mutational

robustness. Proc. Natl. Acad. Sci. USA, 96:9716–9720, 1999.
[107] Gavrilets, S. Evolution and speciation on holey adaptive landscapes. Trends in Ecology and

Evolution, 12:307–312, 1997.
[108] Wagner, A. and Stadler, P. F. Viral rna and evolved mutational robustness. J. Exp. Zool./

MDE, 285:119–127, 1999.



P.F. Stadler and C.R. Stephens: Landscapes and Effective Fitness 37

[109] van Nimwegen, E. and Crutchfield, J. P. Metastable evolutionary dynamics: Crossing fitness
barriers or escaping via neutral paths? Bull. Math. Biol., 62:799–848, 2000.

[110] Kitano, H. Neurogenetic learning: an integrated method of designing and training neural
networks using genetic algorithms. Physica D, 75:225–238, 1994.
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