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Abstract. Many classes of functional RNA molcules are characterized
by highly conserved secondary structures but little detectable sequence
similarity. Reliable multiple alignments can therefore be constructed only
when the shared structural features are taken into account. Sankoff’s
algorithm can be used to construct such structure-based alignments of
RNA sequences in polynomial time. Here we extend the approach to a
probabilistic one by explicitly computing the partition function of all
pairwisely aligned sequences with a common set of base pairs. Stochastic
backtracking can then be used to compute e.g. the probability that a
prescribed sequence-structure pattern is conserved between two RNA
sequences. The reliability of the alignment itself can be assessed in terms
of the probabilities of each possible match.

1 Introduction

Sankoff’s algorithm [1] simulateneously predicts a consensus structure for two
(or, in its general version, more) RNA secondary structure and at the same
time constructs their alignment. It is quite expensive in both CPU and mem-
ory requirements, O(N6) and O(N4), respectively. A further complication is
that it requires the implementation of the full loop-based RNA energy model
[2]. Currently available software packages such as foldalign [3] and dynalign

[4] therefore implement only restricted versions. A complementary approach is
taken in the pmmatch program [5]. Instead of attempting to solve the alignment
and the structure prediction problem simultaneously, pmmatch utilizes the base
pairing probability matrices predicted by means of McCaskill’s algorithm [6] (im-
plemented in the RNAfold program of Vienna RNA Package [7, 8]). The problem
then becomes the alignment of the base pairing probability matrices. This ap-
pears to be an even harder threading problem, which in general is known to
be NP-complete [9]. In the RNA case, the threading problem remains tractable
as long as we score the alignment based on the notion of a common secondary
structure. In fact, it reduces to a variant of the Sankoff algorithm in which the



energy model for structure prediction part is reduced to base weights on the base
pairs.

Suppose we are given two sequences A and B (of length n = |A| and m = |B|)
together with their pair probability matrices P A and P B , resp. A natural way of
determining the similarities of P A and P B is to search for the secondary structure
of maximal “weight” that P A and P B have in common. Let Si,j;k,l be the score of
the best matching of the subsequences A[i..j] and B[k..l]. Furthermore, let SM

i,j;k,l

be the best match subject to the constraint that (i, j) and (k, l) are matched
base pairs. With this definition one obtains dynamic programming recursions

Si,j;k,l = max





Si+1,j;k,l + γ,
Si,j;k+1,l + γ,

Si+1,j,k+1,l + α(Ai, Bk),

maxh≤j,q≤l

(
SM

i,h;k,q + Sh+1,j;q+1,l

)

SM
i,j;k,l = Si+1,j+1,k+1,l+1 + τ(P A

ij , Ai, Aj ; P
B
kl , Bk, Bl)

(1)

with the initialization Si,j;k,l = |(j − i) − (l − k)|γ for j − i ≤ M + 1 or l −
k ≤ M + 1, where M is the minimum size of a hairpin loop, usually M = 3.
The constant γ < 0 is a gap penalty. The scores αik = α(Ai, Bk) and τij,kl =
τ(P A

ij , Ai, Aj ; P
B
ij , Bk, Bl) describe the substitution of unpaired bases and base

pairs, respectively. The latter term my depends on both the structures and the
underlying sequences. Backtracking can be used to retrieve both the common
secondary structure and the associated sequence alignment [5].

For both RNA folding and sequence alignment it is possible to compute
partitions functions instead of optimal scores with essentially the same resources.
In a second step probabilistic versions of the optimal structure of alignment can
be constructed; see [6] for RNA folding and [10–14].

In this contribution we describe a “partition function version” of the Sankoff
algorithm that computes the probabilities of matches in the structure-based
alignments of two RNA molecules, thereby providing an intrinsic measure of the
local quality of the structure-based alignments.

In the thermodynamic interpretation of the simultaneous folding and align-
ment problem a state θ is a pair θ = (S,A) of secondary structure S consisting
of all matched base pairs (ij; kl), where (Ai, Aj) is a base pair in structure A
and (Bk, Bl) is a base pair in structure B, and an alignment A of the under-
lying sequences A and B such that AiBk and AjBl are matches. Note that
the alignment A in general contains further matches corresponding to unpaired
nucleotides. The probability of a particular state is then

Prob[θ] = Z−1 exp(−σ(θ)) (2)

where the score is given explicitly in the form

σ(θ) =
∑

(ij;kl)∈S

τij,kl +
∑

i∈A,k∈B /∈S

αik + γ
(
m + n − 2|A|

)
. (3)



In the last term, Ngap = n + m − 2|A| is the number of gaps in the alignment.
The normalization constant

Z =
∑

θ

exp(−σ(θ)) (4)

is the partition function of the model. The probability of a feature Ω can now
be computed as the sum of the probabilites of all states θ ∈ Ω. In particular,
we are interested in Ω(p,q), the set of all states in which ApBq is a match in the
alignment.

2 Recursions

We first observe that equ.(1) can easily be transformed into a recursion for the
partition function Zij;kl of the model restricted to the subsequences A[i..j] and
B[k..l]. Explicitly, we obtain

Zij;kl = Zi+1,j;kle
γ + Zij;k+1,le

γ + Zi+1,j;k+1,le
αik

+
∑

(k,q) paired in B

(i,p) paired in A

Zi+1,p−1;k+1,q−1Zp+1,j;q+1,le
τij,pq (5)

Let us now consider all states that contain the match AxBy. We have to dis-
tinguish four cases: (i) there is no matched base pair in S, (ii) (i, x; j, y) ∈ S,
(iii) (x, k; y, l) ∈ S, and (iv) AxBy is “immediately interior” to a matched pair
(i, j; k, l) ∈ S in the sense that i < x < j, k < y < l and there no other pair
(i′, j′, k′, l′) ∈ S such that i < i′ < x < j′ < j and k < k′ < y < l′ < l. Fig. 1
gives a graphical description: Clearly, these four cases are pairwise disjoint and
cover all possibilities. We can therefore write the partition function Qxy of all
states that contain the match AxBy in the alignment as follows:

Qxy =Z1,x−1;1,y−1e
αij Zx+1,n;y+1,n+

∑

i<x, k<y

Zi+1,x−1;k+1,y−1e
τi,x;k,y Ẑi,x;k,y+

∑

j>x, l>y

Zx+1,j−1;y+1,l−1e
τx,j;y,l Ẑx,j;y,l+

∑

i<x, j>x k<y, l>y

eτi,j;k,lZi+1,x−1;k+1,y−1e
αxyZx+1,j−1;y+1,l−1Ẑi,j;k,l

(6)

i,x−1;k,y−1Z Zx+1,n;y+1,m
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Fig. 1. Decomposition of the restricted partition function Qxy into unconstrained par-
tition functions Z... and bZ... of sub-problems. For details see text.



where Ẑi,j;k,l denotes the partition function over all partial states outside the
aligned interval [i, j][k, l], i.e., excluding the positions i, j, k, and l. This cor-
responds to the states of the sub-problem with A′ = A[1..i − 1]A[j + 1..n] and

B′ = B[1..k − 1]B[l + 1, m]. We can easily find recursions for computing Ẑi,j;k,l

from shorter subproblems (i.e., those with a larger “missing” interval) and the
values of Zi,j;k,l:

Ẑi,j;k,l =Ẑi,j+1;k,le
γ + Ẑi,j;k,l+1e

γ + Ẑi,j+1;k,l+1e
αj+1,l+1+

∑

p<i, q<k

Ẑp,j+1;q,l+1e
τp,j+1;q,l+1Zp+1,i−1;q+1,k−1+

∑

p>j+1, q>l+1

Ẑi,p;k,qe
τj+1,p;l+1,qZj+2,p−1;l+2,q−1

(7)

The probability for the match AxBy given the input data and scoring scheme
ist simply

P xy = Qxy/Z (8)

Tabulating the O(n4) entries of the partition functions Zij;kl requires O(n6)

operation, just as the solution of the optimization problem. Then Ẑij;kl can
be computed also in O(n6) operations. Given these two tables, recursion 6 can
be evaluated in O(n4) steps for each value x and y. The matrix of matching
probabilites can therefore be computed in O(n4) memory and O(n6) CPU. Just
as in the case of sequence alignements and secondary prediction, the partition
function version is therefore not more expensive than the associated optimization
problem.

3 Stochastic Backtracking

As described in [5], backtracking in the recursions (1) can be performed in O(n3)
to obtain a score-optimal alignment. When the partition functions Zi,j;k,l for
the sub-problems are known, it is possible sample from the distribution of the
alignments by means of “stochastic backtracking”. This approach has recently
be implemented for pairwise sequence alignment [14] and for RNA structure
prediction in the latest release of the Vienna RNA Package [8, 15], see also [16,
17] and [18], where the idea was used to generate random RNA structures with
uniform distribution. This method generalizes in a straightforward way to the
Sankoff algorithm: From equ.(5) we obtain immediately that the subalignment
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DF1140

GGGCCGGUAGUCUAGC-GGAAGGACGCCCGCCUUGCGCGCGGGAGAUCCCGGGUUCGAAU-CCCGGCCGGUCC-A--
((((((((..(((...-....)))..(((((.......)))))..)..(((((.......-))))))))))))-.--
GGUCGUGUAGCUCAGUCGGUAGAGCAGCAGACUGAAGCUCUGCGUGUCGGCGGUUC-AAUUCCGUCCACGACCACCA
((((((((..(((........)))..(((((.......)))))..)..(((((...-....))))))))))))....
recalculated score: 27.29029 6
GGGCCGGUAGUCUAGCGGAA-GGACGCCCGCCUUGCGCGCGGGAGAUCCCGGGUUCGAAU-CCCGGCCGGUCC-A--
(.(((((..((((.......-)))).(((((.......))))).....((.((.(...).-)).))))))).)-.--
GGUCGUGUAGCUCAGUCGGUAGAGCAGCAGACUGAAGCUCUGCGUGUCGGCGG-UUCAAUUCCGUCCACGACCACCA
(.(((((..((((........)))).(((((.......))))).....((.((-(...)..)).))))))).)....
recalculated score: 24.59171 6
GGGCCGGUAGUCUA-GCGGAAGGACGCCCGCCUUGCGCGCGGGAGAUCCCGGGUUCGAAUCCCGGCCGGUC---CA
(((.((((.((((.-......)))).(((((.......)))))..)..((((((...)..)))))))).))---).
GGUCGUGUAGCUCAGUCGGUAGAGCAGCAGACUGAAGCUCUGCGUGUCGGCGGUUCAAUUCCGUCCACGACCACCA
(((.((((.((((........)))).(((((.......)))))..)..((((((...)..)))))))).))...).
recalculated score: 29.47619 4
GGGCCGGUAGUCU-AGCGGAAGGACGCCCGCCUUGCGCGCGGGAGAUCCCGGGUUCGAAUCCCGGCCGGUCC--A-
((((((((.((((-.......)))).(((((.......)))))..)..((((((...)..))))))))))))--.-
GGUCGUGUAGCUCAGUCGGUAGAGCAGCAGACUGAAGCUCUGCGUGUCGGCGGUUCAAUUCCGUCCACGACCACCA
((((((((.((((........)))).(((((.......)))))..)..((((((...)..))))))))))))....
recalculated score: 32.03868 4

low temperature: T = 0.5, γ = −1.5

GGGCCGGUAGUCUAGCGGA-A-GGACGCCCGCCUUGCGCGCGGGAGAUCCCGGGUUCGAAUCCCGGCCGGUCCA---
((((((((.(((.......-.-.))).(((((.......)))))..).)(.((((...)..))).).)))))).---
GGUCGUGUAGCUC-AGUCGGUAGAGCAGCAGACUGAAGCUCUGCGUGUCGGCGGUUCAAUUCCGUCCACGACCACCA
((((((((.(((.-.........))).(((((.......)))))..).)(.((((...)..))).).))))))....
recalculated score: 21.14102 6
GGGCCGGUAGUC-UAGCGGAAGGACGCCCGCCUUGCG--CGCGGGA-GAUCCCGGGUUC-GAAUCCCGGCCGGUCC--A-
(((.(((...((-.........)...((((.......--..)))).-.)..(((((...-...).))))))).)))--.-
GGUCGUGUAGCUCAGUCGGUAGAGCAGCAGAC-U-GAAGCUCUGC-GUGUCGGCGGUUCAA-UUCCGUCCACGACCACCA
(((.(((...((..........)...((((..-.-......))))-..)..(((((.....-.).))))))).)))....
recalculated score: 5.04139 12
GGGCCGGUAGUCUA-GC--GGAAGGACGCCCGCCUUGCGCGCGGGAGAUCCCGGGUUCGAAUCC-CGGCCGGUCC-A--
.((((((...(...-..--.)....(..((.((.......)).))...).(.((((....).))-).))))))).-.--
GGUCGUGUAGCU--CAGUCGGUAGAGCAGCAGACUGAAGCUCUGCGUGUCGGCGGU-UCAAUUCCGUCCACGACCACCA
.((((((...(.--......)....(..((.((.......)).))...).(.((((-...).)).).))))))).....
recalculated score: 6.33874 10
GGGCCGGUAGUCUAGCGG-AA-GGACGCCCGCCUUGCGCGCGGGAGAUCCCGGGUUCGAAUC-C-CGGCCGGUCCA---
(((.((((.((.(.....-..-).)).((.(.......)...))..)..(.(..(....)..-.-).)))).))).---
GGUCGUGUAGCUCAGUCGGU-AGAGCAGCAGACUGAAGCUCUGCGUGUCGGCGGUUC-AAU-UCCGUCCACGACCACCA
(((.((((.((.(.......-.).)).((.(.......)...))..)..(.(..(..-.).-...).)))).)))....
recalculated score: 4.98378 10
GGGCCGGUAGUCUAGCGGAAGGA-CGC-CCGCCUUGCGCGCGG--G-AGAUCCCGGGUUCGAA--UCCC-GGCCG-GUCCA
(.(..((..((((.(((..(.(.-...-...).)..)))..))--)-....)..(.(.(...)--).).-..)).-.).).
GGU--CG-UGUAGCUCAGUCGG-UAGAGCAGCAGACUGAAGCUCUGCGUGUCGGCGG-UUCAAUUCCGUCCACGACCACCA
(.(--((-.((((.(((..(.(-........).)..)))..))..).....)..(.(-(...)..).)....))...).).
recalculated score: -2.42965 14

High temperature: T = 1, γ = −2

Fig. 2. Left: Two base pairing probability matrices of tRNAs taken from M. Sprinzl’s
tRNA database [19]: DA0980 (TGC from Thermoproteus tenax and DF1140 (GAA
from Mycoplasma capricolum). Right: examples of pairwise alignments generated with
two different parameter sets. The number of gaps (second column of numbers below
the alignment) increases with temperature T even though −γ/T decreases.

of x[i..j] with y[k..] is the from of one four types with the probabilities p listed
below:

Deletion of xi p = Zi+1,j;kle
γ/Zij;kl

Deletion of yk p = Zij;k+1,le
γ/Zij;kl

Unpaired Match of xi and yj p = Zi+1,j;k+1,le
αik/Zij;kl

Matched pair (xi, xp), (yk − yq) p = Zi+1,p−1;k+1,q−1Zp+1,j;q+1,le
τij,pq/Zij;kl

Chosing in each step of the backtracking procedure one of these alternatives
with the correct probability results again in an O(n3) algorithm that produces
an alignment with the probability p = exp(−score), Fig. 2.

The advantage of this procedure is that an emsemble of on the order of n3

sample alignments can be computed economically (since we need O(n6) time
for the forward recursion and only O(n3) for backtracking a single alignment).
This samples can then be used to estimate the probabilities of features such as
particular multiloops or non-local sequence-structure combinations.
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T = 0.5, γ = −1.5 T = 1, γ = −2

Fig. 3. Match probabilities for the pairwise alignments of the two tRNAs DA0980 and
DF1140 from Fig. 2. The area of the squares at position x, y is proportional to P xy. The
small panels along the axes show the position-wise entropies relative to each sequence.

4 An Example

As an example we consider here the alignment of two rather disparate tRNA
sequences, Figs. 2 and 3. We use here

τ(P A
ij , Ai, Aj ; P

B
kl , Bk, Bl) = 2 lnn + ln P A

ij + ln P B
kl (9)

for the pair score and neglect sequence similarity altogether, i.e., αik = 0.

Note that for both sequences the predicted optimal secondary structures is
not the clover-leaf, as shown in the l.h.s. of Fig. 2. Nevertheless, most stochastic
backtrackings retrieve the clover-leaf as consensus structure of the two molecules.
Since sequence similarity was not used in the scoring, the exact position of gaps
within loop regions is arbitrary. For low temperatures (upper right panel in
Fig. 2) alignments differ almost exclusively in the D-loop and at the 3’ end of
the tRNAs.

The local reliability of the alignment can be measured by the entropy of the
match probabilities

S(x) = −
∑

y

P xy ln P xy − p0(x) ln p0(x) (10)

where p0(x) = 1 −
∑

y P xy is the probability the position x is unmatched (i.e.,
opposite to a gap in the alignment). As can be seen in Fig.3, the alignment
is typically much more well-defined in paired regions. For large values of the
temperature T this difference disappears, however.



5 Concluding Remarks

We have introduced here a partition function version of the Sankoff algorithm.
The algorithm is quite expensive both in memory and CPU time; The resource
requirement is, however, essentially the same as for the “classical” version that
computes the optimal alignment only. From the partition functions we can, in
addition to the optimal alignment, also descriminate reliable from unreliable
parts of a structure-based alignment of RNA molecules.

Stochastic pairwise alignments are useful in many different contexts: Nu-
merous tools in bioinformatics require pairwise sequence alignments as input
data. The present approach thus provides a tool that can be used to produce
alignments with realistically distributed errors and varying overall quality (by
choosing the temperature parameter T ). These can be used to investigate the
sensitivity of the method with respect to realistic variations of the input align-
ments. In particular, used as an input of a multiple alignment methods such
as t-coffee [20] it can be used to produce multiple alignments together with
estimates of local alignment quality.

While the Sankoff algorithm is too slow to scan large portions of a genome
for conserved RNAs, it is still useful to post-process candidates for structurally
conserved RNA detected by other methods, e.g. qrna [21].

The current implementation uses simple linear gap costs. A generalization to
affine gap costs is straighforward along the lines of Gotoh’s algorithm [22] for
sequence alignments and should improve the placement of scattered gaps.
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