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Abstract

The large quantity and ready availability of developmegihetic data, coupled with increased rigor
and detail in the characterization of morphological phgpes, has made the genotype-phenotype
map of whole organisms a central challenge in evolutionawetbpmental biology. This in turn
necessitates more general modeling strategies that caieeffy represent different types of bio-
logical knowledge and systematically applied across ewélorganization, spatiotemporal scales,
and taxonomic groups. Graph-based models appear usehisioantext but have been remarkably
underutilized in biology. Simulation of ontogenetic andlerionary change by means of graph-
rewriting algorithms has been explored as a means of prmyidicoordinate-free approach to form
transformation in time and space. A finite set of rules dégugi generic graph transformations is
used to encode knowledge about morphogenetic steps. Tp@ication to skeletal growth in sea
urchins effectively models ontogenesis in terms of topgl@iher than specific geometry, suggest-
ing a promising approach to general modeling of developatewblution.

1 Introduction

Molecular evolution is firmly grounded in the Neo-Darwinigrinciple that all heritable variation is in-
troduced into the next generation by means of mutation,méaaation, or other genetic operators, while
selection and other sorting processes differentially adhese variations at the level of the phenotype.
Before the fate of a new phenotype can be determined, thatopyyee must first be produced, ac-
cessedby means of variational mechanisms [8]. The genotype-giiype map therefore takes center
stage in any theoretical or computational attempt to mod@Lé&onary changes [9,17, 25, 26].

In the simplest case — evolving RNA molecules — genotype dmehptype are two aspects of the
same molecule. The specific sequence of nucleotides is tiatygee, the three-dimensional shape of the
molecule represents its phenotype [23]. A series of compieulations using RNA secondary struc-
tures as model phenotypes showed that phenomena such ed dettt punctuated change, plasticity,
environmental and genetic canalization, and the emergefnoedularity, can be reproduced within this
framework, see e.g. [1,9, 13, 23]. Concomitantly, specifedjctions about RNA evolution models have
been verified experimentally [22, 24]. Despite the succésseoRNA model, and the fact that this ap-
proach can at least in part be extended to protein evoluflpad], it seems impossible to generalize
detailed, biophysically accurate models (that derive edpprties of an organismab initio” from the
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Transcriptional Network that can be used to study the evolution of multi-
cellular organisms must represent at least the main
organizational levels known in plants and animals.
The eventual outcome of the ontogenetic and epige-
netic processing of information in genomic DNA se-
quences (top) is the (adult) phenotype (lower right),
which may engage in fithess dynamics. As far as
we know, even large-scale innovations of bodyplans
map down to (originally) small changes at the ge-
netic level that are amplified through the interme-
diate levels of gene expression, cell-cell signaling,
and tissue determination and organization that even-
tually structure the ontogenesis (development) of the
organism from a fertilized egg to the adult stage.
From the modelling point of view, each level is best
implemented separately, raising the issue of how dif-
ferent levels of description interact, and how this in-
teraction itself can be modeled appropriately.
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genomic sequences) much beyond extremely simplified unlaelorganisms such as the one used to
simulate the evolution of primitive genetic codes in [27].

Comprehensive computational models of more complex lifim&y and in particular multicellular organ-
ism, thus have to reflect the multiple organizational leeélhese systems, Fig. 1. Given the limitations
of present-day computers, and the incompleteness of owrlkdge about the structure and dynamics
of each focal level as well as of interlevel interactions, suepect that this hierarchy of organizational
levels can be most fruitfully studied using higher-ordesat@tions specifically applied to each level. In
essence, these descriptions then form phenomenologaaidls of different aspects of an organism. The
important issue here is that at each level we ideally woldel t0 include the possibility of evolvability,
i.e., of the appearance of novel structures and functicaisntight well be beyond our current biological
knowledge.

Most of today’s models of gene regulatory networks [3, 7,18)21], for example, are based on the
well established “operon model” of gene regulation [14].eTdperon model distinguishes between two
types of genes, “regulatory” ones, encoding for transicnipfactors and “structural” genes, transcribed
to proteins that play some functional role, e.g. in the seffietabolism. Models based on this simple
protein-based regulatory logic can show surprisinglyidgate dynamical behaviours, ranging from com-
plex periodic patterns to self-organisation and chaos,tlnsl would seem sufficient to understand this
level of organization. The discovery of hundreds of micré®Nsee [20] for a review, thus came as a
surprise. Eukaryotic cells use these tiny RNAs as an additiaand altogether different mode of gene
regulation acting post-transcriptionally, presumabliphng to overcome the complexity limitations aris-
ing in very large regulatory networks [4, 18]. In principienovations of this type might be investigated
in large-scale computer simulations of evolution.

As one moves up the hierarchy of biological organizationgrg®nt structures and functions codify
additional complexity, and inter-level coordination bews as prominent as phenomena at each focal
level. Phenotypes become individuated, and from theiignattion whole organisms are consolidated.



In multicellular organisms, development can profoundfuience the possibilities of evolution. Indeed,
modeling the development and evolution of complex pheresyand of whole organisms has always
been a major goal in theoretical biology.

Epigenetic models of morphogenesis as well as models ofaf@wental gene expression and regulation
have yielded important insights, but traditionally thewé&docused on particular taxa, morphological
modules, and gene expression domains. As a result, thedrglén remains limited. In contrast, evolu-
tionary developmental biology today is faced with an abmedaof developmental-genetic data, on the
one hand, and with more detailed and rigorous descriptidrikeoemergence of morphological char-
acters and whole-organism form during ontogeny, on therotiéh the realization that genotypes and
phenotypes are manifested and can interact in multiplésdpatporal contexts and across organizational
levels, understanding the genotype-phenotype map asieseio organismal development and evolution
presents itself as a research agenda on the very fullnesslogisal complexity. Accordingly, there is a
pressing need for novel modeling approaches that expliaitbw for multiple levels and for the repre-
sentation of whole-organism integration, and that are rgereral by providing computational platforms
flexible with respect to dimensionality and parameteragtiand therefore applicable to a broad array of
taxa, regardless of organismal geometry.

We are of course not claiming to meet this challeimgtoto, but rather to underscore the need for a new
class of models of developmental evolution. In this contidn we merely show how the computation-
ally powerful framework of graph grammars can be employechtalel one aspect of whole-organism
ontogeny that has received relatively little attention ty artificial life community in the past: the con-
struction of the adult phenotype from the juvenile phenetiypa strictly epigenetic dynamics of mor-
phological units (which are also the relevant raw matenakbnsiderable macroevolutionary change).

2 Ontogenesisas Graph Rewriting

An “organism” is abstracted as a graph with adjacency reptesy spatial relationships and vertex labels
and edge labels representing tissue types and interaatiassts”. Rewrite rules from a graph grammar
are used to transform the graph, Fig. 2. In general, therénargypes of rewriting rules: (i) rules that
change the connectivity of the graph and (ii) rules that atiginge the edge and/or vertex labels. The
latter type of rule can be used to propagate signals alongrth scaffold.

We propose this computational implementation as an aligenéo standard morphospace representa-
tions in the field of theoretical morphology [19] for two reas: (i) innovation cannot be described
properly in a setting in which a morphology is simply desedkas a point in a vector space and (ii) any
attempt at detailed mechanistic modeling of tissue foromaéind growth in 3D space [6] would simply
exceed our computational resources, at least for the paimpidarge-scale simulations of evolution and
the exploration of parameter space. This approach alsersliffom the empirical framework of geo-
metric morphometrics (which allows for sophisticated digsive models) in that the goal is neither to
empirically represent spatially explicit transformagoamong neighbor morphologies, nor to consider
them relative to constructs such as the mean shape, inkaidlnenced by the samples chosen. Rather,
graphs are used as more general representations of themalaonfiguration and connectivity of skele-
tal elements. Therefore, our approach suggests coorefirtgorotocols of collection of empirical data
for the purposes of comparison with theoretical results.
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Figure 2: Graph rewriting as a minimal model for the evolntaf development. The upper left panel
gives the rewriting rules. The upper right panel depictsgimvth cycle of an idealized “worm” when
the rules are hierarchical, i.e. the first rule in the listt tben be applied is applied to the graph. The
result is shown in the lower left panel. The lower right pagieks the phenotype of a “developmental
mutation” that destroys the order of the list of rules, ttlee, rules are applied in random order. Note that
the level of organization and the units of construction neetcbe specified.

3 Implementation I ssues

We decided to implement the graph rewrite framework as ailolised system consisting of several cen-
tral servers each processing a specific set of rewrite rai@®Bmany clients each hosting a “developing
phenotype”. A client starts a simulation cycle by sendingst §iraph to one of the central servers. The
server tries to rewrite the graph by applying the first matghule to the graph. The client then recieves
either the transformed graph or the original one signalivag ho further rule is applicable. Graphs are
exchanged in thgraph modelling languagéGML) [11] between client and server. The algorithmic
framework of the graph-rewrite engine is based on the cla&$B& graph-rewriting systems [5], for
which the complexity of a rewriting step is linear. The coféhe graph-rewrite engine is written in the
functional programming languaddéaskel | [12].

4 First Smulation Results

We simulated exoskeleton growth of regular sea urchins assa study for the implementation of a
general computational platform allowing different appoes to data representation and modeling. Fig-
ure 3 shows different stages of the skeleton growth simardatStarting with a circular graph with ten
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Figure 3: Using graph rewriting for the simulation of seahimoexoskeletons (see text for details).

nodes, three rules are necessdryl el is applied only once, it attaches the finsitial plate (a plate
that starts a column) to the circular graph. (The first twgbsain Fig. 3 demonstrate the application of
Rul el.) Rul e2 attaches an initial plate next to an already existing ihfilate. (The fourth graph in
Fig. 3 is the result of four applications &l e2.) Rul e3 attaches pentagonal plates to the columns.
As the selection of the column to which the new plate will ba@ted happens — as a property of the
graph rewriting engine — at random, the column growth fluetsigbottom left graph in Fig. 3). However,
with an increasing number of rewriting steps this effecabaks out and a mostly regular skeleton graph
emerges (bottom right graph in Fig. 3). The applicationnisicorder of the rules i2 > 1 > 3.

5 Outlook

We hope to explore in detail the relation between combiietonles of change in graph structures and
empirically determined frequencies of actual ontogenatid evolutionary transitions across species.
This approach allows a way of constructing new, more gerteeretical morphological spaces for

the comparison of the spectrum of potential forms with theiadorms realized in development and

evolution. We also are interested in combining this levekinfiulation with models of the genome,

regulatory, or transcription networks.

Fig. 2 shows how a simple simulation reproduces the devedopsth phenomenon heterochrony: a
change of priority in the growth rules completely changed potentially destroys the bodyplan. We

are investigating how systems can be evolved that are ralgadtst this kind of mutation.
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