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RNA folding at elementary step resolution
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ABSTRACT

We study the stochastic folding kinetics of RNA sequences into secondary structures with a new algorithm based on
the formation, dissociation, and the shifting of individual base pairs. We discuss folding mechanisms and the cor-
relation between the barrier structure of the conformational landscape and the folding kinetics for a number of
examples based on artificial and natural sequences, including the influence of base modification in tRNAs.
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INTRODUCTION

The conformational diversity of nucleic acids or pro-
teins is delimited by the loose random coil and the
compact native state that is frequently the most stable
or minimum free energy (mfe) conformation. Let us call
a specific interaction between two segments of the chain
a “contact.” A random coil then is best characterized by
the absence of contacts, whereas the mfe conforma-
tion maximizes their energetic contributions. Several
different types of contacts are found in three-dimensional
structures. Their energetics is not well understood, which
makes the modeling of RNA folding from random coils
into full structures too ill-defined to be tackled at present.

Fortunately, for single-stranded nucleic acid mol-
ecules, the simpler coarse-grained notion of secondary
structure is accessible to mathematical analysis and
computation. To a theorist the secondary structure is the
topology of binary contacts that arises from specific base
pairing (Watson—Crick and GU; see Figure 1 and the next
section). It does not refer to a two- or three-dimensional
geometry cast in terms of distances. Secondary struc-
ture formation is driven by the stacking between con-
tiguous base pairs. However, any formation of an
energetically favorable double-stranded region implies
the simultaneous formation of an energetically unfavor-
able loop. This frustrated energetics leads to a vast com-
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binatorics of stack and loop arrangements spanning the
conformational repertoire of an individual RNA sequence
at the secondary structure level.

The secondary structure is not only an abstract tool
convenient for theorists. It also corresponds to an ac-
tual state that provides a geometric, kinetic, and
thermodynamic scaffold for tertiary structure forma-
tion, and constitutes an intermediate on the folding
path from random coil to full structure. With rising
temperature, tertiary contacts usually disappear first
and double helices melt later (Banerjee et al., 1993).
The free energy of secondary structure formation ac-
counts for a large fraction of the free energy of full
structure formation. These roles put the secondary
structure in correspondence with functional proper-
ties of the tertiary structure. Consequently, selection
pressures become observable at the secondary struc-
ture level in terms of evolutionarily conserved base
pairs (Gutell, 1993). Moreover, insights into the pro-
cess of secondary structure formation can be ex-
tended to several types of tertiary contacts with roughly
conserved local geometries, such as non-Watson—
Crick base pairs, base triplets and quartets, or end-
on-end stacking of double helices.

To provide a frame for our kinetic treatment of RNA
folding, we give a short account of the formal issues
surrounding conformational spaces, folding trajecto-
ries, and folding paths for RNA secondary structures.
We then introduce the kinetic folding algorithm as a
stochastic process in the conformation space of a se-
qguence, and discuss applications to several selected
problems that cannot be studied adequately with the
thermodynamic approach alone.
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FIGURE 1. An RNA secondary structure graph. Unpaired positions
are marked by ticks. They occur in loops, where they are enclosed by
base pairs, and in free ends or links between independent structure
modules, where they are called “external.” The string of balanced
parentheses below is an equivalent depiction of the secondary struc-
ture graph shown above: two matching parentheses represent a
base pair between the corresponding positions (a left [right] paren-
thesis pairs downstream [upstream] along the sequence), and a dot
stands for an unpaired base.

CONFORMATION SPACES
AND FOLDING PATHWAYS

We denote an RNA sequence by a string / = (X1 X5 ... X,,)
of n positions over the conventional nucleotide alpha-
bet, x; € A = {AU,G,C}. (If we need to distinguish
between sequences /,, we use superscripts, as in x©,
to denote the ith nucleotide of sequence /,.) The bases
X, and x, are the nucleotides at the 5’ end and the 3’
end of the sequence, respectively. A secondary struc-
ture S can be conveniently discretized as a graph rep-
resenting a pattern of contacts or base pairs (Fig. 1).
The nodes of the graph correspond to bases x; at po-
sitions / = 1,...,n. The set of edges consists of two
disjoint subsets. One subset is common to all second-
ary structure graphs, and represents the covalent back-
bone connecting the nodes i and / + 1 for i = 1,...,
n — 1. The other comprises the base pairs, denoted by
i-j, and constitutes the secondary structure proper. The
base pairs form a set I with j # {i — 1, i, i + 1} that must
satisfy two conditions: (1) every edge in II connects a
node to at most one other node, and (2) if both /-j and
k-lare inII, then i < k < j implies i < | < j. Failure to
meet condition (2) results in pseudoknots that are con-
sidered tertiary contacts.

Secondary structure graphs are formal combinatorial
objects amenable to mathematical treatment. Of par-
ticular interest are secondary structures satisfying some
extremal condition, such as minimizing the free energy
(mfe structures). They can be computed by dynamic
programming (Waterman & Smith, 1978; Nussinov &
Jacobson, 1980; Zuker & Stiegler, 1981). We have re-
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cently extended the standard RNA thermodynamic fold-
ing algorithm to compute all conformations within some
energy range above the mfe (Wuchty et al., 1999). This
enables us to analyze the low-energy portion of the
conformational landscape of individual sequences, and
to put it in correspondence with their kinetic folding
behavior derived from a computational model that we
present below.

A sequence | is called compatible with a secondary
structure S, whenever positions that pair in the speci-
fication of S (i-j € II(S)) are occupied by nucleotides
that can actually pair with one another:

i-j—=[x;x] € B={AU,UAUG,GU,GC,CG},V i-j € II(S).

A sequence [ specifies a set of structures with which it
is compatible,

S(/) = {801 Sl! ey Sm} U {0}1

where S, is the mfe conformation and S;...S,, are
suboptimal conformations ordered with respect to en-
ergy. 0 denotes the open chain conformation. The set
S(I and a metric still to be defined form the confor-
mational space of the sequence /.

Secondary structure formation is described by a suc-
cession of elementary steps chosen according to some
distribution from a pool of acceptable moves in confor-
mation space. The result is a trajectory 7 (/) consisting
of a time-ordered series of structures in S(/). A folding
trajectory is defined as starting with the open chain 0
and ending with the mfe structure Sy:

T(1) = {0, S(1),..., S(t — 1), S(t), S(t + 1),..., So;

S(j) e sy @)

Because the conformational space of secondary struc-
tures is always finite, every trajectory will reach S,
after sufficiently long time. We define the “folding time”
7 (associated with the trajectory) to be the first pas-
sage time, that is, the time elapsed until S, is encoun-
tered first. The folding time is a stochastic variable with
a probability distribution P.(t) = Prob{r = t}. In prac-
tice 7 may well be too long for a computer simulation.
We therefore distinguish between trajectories that ac-
tually attain the ground-state structure within the limits
of a simulation from those that are trapped in a thermo-
dynamically suboptimal conformation (a long-lived meta-
stable state).

Folding trajectories may contain loops, in the sense
that certain suboptimal conformations are visited more
than once: S(t) = S(t + €), where ¢ is the length of the
loop. We call a trajectory from which all loops have
been eliminated a “folding path.” Clearly, no structure
appears twice in a folding path.
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FIGURE 2. Elementary moves in the RNA folding algorithm. Secondary structures are shown in circle and parenthesis
representation. The structure (A) is changed by the formation (B) or the removal (C) of a base pair. A shift move of a base
pair can occur either within the structure (D) or by flipping over the gap between the 3’ and the 5’ end (E). The base pair
after a move is shown in bold, the one being changed is shown by a gray dotted line. For details see text.
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MOVE SETS AND THE FOLDING ALGORITHM

The set of structures S(/) compatible with a sequence
| is organized into a space by defining a relation that
specifies whether two structures are accessible from
each other by an elementary event or “move” that is
physically reasonable. The simplest conceivable mod-
ification of a secondary structure is the removal of a sin-
gle base pair contact or its addition in compliance with
the no-pseudoknot restriction. This is most easily visu-
alized with the circle representation of RNA structures
in Figure 2 (moves B and C). A new base pair adds a
chord to the diagram that is not allowed to intersect any
existing chord. The two moves B and C are a complete
set in the sense that they are sufficient for constructing
a path connecting any pair of structures. The metric
induced by this simple move set on the conformation
space is known as the “base pair distance.”

Although sufficient, this simple move set fails to cap-
ture “defect diffusion,” a mechanism believed to be im-
portant in the dynamics of RNA folding (Pérschke, 1974).
Since helices nucleate statistically along the RNA chain,
intermediate formation of helices with incomplete base
pairing is expected to occur. Such mismatched regions
can anneal by a fast chain sliding process. For in-
stance, the loop position of a bulge in a helix may move
(if the nucleotide composition permits) by a rapid pro-
cess of base pair formation and dissociation (Fig. 3,
top). Defect diffusion seems to be some orders of mag-
nitude faster than zippering (P6rschke, 1974). If a bulge
loop forms at one end of a double-stranded region and
disappears at the other, the opposing strands shift by
the size of the loop (Fig. 3, top).

To facilitate chain sliding, the simple move set must
be extended by a further event that we call a “shift.” As
shown in Figure 2, the shift is a combination of a base
pair removal and a base pair addition during which one
position remains invariant. In the circle plot, the shift
appears as the displacement of a chord with one end
fixed, maintaining compliance with the noncrossing rule.
It certainly is physically possible as an elementary event,
and our results suggest that its actual occurrence is

FIGURE 3. Defect diffusion and helix morphing. The shift move (Fig. 2,
D) facilitates the diffusion of loops through double-stranded regions,
as well as the interconversion of helices.
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quite likely. We distinguish two cases of shifts, depend-
ing on whether the pairing orientation (upstream ver-
sus downstream) of the constant position changes (D
and E in Fig. 2). In case E the change in pairing orien-
tation is caused by crossing the 5/3' gap. The ex-
tended set of three moves also induces a metric on the
space of conformation, but it is much harder to cast it
into a simple expression.

Note that the extended move set also facilitates the
morphing of double-stranded regions into one another,
particularly if the two regions are located inside a multi-
loop (Fig. 3, bottom). Such a process would be ener-
getically unfavorable with the simple move set.

Given our microscopic (extended) move set, we model
RNA folding as a Markov process in conformation space.
The time-dependent random variable X'(t) describes
individual folding trajectories, for example, 7 (/) in equa-
tion (1). We understand it as the index j of the confor-
mation observed at time t:

X(t)=i=S(t)=S;;i€{0,1,...,m+1},

where m + 1 is the index of the open chain 0. The
probability of observing conformation S; at time t as
the secondary structure of I is given by P;(t) =
Prob{X(t) = i}. Following conventional stochastic ki-
netics of chemical reactions (Gardiner, 1985), folding
is described by the master equation

dp,(r) T
% = 2 (P (t)k; — Pi(t)k;). (2)
Jj=0

All elements of the transition matrix k = {k;} that do not
correspond to single moves of the chosen set are as-
sumed to be zero. The non-zero transition elements
have to be consistent with the free energies differences
of the conformations involved. They must satisfy

ﬁ — _ — _ 0 _ 0
p = exp(~AG;/RT) = exp(—(AG? — AG?)/RT),

i

where AG? and AG? are the free energies as obtained
from folding the sequence / into the conformations S;
and S;, respectively. We tried two definitions for the
individual transition frequencies: (1) the Metropolis rule
(Metropolis et al., 1953)

o = exp(—AG;/RT) if AG? > AG?,
U ] if AG? < AG?,

and (2) a symmetric rule introduced by Kawasaki (1996)
ki = exp(—AG;/2RT).

Computer simulations with both rules showed that the
second assumption leads to substantial improvement
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in folding performance without changing the character
of folding paths. In the remainder of this paper we use
the Kawasaki dynamics.

Previous attempts at modeling the RNA folding pro-
cess begin with generating a list of possible helices, and
mainly differ in the criteria used to decide which helix to
incorporate (or destroy) next (Breton et al., 1997; Gal-
zitskaya & Finkelstein, 1996; Gultyaev et al., 1995;
Mironov & Lebedev, 1993; Schmitz & Steger, 1996; Su-
vernev & Frantsuzov, 1995). The physical relevance of
such moves seems debatable, because they cause large
structural changes per time step. This makes them in-
adequate for resolving folding trajectories. (The con-
cept itself might even lose its physical meaning.)
Moreover, rather ad hoc assumptions about the overall
rates of helix formation and disruption have to be made.

Transition probabilities defined by means of a move
set based on individual base pairs (rather than entire
stacks) are sufficiently flexible to allow for diverse path-
ways. For example, the formation of a single hairpin
exhibits a variety of intermediate energies depending
on the actual trajectory (an illustration is given in
Table 1). The two folding paths of Table 1 build the
double helix in the same contiguous fashion, but along
opposite directions, one starting from the innermost
base pair outwards and the second proceeding from
the outermost pair inwards. The free activation ener-
gies are 3.6 and 4.82 kcal/mol, respectively.

Computing the transition matrix using only free ener-
gies of the involved conformations is less rigorous than
a treatment based on a stochastic theory of the acti-
vated complex (Jacob et al., 1997a, 1997b), but makes
it easy to take into account new regularities of RNA struc-
ture as they are discovered. It is straightforward to ex-
tend the folding analysis to include tertiary interactions
for which sufficient experimental data become available.
Examples are H-type pseudoknots, coaxial continua-
tion of stacks, extension of double helices by non-
Watson—Crick base pairs (commonly purine—purine
pairings), U-U pairs in interior loops, and base triplets.

TABLE 1. The cumulative free energies along two folding pathways
of the model sequence AsCsUs. Differences in the energy values are
caused by the size dependence of the loop energies and by the
energy contributions of dangling ends.

Free energy Free energy

Base pair kcal/mol* Base pair kcal/mol*
— 0.0 — 0.0
6-13 3.6 1-18 4.82
5-14 2.7 2-17 3.78
4-15 1.8 3-16 271
3-16 0.9 4-15 1.61
2-17 0.0 5-14 0.5
1-18 -0.5 6-13 -0.5

*Bold numbers indicate the free energies of the initial and final
conformations.
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Despite the relative simplicity of the master equa-
tion (2), analytic solutions are available only for fur-
ther drastic restrictions on allowed transitions and equal
values of their probabilities (k;;.1 = k,, kjj—1 = k_).
Here we rely instead on numerical simulations to study
the stochastic process as defined above. To this end
we use a variant of a Monte Carlo algorithm devel-
oped in the 1970s by Gillespie (1976, 1977) to study
stochastic kinetics in chemical reaction networks.
Gillespie’s method is based on the same assumption
as the derivation of the master equation: individual
elementary steps are uncorrelated and the occur-
rence of an event follows a Poisson process on a
proper time scale. Probability distributions, expecta-
tion values, variances, and other ensemble proper-
ties are obtained through sampling sufficiently many
trajectories with identical initial conditions. The com-
puter program we implemented is freely available upon
request from Christoph Flamm.

APPLICATIONS TO SELECTED PROBLEMS

Five problems are chosen to illustrate our kinetic RNA
folding scheme. Three molecules are constructed on pa-
per and two are naturally occurring examples, a tRNA
and SV-11. The latter is a small variant RNA found in the
Qp replication assay. They illustrate different aspects of
folding and also demonstrate that most of the issues typ-
ically arising in the context of long natural sequences ap-
pear at much shorter chain lengths as well.
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FIGURE 4. Distribution of folding times. The graph shows the kinet-
ics of three sequences folding into a small hairpin. (For a definition of
the structure and the sequences see Fig. 5.) The fraction of folding
trajectories that reached the mfe structure at times = < t is plotted on
a logarithmic time scale. Sequence /; is an inefficient folder; approx-
imately 50% of the folding trajectories lead to the mfe structure on a
direct route, whereas the rest passes first through a local minimum.
I, and /3 fold efficiently.
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A small hairpin loop and ground
state degeneracy

In our first example we consider the structure Sy =
[..((((C....)))).] consisting of a tetraloop closed
by a stack of four base pairs. The stack has two free
ends of lengths 2 and 1. A random sequence [, =
(ACUGAUCGUAGUCAC) with Sy as the minimum free
energy structure is obtained by inverse folding (Ho-
facker et al., 1994). The folding behavior is character-
ized by the distribution of folding times (7¢) in Figure 4.
We easily recognize two folding mechanisms, a fast
and a slow one, of almost equal probability of occur-
rence. In the slow regime the mfe conformation is
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reached only after the trajectories have first spent some
time in one or more local minima.

To understand the folding behavior in more detail, we
compute the “barrier tree” of the conformational land-
scape. The leaves of the tree are the local minima (with
respect to energy) of the landscape. The barrier state
connecting two local minima S; and S; is the minimum
of the maxima (lowest saddle point) along all paths
between S; and S; (Fig. 5). The barrier tree provides a
picture of which local minima are aggregated into ba-
sins and how these basins are hierarchically linked with
one another. Stated in terms of a flooding metaphor, if
the energy abscissa were to measure altitude and the
landscape was flooded up to a given height, a vertical

(D).

FIGURE 5. Barrier tree of the conformational
landscape. The trees for three different se-
quences folding into the same mfe structure, S =
[.((((C....)))).] are shown. Numbers
labeling the branches are free energy differ-
ences in kilocalories/mole. The sequence
I, = (ACUGAUCGUAGUCAC) folds inefficiently
(upper left). The open chain and the mfe struc-
ture are located in different folding funnels.
Evolutionary optimization of folding behavior
generated another sequence, /, = (AUUGAG
CAUAUUCAC) folding into the ground state S

1.40

1,10

= ()

A

with high efficiency. This sequence, however, has
a degenerate ground state. A further sequence
that folds well is /3 = (CGGGCUAUUUAGCUG).
It has a nondegenerate ground state. The bar-
rier tree for the efficient folders (upper right di-
agram for /,, and lower half for /3) contain both
the open chain and the mfe structure in the same
funnel.
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cut through the graph tells which states are joined un-
der water (on the right), and which basins were to merge
next as the water level is raised.

The folding path is almost immediate from the barrier
tree. Its reconstruction starts from the open chain, 0
(which is a local minimum), and proceeds upward step
by step until a saddle is reached that connects down-
ward to the mfe conformation. In our particular exam-
ple /1, two suboptimal conformations can be accessed
descending from the first saddle point located at a
free energy of 1.80 kcal/mol. One of them, S; =
[CCCC----))))...1,liesonly 0.2 kcal/mol above the
mfe. This conformation acts as a trap, as it takes a
relatively long time to undo it. The escape route passes
through the saddle point[. . . . . (....)....]located
at 2.10 kcal/mol from the open chain. From there, a
downward path leads to the mfe conformation. In con-
trast, the fast mechanism corresponds to direct folding
by visiting the two saddles one after the other.

We evolved a sequence with a better folding behav-
ior, but the same ground-state structure, through mu-
tation and replication in a simulated flow reactor that
has been developed to study the optimization of RNA
properties (Fontana & Schuster, 1987). The sequence
I, = (AUUGAGCAUAUUCAC) was obtained from such
an optimization process. It folds with high efficiency, as
shown by the distribution of folding times (Fig. 4). The
barrier tree (Fig. 5) provides an immediate explanation:
both conformations, the open chain 0 and the mfe struc-
ture Sy, are in the same basin or folding funnel. The
folding path reaches the target through a single saddle
point with no traps in between. This also accounts for
the narrow distribution of folding times.

The sequence I, has a degenerate ground state: S; =
[.CCC..... ))) . ] has the same free energy, —1.1
kcal/mol, as Sy. This is the simplest case of an ensem-
ble of mfe structures. The folding algorithm only deter-
mines the first passage time from the open chain to
some structure arbitrarily chosen from the mfe ensem-
ble. The stationary probability distribution P; within a
set of € mfe configurations (i =0,...,€ — 1) is given by:

_ efAGmfe/kT 1

Pi = = ’
m+1 m+1
2 efAGk/kT {+ 2 engk/kT
k=0 k=¢

where Agyis the gap energy AG, — AGpy. FOor T=0K
this is the uniform distribution P; = 1/¢.

It is not hard to find a sequence that folds efficiently
into a nondegenerate ground state S. An example is
given by the sequence /3 = (CGGGCUAUUUAGCUG).
We obtain again a barrier tree that contains 0 and the
mfe structure S in the same folding funnel. The overall
kinetic behavior of /5 is very similar to that of /. It is
worth pointing out, however, that the mfe of /5 is much
lower than the mfe for the other two sequences (be-
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cause of the larger number of GC base pairs), and yet
the folding times of /, are a little shorter and their dis-
tribution is narrower. Evidently, the folding behavior of a
structure does not reflect its thermodynamic stability.

The main lesson of this simple example comes from
comparing the folding behavior with the barrier struc-
ture of the conformational landscape. Folding efficiency
seems to be a consequence of the multiplicity of folding
paths, and does not depend on the minimum free en-
ergy or the energy gap between mfe and the first sub-
optimal conformation. The number of conformations
representing local minima of the free energy surface
(Fig. 5) is not particularly useful for predicting the fold-
ing efficiency. What actually matters is the number of
saddle points at which a folding trajectory can split into
paths leading to basins that do not contain the ground
state. A folding mechanism that passes through a sin-
gle saddle point cannot bifurcate and yields the fastest
kinetics.

Direct folding and escape pathway

The second example deals with the escape path from
a conformational trap. The sequence / = (GGGAUUU
CUCGCUAUUCCAGUGGGA) forms the mfe structure
So=1[..... (e - )))))))]and alowest
suboptimal structure, S; = [(((....))).....
(((C....)))] with almost the same free energy. Fig-
ure 6 shows the sequence of structures on an escape
path leading from S; to Sy, as well as that route’s free
energy profile. The profile illustrates the effect of the
shift move: the path computed without the shift move
passes two additional saddle points between confor-
mations 7 and 9. The figure also shows the direct path
from the open chain to Sy, which, after a first activation
step, is a classic base pair zipper (similar to the exam-
ple shown in Table 1). The folding behavior reflects the
barrier tree of I's conformational landscape (not shown):
it contains two major branches leading to Sy and S,, as
well as five minor branches.

The detection of distinct folding mechanisms (en-
sembles of related paths) is made easier by a mod-
ified probability density of folding times, the “folding
characteristic”

dlogP(t) _ t  dP()
Codt P(t) dt

x(t) = ®)

The major humps in the folding characteristic of se-
quence | (Fig. 7) correspond to the two predominant
folding paths discussed previously, the direct zipper
(Fig. 6) and the alternative route visiting the S; trap.
Details of the curve, such as the shoulder on the right
flank of the faster folding hump, indicate the presence
of minor mechanisms.
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FIGURE 6. The escape from a conformational trap. The sequence of structures along an escape path from a folding trap
is shown together with its free energy profile. Dashed lines indicate energy barriers in the absence of shift moves. The bold
line corresponds to the fast folding path following a simple zipper from the open chain to Sy.

A switching molecule

The third example is a molecule designed to have two
almost equally stable, yet sufficiently distinct conforma-
tions of low energy. This construction tells us some-
thing about the role of nucleation centers in the folding
process. The sequence

| = (GGCCCCUUUGGGGGCCAGACCC
CUAAAGGGGUC),

folds into two highly stable conformations, the mfe struc-
ture consisting of a long hairpin with 14 base pairs,

So = [(CCCCCCCCCCCCC - 1))

and a first suboptimal conformation with two hairpins of
six base pairs each,

Sy =[(CCCCC+-2)))))) - CCCCCC----)))))) ]

The complete barrier structure of /'s landscape (Fig. 8)
consists of two neatly separated folding funnels. The
bottom of the S, basin is energetically sufficiently deep
to prevent molecules that have fallen into it from re-
folding into the mfe structure within the time spans of
our computer simulations. The conformation S; is a
true long-lived metastable state.

In Figure 9 we plot the fraction of folded molecules as
a function of time. The ratio of the conformations S,
and S, is close to 1:2. This can be rationalized by
observing that folding starts with the nucleation of a
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FIGURE 7. The folding characteristic of a small RNA. The folding
characteristic y (t) of the sequence / = (GGGAUUUCUCGCUAUUC
CAGUGGGA) is plotted on a logarithmic time scale. The points cor-
respond to individual trajectories and show some scatter that has
been smoothed by a moving average in the solid line. The curve
shows two distinct humps corresponding to different folding paths
(direct or via S;). A less prominent pathway appears as a shoulder on
the right flank of the first hump (arrow).
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double helical region. The approximate 1:2 ratio arises
because S; has two stacks, and hence two nucleation
centers, while Sy has only one. Considering similar
cases we find that the number of nucleation centers
determines the frequency of dominant conformations.

Modified bases and tRNA folding kinetics

In this section we discuss how base modification influ-
ences the folding kinetics of tRNA molecules. Base
moadification is taken into account by excluding such
bases from pairing, but not from single-base inter-
actions, such as the stacking of unpaired bases onto
adjacent double helices (terminal mismatches). The role
of base modification on tRNA stability has been re-
cently discussed (Wuchty et al., 1999) in terms of the
free energy gap between the mfe structure and the first
suboptimal configuration (Ae = AG(S;) — AG(Sy)). Be-
cause many of the modified bases are unable to form
regular base pairs, several suboptimal conformations
that would otherwise be present cannot be formed,
thereby increasing the energy gap As. When the un-
modified sequence does not form the correct clover
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FIGURE 8. The barrier tree for a sequence with two dominant conformations. The conformational space is partitioned into
two folding funnels, which enables an estimate of folding frequencies.
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FIGURE 9. The fraction of folded molecules. The two curves show the abundance of conformations, S, (left ordinate), and
S; (right ordinate, upside down). As time progresses, the two conformations of low free energy, So and S;, increase in
frequency at the expense of all other conformations. The final ratio of Sy/S; is close to 1:2 in agreement with the number
of nucleation centers in the two conformations.
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FIGURE 10. The barrier tree of tRNAP'. The tree refers to the 50 lowest local minima (obtained with the suboptimal
thermodynamic folding procedure (Wuchty et al., 1999)) of the unmodified sequence. Six folding funnels leading to the
conformations Sy, Si, S», Sg, Sy, and Sy can be distinguished. These partition the conformation space into six basins in
addition to a tiny folding funnel comprising the conformations Ss; and S,6. The mfe structure Sy is not the naturally occurring
conformation: the correct clover leaf appears in the tree as conformation Sg. The numbers at the right indicate the fraction
of folding trajectories ending in the corresponding basins.



RNA folding at elementary step resolution

leaf structure, base modification can change the ground
state. Here we study the impact of base modification
on the barrier structure of the conformation space and
on the kinetics of folding.

Figure 10 shows the barrier tree for the low-energy
portion of the conformation space of the unmodified
sequence. Six folding funnels can be distinguished that
are dominated by the conformations Sy, S;, S,, Ss, S,
and S,,. The correctly folded clover leaf is not the mfe
structure. It appears as conformation Sg with a free
energy of about 1 kcal/mol above the ground state.
Base modification changes the kinetic connectedness
of conformations and turns the clover leaf structure into
the ground state.

When comparing the computed distributions of fold-
ing times for the unmodified and the modified se-
quence (Fig. 11), it becomes apparent that base
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FIGURE 11. The folding kinetics of tRNAP". The upper part of the
figure compares the distribution of folding times for the modified
(upper curve) and the unmodified (lower curve) sequence of tRNAP"S,
The folding characteristic of the sequence with modified bases (lower
graph) indicates excellent folding behavior. As in Figure 7, the solid
curve was obtained by a moving average over individual points.
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modification leads to a remarkable improvement of
the folding behavior. Practically all trajectories lead to
the clover leaf. The folding characteristic of the mod-
ified sequence (Fig. 11) consists of one hump, indi-
cating a single folding mechanism. This is consistent
with a recent analysis of experimental data (Thiru-
malai & Woodson, 1996) suggesting a direct pathway
to the native state of tRNAP®,

It is worth pointing out that for the unmodified se-
guence the clover leaf is neither the structure with the
lowest energy nor the one with the largest folding fun-
nel (expressed in terms of numbers of local minima
belonging to the basin), and yet it is formed directly in
about 50% of the folding trajectories (see Fig. 10). All
other stable conformations are reached by less than
12.5% or one-eighth of all folding simulations. As in the
previous example, the high frequency of trajectories
ending up in the clover leaf can be explained by the
larger number of independent nucleation centers, as
compared to the competing conformations.

The tRNAP"® case confirms once more that there is
no relation between thermodynamic well-definition of
the ground state and the capacity to access it kineti-
cally. We also designed special sequences with the
correct clover leaf as their mfe structure and could not
find a correlation between energy gap Ae and folding
behavior.

The QB variant SV-11

The Qg variant SV-11 is an RNA sequence 110 nt long
that was derived from the natural phage by means of
serial transfer experiments. It provides an example of
how dramatically the thermodynamic picture can differ
from the kinetic one. The mfe structure is a long hairpin
interrupted by five bulges and internal loops (Fig. 12).
The base pair probabilities computed from the thermo-
dynamic partition function (lower left box in Fig. 12)
give the impression that there are no serious alterna-
tive structures to the ground state. However, the prob-
abilities accumulated from kinetic folding paths yield a
rather different dominant structure (Fig. 12), located 25
kcal/mol above the minimum free energy. The ground
state is reached by only 16% of the folding trajectories.
Figure 13 shows the probability with which local min-
ima of a given energy are visited by a folding path.
Most paths are trapped in a large basin with a fairly flat
bottom consisting of many states that are structurally
similar to the metastable state shown in Figure 12.
Previous models (Gultyaev et al., 1995; Morgan & Higgs,
1996) either failed to predict the metastable conforma-
tion or reproduced it only when folding was done in
conjunction with chain growth. Our results suggest that
chain growth is not necessary to obtain this structure.
The relevance of the metastable SV-11 conformation is
to function as a template for replication by the Qg rep-
licase. The mfe hairpin is completely inactive in this
respect.
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FIGURE 12. Structures and base pairing density plots for the mfe structure and the metastable conformation of the QB
variant SV11. The secondary structures and their free energies are shown in the upper part. In the lower half we show the
matrix of base pair probabilities as obtained from the thermodynamic partition function (McCaskill, 1990; Hofacker et al.,

1994) (left) and from kinetic trajectories (right).

CONCLUSIONS

The kinetic folding algorithm for RNA secondary struc-
tures presented in this article is, to our knowledge, the
first successful attempt to model formation of polynucle-
otide structure at the level of single base-pairing events.
A natural and obvious move set contains two elemen-
tary events, the making and breaking of individual base
pairs. To accommodate the empirical observation of
defect diffusion, we introduced a base-pair shift as an
additional elementary event. Our definition of transition
probabilities was motivated by the desire to construct a
procedure that is not restricted to the present definition
of RNA secondary structures. This led us to use quan-
tities that are determined independently of such a def-
inition, and free energies of conformations are ideally
suited for this purpose. Using only free energy differ-

ences allows us, for example, to extend the kinetic pro-
cedure to any kind of tertiary interaction for which suf-
ficient empirical knowledge becomes available. Free
energy differences, however, determine only the ratio
of the transitions probabilities (k;;/k;), and any com-
mon factor would be consistent with it. The choice of
Kawasaki’'s dynamics (Kawasaki, 1966) rather than the
usual Metropolis assumption (Metropolis et al., 1953)
for individual transition probabilities was motivated by
the greater efficiency of the former. The Kawasaki as-
sumption favors downhill steps with larger free energy
gain, yielding shorter folding times. We stress, how-
ever, that we were unable to detect any qualitative dif-
ference between the (loop-free) folding trajectories
generated by either dynamics.

An important question relates to the reliability of the
predicted results. In a previous study we investigated
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FIGURE 13. Fraction of folding paths visiting local minima in the QB
variant SV11. The majority of paths visits the local minima in the
basin of the metastable structure where the paths get trapped. Only
about 16% reach the ground state.

the robustness of most currently available algorithms in
predictions on RNA structures (Tacker et al., 1996) and
found that certain statistical properties of the sequence-
to-structure map are reproduced quite well, although
predictions for individual sequences may be poor (see
also Huynen et al., 1997). Similarly, in the context of the
present study we expect that generic features are re-
produced correctly by our kinetic simulations. Such fea-
tures pertain to the relationship between major kinetic
properties and the barrier structure of conformational
spaces. Examples considered here emphasized the par-
tition of conformation space into basins of attraction for
several dominant structures, and, consequently multi-
ple folding mechanisms and folding time scales. We
also found the existence of dominant metastable states
with large basins in the presence of mfe structures that
are kinetically far less accessible despite their thermo-
dynamic dominance.

The often made conjecture that a large free energy
gap between the ground state and the first suboptimal
conformation of a biopolymer is indicative of good fold-
ing properties was shown to be incorrect, at least for
RNA secondary structures. We designed several coun-
terexamples. What actually determines the folding be-
havior is the number of nucleation centers for double
helical regions, as well as the numbers and the heights
of the saddle points that have to be passed along a
trajectory from the open chain to the folded conforma-
tion. In other words, what matters is the multiplicity of
trajectories that are roughly equivalent with respect to
their overall energy profile. The barrier trees that orga-
nize the local minima in a hierarchical fashion turned
out to be an excellent tool for studying folding path-
ways. Their most serious limitation, however, consists
in not providing any information about the entropy of
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paths, that is, the multiplicity of pathways whose high-
est saddlepoint is slightly worse than the barrier.

We have considered folding so far as a process lead-
ing from the open chain to the mfe conformation or a
metastable state. Future work aims at developing ex-
tensions of our algorithm to enable the study of kinetic
RNA/RNA cofolding, that is, the hybridization of two
RNA molecules into a joint secondary structure, as well
as kinetic RNA folding in conjunction with chain growth.
The latter is particularly important when understanding
the folds of very long sequences.
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