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Zusammenfassung

Durch die Entdeckung, daß RNA-Moleküle katalytische Aktivität besitzen

können, wandelte sich die Sichtweise von der Bedeutung der RNA für die

lebende Zelle drastisch. Wurde RNA einst als reiner Informationsvermit-

tler zwischen DNA und den Proteinen gesehen, ist heute klar geworden,

daß RNA eine aktive Rolle bei der Regulation vieler Vorgänge in leben-

den Zellen spielt. Die Struktur von RNA wird durch Kontakte individu-

eller Nukleotide, sogenannter Basenpaare, aufgebaut. Aufeinanderfolgende

Basenpaare bilden helicale Bereiche, welche auf die Struktur im Gegensatz

zu den ungepaarten Bereichen einen stabilisierenden Einfluß ausüben. Der

Faltungsprozess von RNA gehorcht einer hierachischen Ordnung. Stabile

Sekundärstrukturelemente falten schnell und bestimmen die anschließende

Faltung in die dreidimesionale Struktur. Am Institut für Theoretische Chemie

und Molekulare Strukturbiologie wurden über die letzten Jahre effiziente Al-

gorithmen, die sich auf experimentell gemessene Energieparameter stützen,

entwickelt und der Allgemeinheit als Vienna RNA Package zugänglich gemacht.

Mit dem Vienna RNA Package lassen sich die Sekundärstruktur sowie die

thermodynamischen Eigenschaften von beliebigen RNA-Molekülen berech-

nen.

Neben den thermodynamischen Eigenschaften von RNA spielt die Kinetik

der Faltung eine wichtige Rolle. Kürzlich wurde ein Algorithmus vorgestellt

(Flamm et. al. 2000), der das Studium der Faltungsdynamik von RNA-

Molekülen ermöglicht. Da es sich hierbei um ein stochastisches Verfahren

handelt, muß eine große Anzahl von Trajektorien berechnet werden, was

extrem rechen- und zeitintensiv ist. In der hier vorgestellten Arbeit wird

das stochastische Verfahren durch ein deterministisches ersetzt. Durch eine

Verringerung des Zustandsraumes auf die lokalen Minima der Energiehy-

perfläche lässt sich das Problem als Markov Prozess in kontinuierlicher Zeit

formulieren. Die Dynamik des Moleküls, insbesondere die Besetzungswahr-

scheinlichkeiten der einzelnen lokalen Minima können so bequem und vor

allem binnen kürzester Zeit berechnet werden.
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Neben einer eleganten Methode zur Visualisierung und Berechnung der En-

ergielandschaften wird auch die Faltungskinetik eines RNA-Moleküls, das

eine metastabile Strukturn ausbilden kann (bi-stabile RNA oder RNA switch)

gezeigt.
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Abstract

Within the last years it became clear that RNA molecules do not only store

and transfer genetic information but they can also act as catalytic units.

On the one hand, RNA was seen once as an ’information-exchanging-unit’

between DNA and proteins. On the other hand nowadays it has become

evident that RNA fulfills important regulation tasks in living cells, which

changed the point of view dramatically. The structure of RNA is determined

by contacts of individual nucleotides, so called base pairs. Successing base

pairs form helical regions which have a stabilizing effect on the structure.

The structure formation process of RNA is thought to be of hierarchical or-

der. Stable secondary elements fold fast and determine the three-dimensional

fold. Within the last years, efficient algorithms, which are based upon exper-

imentally measured energy parameters, have been developed at our institute

and made available as the Vienna RNA Package. With aid of the Vienna

RNA Package, secondary structures and thermodynamic properties of RNA

molecules can be calculated.

Evidently, the kinetics of RNA folding plays an important role besides

thermodynamic properties. Recently, an algorithm has been suggested, which

allows studying the folding behavior of RNA molecules. Due to the fact that

this is a stochastic model, many trajectories have to be calculated, which is

very intensive in terms of time ans computer resources. Hence, we replace

the stochastic model with a deterministic one in this thesis. By reducing the

state space to the local minima of the energy landscape, the problem can be

formulated as a continuous time Markov chain. With this ansatz, the dy-

namic behavior of the molecule, especially population probabilities of distinct

local minima of the energy landscape can be calculated within seconds.

We present an elegant method for the computation and visualization of

the energy landscape and the folding dynamics of a RNA molecule that can

fold into a metastable secondary structure (bi-stable RNA or RNA switch).
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1 Introduction

When Charles Darwin put forward a first empirical theory of biological evo-

lution in his famous book “The Origin of Species” in 1859, he suggested that

the diversity and complexity of present day organisms can be explained on

the basis of two key principles: inheritable variation and natural selection.

His theory quickly became one of the most influential contributions to natu-

ral science and although the laws and mechanisms of variation had not been

accepted in the nineteenth century, he set a cornerstone to a modern view of

the basis of life.

More than a century later the molecular basis of life has become clear:

Biopolymers like DNA, RNA and proteins are the essential ingredients in the

’cookbook of life’. This thesis focuses on RNA. RNA molecules do not only

serve as carriers of information, but also as functionally active units. The

three dimensional shape of tRNA molecules plays a crucial role in the process

of protein synthesis. RNA is known to exhibit catalytic activity [8, 24, 23, 33].

While the activity of these so called “ribozymes” is usually restricted to

cleavage and splicing of RNA itself, recent evidence suggests that RNA also

plays a predominant role in ribosomal translation. These discoveries have

given much support to the idea that an RNA World [21, 34, 35] stood at the

origin of life, in which RNA served both as carrier of genetic information as

well as catalytically active substance. RNA may not necessarily have been

the first step in prebiotic evolution, but the idea that RNA preceded not

only DNA, but also the invention of the translational system, seems widely

accepted. Furthermore, RNA provides an ideal, currently the only, system to

study genotype-phenotype relationships. Following [52], the phenotype for

an RNA molecule can be defined as its spacial structure.

An interesting aspect concerning biomolecules is structure prediction.

The structure prediction problem for both proteins and RNA can be solved

with reasonable accuracy at the level of secondary structures. Due to the

fact that the process of RNA folding is thought to be of hierarchical na-

ture [6], secondary structures can be seen as a coarse grained approach to
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the three dimensional structures. In the protein case, the secondary struc-

ture is defined as the local conformation of the backbone and is formed by

hydrogen bonds between backbone atoms. In the RNA case, the secondary

structure is defined as a pattern of base pairs, which is determined by hy-

drogen bonds between the four bases Adenine (A), Guanine (G), Cytosine

(C) and Uracil (U). It is important to realize that there is a major difference

between protein and RNA secondary structures: While in the protein case,

secondary structures are formed by the backbone, RNA secondary structures

are determined by side chains. Powerful algorithms have been suggested

within the last 25 years to make the computational treatment of RNA feasi-

ble [46, 59, 65]. A freely available implementation of these algorithms is the

Vienna RNA Package [27, 28].

An important contribution to the understanding of the behavior of RNA

molecules was given by Stefan Wuchty [60] who introduced a tool which

allows the computation of all suboptimally folded RNA molecules within a

desired energy range above the ground state. This opened the door for a more

thorough investigation of the dynamical behavior of RNA chains. More gen-

erally, with knowledge about all suboptimal secondary structures, an insight

into the energy landscape of RNA was given (for a thorough introduction

to characterization and computation of general landscapes, see [53]). It be-

came necessary to introduce a metric between different secondary structure,

called move set. This move set influences the shape of the energy landscape

dramatically: Depending on which combinations of opening and closing of

base pairs are allowed, the energy landscape can be very rugged or more

or less smooth (figure 1). Nevertheless, RNA landscapes are thought to be

extremely rugged.

Recently, a stochastic model of the kinetic folding of RNA molecules was

suggested by Christoph Flamm [18]. His algorithm uses the most elementary

move set for the inter-conversion of RNA secondary structures, consisting of

the insertion or the removal of single base pairs, as well as the exchange of

one pairing partner in a base pair. As the structural changes made during
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(a) Rugged landscape: Bryce Canyon, UT

(b) Smooth landscape: Capulin Volcano, NM

Figure 1: A rugged landscape (a) is rocky and separated into many local maxima and min-

ima, whereas a smooth landscape (b) can be traversed without many uphill and downhill

climbs

one simulation are small, a realistic concept of folding paths arise. With aid

of his tool it was possible to show that the folding simulation of SV11, a RNA

molecule which can form a metastable structure, is in excellent agreement

with experimentally measured data. Molecules like SV11, which can form one
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or more metastable secondary structures are considered as so called molecular

switches which can fulfill essential regulation tasks in living cells.

The energy landscape of a given RNA sequence is determined by (a) all

legal secondary structures the molecule can fold into, (b) the energies of all

these secondary structures and (c) the move set. The properties of the energy

landscape affect the folding kinetics of the RNA sequence. Energy landscapes

can be visualized with so called barrier trees, see section 4.1 for the exact

definitions. Due to the fact that the algorithm presented in [18] is a stochastic

process, a large number of folding trajectories has to be calculated to make a

reasonable prediction of the kinetic folding behavior of the molecule, which

is very intensive in terms of computer time and resources. This is evident,

because all suboptimal secondary structures have to be considered within

such a simulation.

A reasonable approach to overcome this problem is to reduce the size

of the state space of the system, e.g. by just allowing local minima of the

energy landscape as legal states. With transition rates between different

local minima depending on the energy berrier separating them, it is possi-

ble to formulate a Markov process describing the dynamic behavior of the

RNA molecule. With this ansatz it is possible to assign specific population

probabilities to different local minima at the beginning of the simulation.

Depending on these initial conditions and the energy ratio in terms of the

barrier height between different states, several other local minima are being

populated as time elapses ending in a predetermined equilibrium distribu-

tion. In other words, the whole dynamic behavior of a desired RNA sequence

can be visualized with this new method.

All software tools described in this thesis are written in ANSI C and tested

under the free operating system Linux.
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2 Thermodynamic Folding

2.1 RNA Structure

RNA is transcribed (or synthesized) in cells as single strands of (ribose)

nucleic acids. However, these sequences are not simply long strands of nu-

cleotides. Rather, intra-strand base pairing will produce structure motives.

The structure formation process of RNA can conceptually be partitioned into

two consecutive stages. First, the specific sequence (the string of bases) or

primary structure, is transformed into a pattern of complementary base pair-

ings called the secondary structure. Second the secondary structure distorts,

to form a three dimensional spatial structure or tertiary structure.

It is hard to solve the structure prediction problem for RNA structures since
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Figure 2: Folding of the phenylalanyl-transfer-RNA tRNAphe into its spacial structure.

the number of degrees of freedom of the RNA chain is very high (indeed it

is much higher than in the protein case). There are several facts that sup-

port the consideration of the secondary structure of RNA as a coarse grained

approach to the three dimensional spatial structure:

• The conventional base pairing and the base stacking cover the major

part of the free energy of folding.
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• The secondary structure provides a scaffold of distance constraints to

guide the formation of the tertiary structure.

• In contrast to the protein case, the secondary structure of RNA is well

defined and assigns all bases to secondary structure elements.

• RNA secondary structure is conserved in evolution and has been used

successfully to interpret RNA function and reactivity.

The secondary structure of RNA is formed by aggregation of planar com-

plexes, or base pairs of purine and pyrimidine bases. There are four naturally

occurring bases: Adenine (A), Guanine (G), Cytosine (C) and Uracil (U). G

and C, respectively A and U are complementary bases which can form strong

hydrogen bonds, a weaker base pair is also possible between G and U, often

referenced as “wobble” base pair.

The tertiary structure as shown in figure 3 is the three-dimensional con-

figuration of the molecule. Tertiary interactions are hydrogen bonding or

stacking interactions between structure elements.

2.2 RNA Secondary Structure

A secondary structure S is formally defined as the set of all base pairs (i, j)

with i < j such that for any two base pairs (i, j) and (k, l) with i ≤ k the

two following conditions hold [59]:

1. i = k if and only if j = l.

2. There are no knots or pseudo knots allowed. For any two base pairs

(i, j) and (k, l) the condition i < k < l < j or k < i < j < l must be

satisfied.

The first condition simply means that each nucleotide can take part in at

most one base pair. Several examples of tertiary interactions breaking this

condition are known, including base triplets, G-quartets and A-platforms.
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The second condition guarantees that the secondary structure can be rep-

resented as a planar graph. The most abundant structural elements, which

break this condition are pseudoknots. A pseudoknot is governed by Watson-

Crick base pairing between a hairpin loop and a single-stranded stretch or

between two single-stranded stretches. Consequently, a pseudoknot can be

considered as either a secondary structural element or a tertiary interaction.

While pseudoknots are important in some natural RNAs, they can be con-

sidered as part of the tertiary structure for our purposes. Not all secondary

structures can be formed by a given biological sequence, since not all combi-

nations of nucleotides form base pairs.

Let A be some finite alphabet of size κ, let Π be a symmetric Boolean

κ × κ-matrix and let Σ = [σ1 . . . σn] be a string of length n over A. A

secondary structure is compatible with the sequence Σ if Πσp,σq
= 1 for all

Figure 3: Illustration of the molecular structure of a typical A-RNA. Views are parallel

(l.h.s.) and perpendicular (r.h.s.) to the helix axis.
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base pairs (sp, sq). Following [30, 59] the number of secondary structures S

compatible with a specific string can be enumerated as follows: Denote by

Sp,q the number of structures compatible with the substring [σp . . . σq]. Then

Sl,n+1 = Sl,n +
n−m
∑

k=l

Sl,k−1Sk+1,nΠσk ,σn+1
(1)

A secondary structure compatible with a given sequence with maximal num-

ber of base pairs can be determined by a dynamic programming algorithm [47].

The restriction to knot-free structures is necessary for efficient computation.

Usually, only Watson-Crick (AU and GC) and GU pairs are allowed.

The secondary structure indicates the position of base paired helices. These

are linked by single-stranded regions that can form hairpins, internal bulges

within helices, multi-branched loops or link helices. The complexity and

design variability of such structures is stunning and revals those present in

proteins.

Secondary structures can be represented as strings composed of the sym-

bols (, ), and . representing nucleotides that are paired with a partner

towards the 3’ end, towards the 5’ end, and that are unpaired, respectively.

Pairs of matching parentheses therefore indicate base pairs. A short hairpin

structure, consisting of 4-loop and a helix of length 3 will therefore be written

as (((....))), see [27]. Figure 4 shows the secondary structure of tRNAphe

and its corresponding bracket-dot-representation.

There are several other ways to represent RNA secondary structures:

In the particularly easy Circular representation (figure 5), the bases of the

sequence are placed equidistant to one another on a circle and for each base

pair a chord is drawn between the two bonded bases. Since the structures

are knot-free by definition, no two chords will intersect.

Another useful approach for the comparison of RNA secondary structures

is called mountain representation where ’(’, ’)’, and ’.’ is identified with

“up”, “down”, and “horizontal”, respectively. See Figure 6 for mountain

representation.
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Figure 4: Secondary structure of tRNAphe and the corresponding bracket-dot-notation.

Same colors represent the same base-pairing regions.

• Peaks correspond to hairpins. The symmetric slopes represent the

stems enclosing the unpaired bases in the hairpin loop, which appear

as a plateau.

• Plateaus represent unpaired bases. When interrupting sloped regions

they indicate bulges or interior loops, depending on whether they occur

alone or paired with another plateau on the other side of the mountain

at the same height respectively.

• Valleys indicate the unpaired regions between the branches of a multi-

stem loop or, when their height is zero, they indicate unpaired regions

separating the components of secondary structures.

The height of the mountain at sequence position k is simply the number of

base pairs that enclose position k; i.e., the number of all base pairs (i, j) for

which i < k and j > k.
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Any secondary structures can be uniquely decomposed into loops as

shown in figure 7 (note that a stacked base pair may be considered as a

loop of size zero). A secondary structure graph is equivalent to an ordered

rooted tree. An internal node (black) of the tree corresponds to a base pair

(two nucleotides), a leaf node (white) corresponds to an unpaired nucleotide.

Contiguous base pair stacks translate into “ropes” of internal nodes, and

loops appear as bushes of leaves.

The energy of an RNA secondary structure is assumed to be the sum of

the energy contributions of all loops. Energy parameters for the contribution

of individual loops have been determined experimentally and depend on the

loop type, size and partly its sequence.

The additive form of the energy model allows for an elegant solution of

the minimum energy problem through dynamic programming, that is similar

to sequence alignment. This similarity was first realized and exploited by

Michael Waterman [58, 59].

5’ 3’non-standard
G
C
A
U

Figure 5: The secondary structure of tRNAphe in circular representation
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( ( ( ( ( ( ( ( . ( ( ( ( . . . . . . . . ) ) ) ) . ( ( ( ( ( . . . . . . . ) ) ) ) ) . . . . . . ( ( ( ( . . . . . . . ) ) ) ) ) ) ) ) ) ) ) ) . . . .

0 10 20 30 40 50 60 70

Figure 6: The secondary structure of tRNAphe from Yeast (see Figure 2) in mountain

representation. Colors are the same as in figure 4 and represent the same base-pairing

regions

The first dynamic programming solution was proposed by Ruth Nussi-

nov [46, 47] originally for the “maximum matching” problem of finding the

structure with the maximum number of base pairs. Michael Zuker and

Patrick Stiegler [64, 65] formulated the algorithm for the minimum energy

problem using the now standard energy model. Since then several variations

have been developed: Michael Zuker [63] devised a modified algorithm that

can generate a subset of suboptimal structures within a prescribed increment

of the minimum energy. The algorithm will find any structure S that is opti-

mal in the sense that for every pair b in S there is no structure Sb that contains

the pair b and has lower energy than S. As shown by John McCaskill [42] the

partition function over all secondary structures Q =
∑

S exp(−∆G(S)/kT )

can be calculated by dynamic programming as well. In addition his algorithm

can calculate the frequency with which each base pair occurs in the Boltz-

mann weighted ensemble of all possible structures, which can conveniently

be represented in a so called “dot-plot”. Figure 8 shows such a dot-plot of

tRNAphe.
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The equilibrium frequency p of a base pair (i, j) is represented by a square

of area p in position i, j of a triangular matrix. The lower left triangular

matrix shows the optimal fold , namely the ground state. In contrast the

upper right triangular matrix displays the base pair frequencies within the

structure ensemble at the thermodynamic equilibrium as obtained from the

partition function. Note that in this example a large number of base pairs

from suboptimal folds are visible. While the helix is very well defined, the

loop region can can fold into various alternatives. This indicates, that the

loop region of the ground state is flexible in a structural sense.

The memory and CPU requirements of these algorithms scale with se-

quence length n as O(n2) and O(n3), respectively, making structure predic-

tion feasible even for large RNAs of about 10000 nucleotides, such as the en-

tire genomes of RNA viruses [29, 31]. A for academic use freely available im-

plementation of these algorithms is the Vienna RNA Package [27, 28] (avail-

able from http://www.tbi.univie.ac.at/ ĩvo/RNA/ViennaRNA-1.4.tar.gz).

Energy parameters used there can be found in [41].
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Figure 7: Various representations of RNA secondary structure: The tree representation of

the secondary structure graph in the middle (l.h.s); Representation of an RNA secondary

structure as a planar graph (middle); The loop decomposition of the secondary structure

graph in the middle (r.h.s). The closing base pairs of the various loops (base pair, hairpin,

bulge, interior, multiloop) are indicated by dotted lines (Note that a helix of length n

decomposes in n-1 stacked base pairs).
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Figure 8: Dot-plot of tRNAphe; The equilibrium frequency p of a base pair (i, j) is repre-

sented by a square of area p in position i, j and j, i of the matrix. The lower left triangle

shows only base pairs contained in the ground state, which occur with significant frequency.

The upper right triangle displays the frequencies within the thermodynamic equilibrium.

A large number of base pairs from suboptimal structures are visible. Again, same colors

represent the same base-pairing regions as in figures 4 and 6

2.3 Conformation Space: The Thermodynamic View

The conformation space C of a given sequence is the total set of secondary

structures S compatible with this sequence. As mentioned each secondary

structure S ∈ C itself is a list of base pairs (i, j) in a way, that any two base

pairs from S do not cross each other, if S is represented as a graph in the

plain. From the total recursion (equation 1) an asymptotic formula for the
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growth of the number of secondary structures with chain length n can be

derived.

Sn � n− 3
2 · αn (2)

Counting only those planar secondary structures that contain hairpin loops

of size three or more (steric constraint), and that contain no isolated base

pairs one finds α = 1.8488 for the total number of secondary structures. The

size of the conformation space increases exponentially with the chain length.

The density of states g(ε) is a convenient measure to get a survey of the

conformation space C of a given sequence. It displays the energies of the

individual structures S, and their distribution with regard to the ground

state. Furthermore g(ε) is the basis for the equilibrium statistical mechanics

of any system, because the average of any physical property P, depending

on the energy, is given by the Boltzmann-weighted sum,

〈P〉eq =
1

Z
·
∑

ε

P(ε) · g(ε) · e−ε/kBT (3)

where kB is the Boltzmann’s constant, T is the absolute temperature and

Z ≡
∑

ε

g(ε) · e−ε/kBT (4)

is the partition function, giving a complete thermodynamic description of

the system.

A variation of John McCaskill’s algorithm can be used to compute the

complete density of states [13] for a given sequence. In figure 9 the den-

sity of states is shown for yeast tRNAphe. The conformation space of yeast

tRNAphe, a molecule of only 76 nucleotide length, has the astronomical size of

∼ 14.9·1016 secondary structures (By comparison the human brain is built up

of ∼ 1·1010 neurons). The overall shape of the density of states for this exam-

ple is Gaussian. This is not surprising since ε is composed of a large number

of additive contributions. The overwhelming majority of the secondary struc-

tures however has positive energy. Hence only a small subset of all possible

structures is physically important. These approximately 2 million structures
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have negative energy, the reference state being the open chain. The folding

process of RNA molecules is believed to operate mostly on this small subset

of C. Unfortunately g(ε) provides almost no information about the folding

N(F)
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14

 4.10
14

 6.10
14

 8.10
14

 1.10
15

Figure 9: Density of states of the yeast tRNAphe with an energy resolution of 0.1 kcal/mol.

Less than 2 million structures have negative energy, the reference state being the the open

structure. For details see [12, 13].

landscape, with respect to dynamics. If the kinetic progress in folding of

a biopolymer is modeled, it is helpful to define a reaction coordinate. The

reaction coordinate serves as measure, to gauge the “closeness to the native

structure”. A thermodynamic reaction coordinate defines closeness to the

native state in terms of the energy of the conformation, whereas a kinetic

reaction coordinate defines closeness to the native structure in terms of how

quickly that conformation can transform to the native state. For instance

the density of states defines “closeness” between two states of the energy

landscape in terms of energy. In this sense all states which take energies

similar to the ground state, seem to be close to the ground state.

No information is obtained whether the ground state and these “ener-

getically close” states are structurally similar enough to allow a rapid inter-

conversion. This information however is of utmost importance, since it elu-
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cidates the local features of the folding landscape, which have a feed back

onto the folding dynamics. Figure 10 illustrates the problem. A thermo-

dynamic reaction coordinate sees some deeply trapped conformation B as

being “nearly native”, because B has low energy, even though such confor-

mations must overcome high-energy barriers to reach the native state. But

a kinetic progress coordinate should describe, at least at some rudimentary

level, the fraction of time that has elapsed, or that remains, for the folding,

rather than the fraction of energy that remains. By using a thermodynamic

reaction coordinate, B in figure 10 is closer to native N than A is. But by

using a kinetic reaction coordinate, A is closer to N, since A has to climb a

smaller energy barrier to reach N than B. For landscapes with kinetic traps,

thermodynamic reaction coordinates do not characterize the kinetics well,

because they completely neglect energy barriers.

Therefore a measurement called move set, which captures “structural

vicinity” in a kinetic sense, needs to be developed before the relationship

between the folding dynamics and the topology of the underlying energy

landscape can be studied. The move set and its influence on the topology of

the folding landscape will be discussed in further detail in section 3.2.

E
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B

Figure 10: Thermodynamic versus kinetic reaction coordinate. State B is energetically

closer to N (lower energy), but state A is kinetically closer to N (smaller barrier to cross).

For didactic reasons a continuous reaction coordinate is used as abscissa. In the realm of

RNA secondary structures energy and reaction coordinate are discrete.
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3 Kinetic Folding

3.1 State of the Art

The present understanding of RNA folding is still largely based on clas-

sic studies of tRNA. In the 1970s the crystal structure of tRNAphe [11, 50]

became available. Temperature jump and NMR experiments were used to

identify the conformations of intermediates on the path to the equilibrium

fold of different tRNAs [2, 10, 14, 22, 38, 54]. More structural information

and insight into RNA catalysis came from the first crystal structure of a

hammerhead ribozyme [48] in 1994. A great impact on the understanding

of RNA spatial structure came from high-resolution cristallography of one of

the two structural domains of the catalytic core of a group I intron [7].

Recently, kinetic studies [61, 62] of a ribozyme derived from the Tetrahyme-

nea group I intron, a considerably more complex molecule than tRNA or

hammerhead ribozyme, introduced some previously unexplored features of

RNA folding. As pointed out by Patrick Zarrinkar and James Williamson,

the Tetrahymenea ribozyme folds by a hierarchical pathway with succes-

sively larger structures generally requiring longer time scales. Short range

secondary structure appears to form rapidly to yield a state in which much

of the secondary structure is present, but which is still very flexible and

lacks stable tertiary contacts. The native structure is then formed from this

“quasi fluid” state by the successive formation and stabilization of larger

folding units, which generally correspond to identifiable structural subunits.

These subunits seem to form in a hierarchical manner, where the presence of

the fast forming elements is required for the formation of the slower folding

subunits. The formation of specific long range contacts that allow the fold-

ing units to interact then occur late on the folding pathway. The sequential

folding of domains in the ribozyme show striking parallels to the way how

the α-subunit of the protein tryptophane synthetase achieves its fold.

Several groups developed kinetic folding algorithms for RNA secondary

structure, mostly in an attempt to get better structure predictions than their
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thermodynamic counterparts. Only little effort has been put into the recon-

struction of folding pathways or the consideration of pseudo-knots. The great

majority of these algorithms are based on Monte-Carlo methods [43]. In gen-

eral these algorithms start from some initial structure (e.g. the open chain)

and progress, by incorporation of whole helices, through a series of nearly

optimal structures to the most probable one at the end of the folding process.

The first attempts modeled the folding process as a strictly sequential

process. Different criteria for choosing the next stem for incorporation, like

choosing the stem with the maximal number of base pairs [32] or the stem

with the largest equilibrium constant [40] have been tested. A disadvantage

of the sequential methods is their inability to destroy already constructed

stems, and hence simulations get easily stuck in local minima.

Next, the folding process was modeled as a Markovian random pro-

cess [5, 44, 45, 55] to circumvent the problems of sequential methods. These

algorithms differ mainly in the method how they reduce the state space to

make the calculation of the transition probability matrix computationally

feasible. Helix formation rates are approximated through models using pa-

rameters derived from experimental results, helix fusion rates are deduced

from the formation rates by using a Boltzmann distribution hypothesis on

the structure space.

Another fruitful approach was suggested by Christoph Flamm [16, 18]

and his tool kinfold, which is capable of calculating trajectories describing

the folding behavior of single secondary structures. See section 5.3 for a more

detailed description of his work.

3.2 The Move Set

The conformation space C, as has been illustrated in section 2.3, is a multi-

dimensional space. Depending on the coarsegraining of the energy, confor-

mation space can being highly degenerated. A priori it is not clear how to

move in such a complex space, therefore a set of rules is needed to control

the movement. Such a set of rules is called a move set (for an example see
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figure 11). It is basically a collection of operations, which, applied to an ele-

ment of C, transforms this element into another element of C. Strictly spoken

a move set is an order relation on C, defining adjacency between the elements

of C. It fixes the possible conformational changes that can take place in a

single step during the simulation of folding and thus defines the topology of

the conformational space. The following properties are important for move

sets:

1. Each move has an inverse counterpart. At thermodynamic equilibrium

the quotient of forward and backward reaction rates must give the

microscopic equilibrium constant (If there is no backward reaction, the

law of microscopic reversibility is broken).

2. The outcome of an operation always leads to an element of the under-

lying state space (Any operation yielding an element outside the state

space is illegal).

3. The move set has to be ergodic. In other words starting from an arbi-

trary point of the state space every other point must be reachable by a

sequence of legal operations (If this property is not fulfilled, and only

a subset of the state space is accessible to the system the expectation

〈F〉 of any state function F(S) will be incorrect or at least biased).

4. Every move set defines a metric on the underlying state space.

Two more terms are of importance for the further discussion. A trajectory is

defined as a sequence of consecutive states of the state space generated by a

series of legal operations from some initial state. A path (or folding path) is

defined as a cycle free trajectory, more concrete, each state occurs only once

within the sequence of adjacent states. In other words any trajectory can be

transformed into a path by eliminating the cycles.

The most elementary move set, on the level of RNA secondary structures

consists of insertion and deletion of a single base pair (i, j). This move set

will be designated as MS1 in the further discussion. It is always possible to
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construct a path between any two Si, Sj ∈ C by using operations from MS1.

To find such a path, remove from Si all base pairs that do not occur in Sj,

and insert afterwards into this intermediate structure Sk all base pairs from

Sj that do not occur in Si. (Note, that Sk = Si ∩ Sj can be the empty set,

which resembles the open chain, being as well an element of C).

It is easy to see, that the path, constructed by the rule given above is also

the path of minimal length connecting the tRNA structures Si, Sj. Deleting

base pairs from a legal structure always returns a legal structure. This means

that the intermediate structure Sk is a legal structure as well. Sj is also a

legal structure by definition. Hence inserting the missing base pairs into Sk to

transform this structure into Sj in an arbitrary succession, must run through

a cascade of legal structures. Because of the restriction to legal intermediate

structures, any other combination of moves to transform a structure into

another one must result in a longer path. Since every element of C can be

connected to every other element of C by a path, it follows that MS1 is an

ergodic move set on C.

A dominant mechanism for helix formation is the highly cooperative zip-

per mechanism [49]’. Starting from a suitable nucleus which can still disso-

ciate easily into its components, addition of new base pairs stacked to the

nucleus leads to favorable, negative free energy contributions. From then

on, growth of the helix is spontaneous and leads to stepwise construction of

the helix just as a zipper is closed. MS1 is capable to describe this helix

formation process properly.

An other important mechanism in the dynamics of RNA is believed to be

“defect-diffusion”. Since helix nuclei will be formed statistically along the

RNA chain, intermediate formation of helices with incomplete base pairing

is expected. Such intermediate mismatched helices can be annealed by a fast

chain slide mechanism. For instance the loop base of a bulge loop present in

a helix will be subjected to a rapid base pair formation and dissociation pro-

cess. According to experimental data [49] defect-diffusion is some orders of

magnitude faster then zippering. As a consequence of this rapid equilibration
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a bulge loop may move quite rapidly along the helix sequence. If a bulge loop

forms at one end of the helix and disappears at the opposing end, the bulge

loop diffusion results in a shift of the nucleotide strands by the nucleotide

residues of the loop against each other (see figure 12). In the framework of

Figure 11: Elementary moves in the RNA folding algorithm. Secondary structures are

shown in circle and parenthesis representation. The Structure A is changed by the forma-

tion B or the removal C of a base pair. A shift move of a base pair can occur either within

the structure D or by flipping over the gap between the 3’ and the 5’ end E. The base pair

after a move is shown in bold, the one being changed is shown by a gray dotted line.
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MS1 the defect-diffusion is in most cases not a favorable process. It can only

be achieved be a double move in contrast to zippering and therefore does not

reflect the experimental results correctly.

To facilitate chain sliding MS1 must be extended by a further move called

“shift”. The shift converts an existing base pair (i, j) into a new base pair

(i, k) or (l, j) in one step. The resulting move set will be referred to as

MS2 in the following sections. Besides, defect diffusion, MS2 facilitates the

metamorphosis of overlapping helices into each other. Especially if the two

helices are located within a multi-loop the energetic profile of this process

using the simple move set MS1 is unfavorable. Figure 13 illustrates this

special “macro movement”. Every ergodic move set that is extended by new

moves naturally results in an ergodic move set again.

The algorithms cited in the section 3.1 generally operate on a list of

all possible helices and consequently use move sets that destroy or form

entire helices in a single move. The physical model of such a move set seems

unrealistic because ad hoc assumptions about the rates of helix formation and

disruption have to be made to cope with the introduction of large structural

changes per time step. Furthermore the concept of “folding pathway” looses

it’s physical meaning, if structural changes are to large. For this reasons a

more local move set like MS1 or MS2 is preferable if one aims at observing

realistic folding trajectories.

Figure 12: Defect diffusion: The bulge can easily migrate along the helix. For the left to

right transformation the shift moves are indicated by arrows
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3.3 Conformation Space: The Kinetic View

The energy landscape of a RNA molecule is a complex surface of the (free)

energy versus the conformational degrees of freedom. In our case our al-

lowed conformations are the secondary structures which are compatible with

a particular sequence.

Like sequence space, the conformation space of secondary structures is

a discrete space. Every secondary structure, a particular sequence can fold

into, is represented by one vertex in the conformation space of the sequence.

As has been illustrated in section 3.2 the move set induces a metric onto

conformation space. If two conformations can be converted into each other,

by applying a single move from the move set, the two conformations are

neighbors of each other according to the move set. The vertices of the con-

formation space corresponding to neighboring conformations are connected

by an edge. The object obtained in that manner is a complicated graph.

In general, the graph representing conformation space is irregular, while the

graph representing sequence space is always a regular one (generalized hy-

percube).

Figure 14 illustrates the conformation space for a short RNA molecule,

which can form only 3 base pairs and 8 legal structures. The neighborhood

of any vertex of the conformation space can easily be displayed in two di-

mensions. The entire conformation space, however, can be displayed only in

Figure 13: Inter-conversion of overlapping helices is facilitated by shift moves (indicated

by arrows).
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two dimensions and for very small sizes.

A value landscape is obtained by taking the graph of conformations as

the support of a function that assigns a value to every conformation. In

particular, a representation of the energy landscape of a RNA molecule is

obtained by plotting the energy of a conformation according to the standard

energy model over conformation space. Two factors characterize the shape

of an energy landscape: (1) the density of states, and (2) a measure of

structural similarity or kinetic “nearness” of one conformation to another.

For the construction of the conformation space it is necessary to generate all

possible secondary structures in a given energy range. The density of states

gives only the number of conformations in a certain energy range, but not

their explicit structures. Therefore suboptimal folding techniques are needed

to provide this information.

Several approaches for the computation of suboptimal structures have

been suggested. The development of these methods was motivated by several

facts:

• Under physiological conditions RNA sequences may exist in alternative

conformations whose energy difference is small.

• Aside from their possible biological significance, the density and acces-

sibility of suboptimal conformations may determine how well-defined

the ground state conformation actually is.

• The energy parameters on which the minimum free energy folding al-

gorithms rely are inevitably inaccurate.

In contrast to many other suggested algorithms for the calculation of

suboptimal RNA secondary structures, the program RNAsubopt [60], imple-

mented by Stefan Wuchty generates all suboptimal folds of a sequence within

a desired energy range. This is needed here for the construction of the con-

formation space.
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Figure 14: One move neighborhood of a vertex of the conformation space (l.h.s.) and

its embedding in the graph representing the conformation space (r.h.s) for a small RNA

molecule which can exhibit 3 base pairs.
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4 Energy Barriers

Now, as we have both features at hand, namely all suboptimal structures

within a given energy range and a metric (move set), a more detailed inves-

tigation of the energy landscape of RNA is possible. We will first consider

some general features of the landscape and uncover topological details like

local optima or saddle points. After that we will take a closer look at the

main algorithm of the program barriers, which was originally written by

Christoph Flamm [18] and modified for the requirements of this work.

4.1 Definitions

A structure is a local minimum if its energy is lower than the energy of all

neighboring structures. A structure is called a local maximum if its energy

is higher than the energies of all legal neighboring structures. Figure 15

illustrates which criteria the neighborhood of a point of the conformation

space must fulfill to be a local optimum.

Figure 15: Illustration of the simple neighborhood of a local minimum (l.h.s), a local

maximum (middle) and a saddle point (r.h.s). The signs within the circles denote neighbors

with higher (+) or lower (–) energy compared to the structure in the center.

Saddle points are of special importance: A saddle point of the energy surface

is a point that is neither a local minimum, nor a local maximum. However

it is more convenient to use a more restrictive definition of a saddle point: A

secondary structure S is a saddle point if there are at least two local minima
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that can be reached by downhill walks starting at S. Evidently, the saddle

point with lowest energy that separates the basins of two local minima i and

j is of particular importance. Those saddle points can be found by applying

a flooding algorithm to the energy landscape (section 4.2). Figure 16 shows

the tree representation of the energy landscape of a random RNA sequence

with length n = 42. Leaves correspond to the valleys of the landscape, while

saddle points are displayed by internal nodes. Saddle point energies can be

read off easily. Figures 16 and 17 were calculated in such a way that any two

local minima are joined by the saddle point with the lowest energy connecting

the two local minima.

Figure 16: A typical barrier tree of the random RNA sequence

CCGCUCUACUGAGCGAAUCGACUAGAAAUCGCGAUACGAUCG with length n = 42 as calculated with

barriers. The leaves 1-10 denote the 10 lowest local minima of the energy landscape, the

global minimum 1 on the right hand side of the plot is marked with an asterisk. Saddle

points connecting different local minima are labeled with capital letters from A to G. The

Energy barrier of 3 is B(3) = E(B) −E(3), whereas the Energy Barrier to reach 10 from

3 is E(3 → 10) = B(3) + (E(C) − E(B)) + (E(D) − E(C)) = 1.30 + 0.90 + 0.79 = 2.99

kcal/mol (T = 310.15K)
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There is still a fundamental question concerning the energy landscape:

What influences the ruggedness? In fact, the definition of neighborhood

strongly influences this feature of the surface. In other words the choice of

the move set critically forms the topology of the energy landscape. Figure 17

illustrates this strong metric dependency of the energy landscape. By chang-

ing the move set the connectivity of the local optima is changed dramatically.

The barrier heights as well seem to lower in general if the “shift” move is

used, which facilitates the annealing of defects. Since move set MS1 is subset

of move set MS2, as has been explained in the section 3.2, all local optima

of move set MS2 are also local optima under MS1, but not vice versa.
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Figure 17: The tree representation of the 20 lowest local minima (leaves) and the saddle

points (nodes) in the energy landscape of a typical RNA sequence. The lowest saddle points

connecting two local minima are shown for move set MS1 (upper plot: insertion/deletion)

and move set MS2 (lower plot: insertion/deletion/shift). The local minima are labeled in

ascending order starting with the ground state. Equivalent minima are labeled identically

in both trees. Upper plot: Cooresponding local minima from MS2 are given in brackets.

Local minimum 8 occurs only within MS1. Lower plot Local minimum 20 just occurs

here because is has not been seen yet in the upper plot, i.e. it has a higher energy up to

which we algorithm couldn’t get in the upper plot. Generally, The barrier heights and the

connectivity is strongly influenced by the move set.
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4.2 The Algorithm of barriers

The construction of the barrier tree starts from an energy-sorted list of all

suboptimal structures in a certain energy interval which can be calculated

with RNAsubopt (bundled with the Vienna RNA package). During the cal-

culation two lists of valleys are needed, an active an an inactive one. The

global minimum x[1] belongs to the first active valley V [1], while the list of

inactive valleys is empty initially. Going through the energy-sorted list of

secondary structures in increasing order there are three possibilities for each

structure x[k] at step k:

• x[k] has one or more neighbors in exactly one of the active valleys V [i].

In this case x[k] belongs to V [i].

• x[k] has no neighbors in either the active or the inactive valleys that

have been found so far. Then x[k] is a local minimum and determines

a new active valley Vl.

• x[k] has neighbors in more than one active valley, say{Vi1 , Vi2 , ..., Viq}.

In that case x[k] is a saddle point connecting those local minima. In the

barrier tree x[k] becomes an internal node and is added to the valley Vi1

with the lowest energy. All structures from the valleys Vi2, ..Viq are then

copied to Vi1 while the status of the valleys Vi2, ..Viq is changed from

active to inactive. Let us denote this instance with: Valleys Vi2, ..Viq

are being merged with Vi1 (which will be called the ’father’ from now

on). Due to this one can say that from the point of view of a structure

with an energy higher than the saddle point x[k], Vi1 , ..., Viq appear as

a single valley that is subdivided only at lower energies. Consequently,

after the highest saddle-point energy has been calculated, all valleys

except for the global minimum Vi1 are in the inactive list.

It is important to realize the fact that as soon as a valley Vik has been

merged with its father (and therefore copied to the inactive list), a ’deeper’

local minimum Vij is is not accessible any longer as the original valley Vik .
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Whenever a new structure that would belong to Vik is found, a recursion is

started that looks for the father of Vik .

The flooding algorithm can can be visualized with the following ’gedanken

experiment’ (figure 19): Imagine a landscape with only two deep valleys A

and B where A is energetically lower than B. Those two local minima are

separated by the local optimum X, which is a saddle point. Water rises

from bottom to top. In the first step (a), only the deeper valley A will be

slightly filled with water. For our algorithm this means that all structures

that are either below or exactly at the water surface belong to the local

minimum A (all other structures are not accessible by now as we go through

an energetically sorted list of secondary structures in ascending order). As

the water still rises we encounter a different situation in step 2 (b). Not only

A is filled with water, but also the deepest regions of B. From now on there

are more possibilities for the secondary structures to belong to: Depending

on which valley is the nearest (from the point of view of the conformation

space), i.e. which local minimum contains structures that are legal neighbors

of the actual one, a structure can either be added to A or to B.

Imagine the water rises further. The higher the water surface gets, the

more structures are being seen. This means that with every increment (con-

cerning the rise of the water) there are more possibilities for a structure which

has not been seen so far to have neighbors in one or more of the valleys. Step

3 (c) shows this situation: The saddle point X has been found and there

exists a structure which has neighbors in A and in B. In other words we can

say the two lakes coincide. This is of special importance for the algorithm.

As soon as X has been proved to be a saddle point, B is merged with its

’father’ A and all structures from B can now be accessed as if they would

be legal structures belonging to A. However, the algorithm does not stop

here. As illustrated in step 4 (d), the water rises on and only valley A is

still accessible. The end of the algorithm is reached as soon as either (a) all

secondary structures have been processed or (b) a predefined amount of local

minima has been found.
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Figure 18: Schematic representation of the internal structure of barriers. The algorithm

starts with an energy-sorted list of suboptimal secondary structures. They are processed in

ascending order. First, all legal neighbors (in terms of the chosen move set) of the actual

structure are generated and stored as a stack (A). Note that coils in the figure above

correspond to neighboring structures. In the second step, each element of the ’neighbor

stack’ is processed (B). A routine searches a hash if the actual (neighbor) structure has

yet been seen in a previous step of the computation. If this is true, the structure is

remembered. When all elements of the stack have been processed, (C), there are three

possibilities for the actual structure (whose neighbors were generated in A): If there was

no adjacent structure resulting from the hash-lookup-procedure, the actual structure is

a new local minimum and hence is added to the hash (D). If a neighboring basin has

been found, the actual structure is assumed to be ’transient’, which means it belongs to a

certain basin of attraction. It is then added to the hash as well (D). The third possibility

is that there have been found two or more local minima containing legal neighbors of the

actual structure. If this is the case, then a saddle point connecting those local minima has

been found. The energetically higher minimum is merged with the lower one (see text for

details) and the saddle point structure is added to the hash again (D). At this point, the

next structure is processed and the computation restarts with (A). This is repeated until

no suboptimal structures are left.
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(a) step 1 (b) step 2

(c) step 3 (d) step 4

Figure 19: ’Gedanken experiment’ for the flodding algorithm where water rises in a land-

scape. For details see text.

The outcome of this procedure is the following information: There exist

two local minima A and B which are connected by the saddle point X at

a certain energy. All structures in A (as B is not accessible any longer)

can be neighbors of other structures at higher energy. Evidently this is
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a very simplified ’gedanken experiment’. Real energy landscapes of RNA

secondary structures do not only contain just two local minima, but several

thousand. By applying this algorithm to RNA sequences typical barrier trees

(see figure 16) can be obtained. The output produced by barriers is shown

in figure 20. Evidently, the barrier tree can easily be reconstructed from this

so called ’bar-file’, as all barrier heights and connectivities among the local

minima are listed there.

     ACUGAUCGUAGUCAC
   1 ..((((....)))). ( -1.70)    0  13.60    0      142        0  -2.321       43  -2.010
   2 ((((....))))... ( -1.50)    1   3.60    1 ...(........)..        11        8  -1.742       29  -1.667
   3 ............... (  0.00)    2   1.80    1 ...(....)......         2        8  -0.032       60  -0.147
   4 ((.....))...... (  0.10)    2   1.70    1 .(.....).......         1       10   0.100        6   0.099
   5 .......((....)) (  1.70)    1   1.70    1 ........(....).         1       42   1.700        4   1.699

Figure 20: Output generated by barriers for the RNA sequence ACUGAUCGUAGUCAC. All

information needed to reconstruct the barrier tree (figure 24 in section 6.1) is given. Gen-

erally, an output file (bar-file) like this consists of m + 1 lines where m is the number of

local minima found in the system plus the first line containing the sequence. For details

on how to read this bar-file, see the table below.

column information

1 number of the local minimum

2 secondary structure of the local minimum in bracket-dot notation

3 energy of local minimum (in kcal/mol)

4 local minimum with which the actual local minimum was merged

(the father)

5 energy barrier by which the actual local minimum and its father

are separated (in kcal/mol)

6 multiplicity of the saddle point separating the actual local minimum

and its father

7 secondary structure of the saddle in bracket-dot notation

8 basin size of the local minimum

9 basin size of the father at the time of merging

10 free energy of the actual local minimum

11 number of structures attracted by the actual gradient basin

12 free energy of the gradient basin
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Note that the second line in the bar-file above looks slightly different from

the subsequent ones: As the local minimum 1 represents the global minimum

(and the mfe structure), there is no deeper valley it could merge with, so the

father is 0 (which means there exists no father). Hence there is no saddle-

point structure as well. The barrier height for the global minimum (13.00

kcal/mol in the example above) denotes that the calculation has been made

up to an energy of −1.70 + 13.00 = 11.3 kcal/mol above the mfe structure.

As the conformation space of the example sequence above does only consist

of 142 secondary structures, and the whole conformation space has been

considered for this calculation, no higher energy structures are available.

When dealing with longer sequences, we are able to calculate suboptimal

structures just up to a certain energy level and hence regulate up to which

energy barriers should do its computation.

Additional information on the energy landscape can be gained during the

construction of the barrier tree, i.e. we are interested not only in the local

minima as calculated by the algorithm described above, but also in so called

gradient basins. A gradient basin is the set of all initial points, from which a

gradient walk (steepest descent) ends in the same local minimum. Evidently,

this condition is just fulfilled, if gradient walks can be defined explicitly.

Within our algorithm this is achieved within the loop over all neigboring

secondary structures (step B in figure 18). A condition is evaluated, if a

neighbor structure with more negative energy can be found. This is repeated

for all neighboring structures. Finally, when all neighbors have been pro-

cessed and the negighbor with lowest energy has been found, it is also stored

in the hash. Basin sizes as well as gradient basin sizes can be calculated by

adding up all all structures belonging to the same basin or gradient basin

respectively. Additionally, we are able to calculate partition functions and

free energies of basins and gradient basins. For details see section 5.4.
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4.3 Degenerate Saddles

When talking about a single RNA molecule we always have to be aware of the

fact that there is a very large number of secondary structures this molecule

can fold into. This was shown in section 2.3. By applying Sn � n− 3
2 · αn

(equation 2) to an average sequence with n = 120 we get approximately

8.1 × 1028 structures. The number of possible secondary structures grows

exponentially with the length of the sequence.

It is interesting to combine this fact with the concept of the barrier tree.

A short consideration suggests that there should exist degenerate saddles, i.e.

different secondary structures with the same energy, each of which has legal

neighbor structures in the same local minima (see figure 21). We will also

denote them multiple saddles here. This is also supported by the density of

states concept, introduced in section 2.3: The overall shape of the density of

states for many RNA molecules is gaussian and the overwhelming majority

of structures is located within a small energy zone. This area should contain

multiple saddles.

Figure 21: A schematic representation of degenerate saddle points with a multiplicity of

2 (red balls). Both of them have the same energy and have legal neighbor structures in

each local minimum (black balls). Arrows point at the neighbors.

By strictly applying the above presentation of the algorithm of barriers,
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we encounter the following situation: The secondary structures are computed

one-by-one in energy-ascending order. If the algorithm finds a saddle point,

adjacent local minima are merged with their father and hence they are not

any longer accessible as potential valleys that could be connected with other

valleys via multiple saddles. We do not have any possibility to check if the

saddle point just found is degenerate or not.

To circumvent this problem, we have modified the original version of

barriers in a way that it also finds multiple saddle points if they exist in the

conformation space C. The major change in contrast to the original version

is the issue that now at each step of the calculation an energy band (a series

of structures within the range of some tenths kcal/mol) is being processed

’as-is’ and if a saddle point connecting several local minima is found, they

are not merged immediately but at the end of step, before the next energy

band is being processed.

Conceptually, degenerate local optima should be of special importance

when talking about transition rates between different local minima of the

barrier tree (for details see section 5.3, we will only touch this here for the

sake of completeness). They should influence a transition rate with a pre-

exponential entropic factor Γ

kij = Γe−β(ES−Ei) (5)

This is evident because the rate to reach one local minimum j from another

local minimum i should be the bigger, the more possibilities (in our case

the more saddle points) there are via which the transition has to take place.

Unfortunately, figures 22 and 23 reveil that there are not too many multiple

saddle points in the lower energy regions of the barrier trees (the regions

where the ’interesting’ folding kinetics take place). We therefore decided not

to include degenerate saddles in our further investigations.



4.3 Degenerate Saddles 43

Figure 22: Saddle point energy versus saddle point multiplicity. Taken from a short ar-

tificial RNA chain CCGGCGCGUCGCCGUAAGCGCGCUCGGGCAUAUAUAUUCAUAUGC with a sequence

length of n = 45. For this calculation, all suboptimal structures in the interval between

-19.10 kcal/mol and -3.10 kcal/mol have been considered, structures were read in in en-

ergy intervals with ∆E = 0.01 kcal/mol. Note that no multiple saddles occur within

approximately 8.5 kcal/mol above the ground state.
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Figure 23: Saddle point energy versus saddle point multiplicity from a tRNAphe. All

suboptimal structures in the interval between -19.10 kcal/mol (mfe) and -9.10 kcal/mol

have been considered.The structures were read in energy intervals (energy bands) with

∆E = 0.01 kcal/mol.
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5 Markov Chains

This chapter deals with a particular class of stochastic models that form

a cornerstone of this thesis. Stochastic models are widely used to describe

phenomena that change randomly as time progresses. We focus on Markov

chains, as simple and adequate models for many such phenomena.

5.1 Stochastic Processes

A stochastic process {Xt|t ∈ T} is a family of random variables Xt defined

over the same probability space and taking values in a set S, usually referred

to as the state space of a process. The parameter set T is often interpreted

as time, and is sometimes called the time range. Each random variable

Xt describes a snapshot random distribution on the state space S of the

process at time t. The time range can be either discrete or continuous.

This distinction separates two classes of stochastic processes, discrete time

stochastic processes and continuous time stochastic processes. For simplicity,

we assume that T is a subset of the nonnegative real numbers
� +, in the

discrete time case we identify T with the set of natural numbers � including

0.

A Markov process is a stochastic process that satisfies additional require-

ment. This Markov property requires that, for any given time instant (say tn)

the future behavior, for instance the value of Xtn+1
, is totally independent of

its history, i.e. the values of Xtn−1
, Xtn−2

and so on. It only depends on the

state occupied at the current time instant tn, given by the value of Xtn .

In mathematical terms the Markov property requires that, for each se-

quence of time instances tn+1 > tn > tn−1 > tn−2 > ... > t0 (of arbitrary

length n), we have that for each subset A of the state space S,

Prob{Xtn+1
∈ A|Xtn = Pn, Xtn−1

= Pn−1, ..., Xt0 = P0}

= Prob{Xtn+1
∈ A|Xtn = Pn} (6)

Thus, the fact that the process was in state Pn−1 at time tn−1, in state Pn−2
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at time tn−2, and so on up to the fact that is was in state P0 at time t0 is

completely irrelevant. The state Xtn contains all relevant history information

to determine the random distribution on S at time tn+1. The above definition

owes its name to A.A. Markov [39], who studied processes with this property

at the beginning of the last century.

The above definition is tailored for continuous time Markov processes.

In the discrete time case, the Markov property becomes somewhat simpler,

since we do not have to bother about arbitrary sequences of time instances.

Instead, we consider the (unique) sequence that contains all former time

instances. Since we identified T with � we simply require for arbitrary t ⊆ � ,

Prob{Xt+1 ∈ A|Xt = Pt, Xt−1 = Pt−1, ..., X0 = P0}

= Prob{Xt+1 ∈ A|Xt = Pt} (7)

It is worth to point out that the Markov property does not imply that the

future behavior is independent of the current time instant t. If the value

Xt does depend on t, the process is said to be inhomogeneous. However,

throughout our discussion in the remainder of this thesis we shall assume

that Markov processes are independent of the time instant of observation. In

this case, a Markov process is said to be homogeneous; we gain the freedom to

arbitrarily choose the origin of the time axis. In technical terms, homogeneity

requires that we have (for t′ ≥ t and A ⊆ S),

Prob{Xt′ ∈ A|Xt = P} = Prob{Xt′−t ∈ A|X0 = P} (8)

The last simplification that we will impose concerns the state space S of a

homogeneous (discrete or continuous time) Markov processes. Similar to the

time range, the state space can be either discrete or continuous. We will only

consider discrete state spaces here. This class of Markov processes is widely

known as Markov chains.

By now, we have made three major restrictions for our requirements in

contrast to the very general model of stochastic processes

• the Markov Property
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• homogeneity and

• discrete state spaces.

Although the resulting class of homogeneous discrete and continuous time

Markov Chains is one of the simplest classes of stochastic processes at all,

it is adequate for our needs. Generally, Markov Chains are used to model a

large variety of real world applications. The enormous amount of literature

that exists on this subject testifies this, for example see [1]. Let us now

consider a more exhaustive look at continuous time Markov Chains.

5.2 Continuous Time Markov Chains

A continuous time Markov chain Xt is a Markov process with discrete state

space but continuous time range. We reformulate the Markov property (equa-

tion 6), with tn + ∆t > tn > tn−1 > tn−2 > ... > t0:

Prob{Xtn+∆t = P ′|Xtn = P, Xtn−1
= Ptn−1

, ..., Xt0 = Pt0}

= Prob{Xtn+∆t = P ′|Xtn = P}

= Prob{X∆t = P ′|X0 = P} (9)

If we substitute P with i and P ′ with j then the last expression can be

rewritten as

Prob{X∆t = j|X0 = i} = pij (10)

This expression denotes the probability to reach state j from state i within

the time step ∆t. It is important to note that this probability (due to time

homogeneity (equation 8) is independent of the actual time instant tn (or t′

or 0) of observation. Nevertheless there is a linear dependence on the length

of the interval ∆t. More precisely, for every pair of states i and j, there is a

parameter k such that (for small ∆t)

Prob{X∆t = j|X0 = i} = k∆t + o(∆t) (11)

where the sum over the probabilities to pass through intermediate states

between i and j is given by o(∆t). For us, the more important factor is k,
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which denotes a transition rate between i and j, a small nonnegative real

number that scales how the transition probability increases with time. We

shall assume here that i and j are different states. If, for any reason, i

and j coincide, the probability to remain in state i during the time interval

∆t (hence Prob{X∆t = i|X0 = i}) decreases with time, starting from 1 if

∆t = 0. The corresponding transition rate is thus a negative real value which

is implicitly determined by the increasing probability to leave state i.

In contrast to transition probabilities, transition rates do not depend on

the length of time intervals. More generally, the probabilistic behavior of a

continuous time Markov chain is completely described by the initial state (or

distribution) and the transition rates between distinct states. We are now

able to determine a continuous time Markov chain by means of a specific

transition relation i
k

� j, defined over a certain state space S with an initial

state i. They are called Markovian chains.

Definition 1 A Markovian transition system is a tuple (S, � ), where

• S is a nonempty set of states, and

• � is a Markovian transition relation

A Markovian chain is a triple (S, � , i), where

• (S, � ) is a Markovian transition system, and

• i ∈ S is the initial state

Definition 2

A Markov chain (or Markovian chain) is said to be irreducible if it is possible

to reach every state from every other state (not necessarily in one step).

A fundamental fact is that there exists a unique stationary distribution

π = (πi : i ∈ S), i.e. a unique probability distribution satisfying the balance

equations

πj =
∑

i

πipij (12)
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for all j. The point of stationarity is that, if the initial distribution X0 of

the chain is random with the stationary distribution π, then the position Xt

at any subsequent non-random time t has the same distribution π, and the

process (Xt, t ≥ 0) is then called the stationary chain. As a result of this

stationarity, we can formulate an essential convergence condition: For any

initial distribution

Prob{Xt = j} → πj as t → ∞ or all j (13)

5.3 The Model

In the last sections two things were discussed which are crucial for the un-

derstanding of the remainder of this thesis. First, the move set and its

influence on the topology of the energy landscape and second the algorithm

of barriers which enables us to find valleys and local optima and hence

allows for an efficient computational investigation of this landscape. Barrier

trees were used to get an impression on local minima and saddle points.

Barrier trees have been considered recently for various models of disor-

dered systems, including spin glasses and combinatorial optimization prob-

lems [3, 4, 15, 19, 37].

A very interesting approach for the understanding of kinetic folding of

RNA was suggested by Christoph Flamm [16, 18]. He introduced the tool

kinfold which is capable of calculating trajectories for the investigation of

time evolution of RNA secondary structures. More generally, kinfold is

capable of simulating the whole kinetic folding process of RNA molecules

using the following ansatz:

Let I be a sequence which specifies a set of structures with which it is

compatible,

S(I) = {S0, S1, ..., Sm} ∪ {0} (14)

where S0 is the minimum free energy (mfe) conformation, S1..Sm are en-

ergetically ordered suboptimal conformations and 0 is the denatured, open
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chain conformation. The set S(I) and the move set introduced in section 3.2

form the conformation space as mentioned earlier in section 2.3. A trajectory

T (I) (as computed by kinfold) is a time-ordered series of secondary struc-

tures in S(I). Because the conformation space of secondary structures are

always finite, every trajectory will reach S0 after sufficiently long time. The

folding time τ (associated with a trajectory) is defined as the first passage

time, that is, the time elapsed until S0 is encountered first. Due to the fact

that τ may well be too long for a computer simulation, one can distinguish

between trajectories that actually attain the ground state within the limits of

a simulation from those that are trapped in a thermodynamically suboptimal

conformation.

Translated into the language of chemical kinetics, the system is the RNA

chain and a state of the system is a certain conformation of the RNA chain.

Given the move set, RNA folding can then be modeled as a Markov process

in conformation space as introduced in section 5.2. More precisely, if Xn

denotes the state of the system at time n, the probability pij to find the

system in state j after time ∆t starting in state i is given by equation 10

Prob{X∆t = j|X0 = i} = pij = kij∆t + o(∆t)2 (15)

The probability distribution P of structures as a function of time is ruled by

a set of forward equations, also known as the master equation

dPt(i)

dt
=

∑

j 6=i

[Pt(j)kji − Pt(i)kij]. (16)

Within this stochastic formulation, kij is the probability that a transition

from a distinct state i to another distinct state j occurs within the infinitesi-

mal time interval dt. For the soultion of the last equation (in matrical form),

it is necessary to formulate a square intensity matrix (transition matrix)

U = (uij)i,j which contains the transition rates between different states of

the system

uij =







kji if i 6= j,

−
∑

l 6=i kli if i = j
(17)
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Equation 16 can be rewritten in matrical form:

d

dt
Pt = UPt (18)

We are interested in calculating the temporal distribution vector Pt, which

can be calculated from the explicit solution of 18

Pt = etUP0 (19)

where P0 is the initial distribution vector.

In principle, equation 18 can be integrated numerically. Tacker et al. [56]

used this technique to assess the feasibility of particular folding pathways

of melting and refolding of tRNAphe. Breton et al. [5] proposed a rigorous

model of a sequential RNA folding process during transcription using this

ansatz.

Our main problem is the calculation of population probabilities for local

minima of the barrier tree. The structure probability distribution for the

allowed local minima of the barrier tree can be calculated recursively from

equation 19. Unfortunately, U is a matrix of dimension n where n is the

number of local minima treated in the current simulation. As it is very

difficult and inefficient to evaluate an expression like eU, similar to the right

side of equation 19, the calculations are performed in the eigen space of the

system as pointed out in the following.

Efficient diagonalization algorithms only exist for symmetric matrices.

Due to the fact that U is not a symmetric matrix, it is necessary to sym-

metrize it. Generally, this can be achieved for self-adjoint matrices that

satisfy detailed balance, such as Markov transition matrices (equations 23

and 24). A symmetric matrix S is obtained, which has the same eigenvectors

and eigenvalues as U.

S = VΛV+ (20)

Λ = V+SV (21)

V is the matrix with the eigenvectors of S in column-order and Λ is a matrix

with the eigenvalues of S in the diagonal. In matrical form, equation 21 can



5.3 The Model 52

be written as







λ1

. . .

λn






=







v1

...

vn






· S ·






v1 . . . vn







Analogous we can write

etS = VetΛV+ (22)

S and U are associated with each other in the following way:

S = π1/2Uπ−1/2 (23)

U = π−1/2Sπ1/2 (24)

where π is the equilibrium distribution as introduced before, i.e. it is the

eigenvector associated with the biggest eigenvalue of U. The next step is to

calculate etU. Substitution of S in equation 24 with expression 20 gives

U = π−1/2VΛV+π1/2 (25)

and analogously (note that etΛ is a diagonal matrix)

etU = π−1/2VetΛV+π1/2 (26)

We insert equation 26 in the right side of equation 19

etUP0 = π−1/2VetλV+π1/2P0 (27)

Pt = π−1/2VetλV+π1/2P0 (28)

With substitution of

π−1/2V = M and V+π1/2 = N

the original expression 19 reduces to

Pt = M exp(tΛ)NP0 (29)
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which can be calculated with moderate effort.

What still needs to be established is a rule for the rate-constant kij be-

tween two secondary structures i and j of the conformation space. We de-

cided to chose the standard Metropolis rule [43], which was originally designed

for studying equilibrium properties of matter and has also been applied suc-

cessfully to kinetic problems like protein folding [57] on the one hand side, as

well as the symmetric Kawasaki rule [36] on the other hand side. Both will

be described in the following.

Let Gi be the free energy of the secondary structure i from which an

allowed move to structure j with free energy Gj is made. Then, the transition

probability kij as given by the Metropolis rule is:

kij =







e−
∆G
kT if Gj > Gi,

1 if Gj ≤ Gi,
(30)

where ∆G = Gj − Gi.

The gradient of an energy landscape is an important determinant of the

speed of moving uphill or downhill. The Metropolis rule only recognizes

the uphill gradient. For uphill steps, by using the Boltzmann coefficient,

sampling gets rarer as ∆G > 0 increases. In contrast, all downhill steps

(∆G ≤ 0) are accepted with the same probability. This corresponds to the

physical assumption that the spatial range of “favorable” contact interaction

is literally zero, so residues along the chain would not “feel” any attraction to

form a favorable contact. Since in Metropolis sampling the rates of forming a

favorable contact does not increase with the contact’s favorability an intrinsic

upper limit to downhill folding rates is set, which can be understood as a

“diffusion limit” of the model.

A symmetric rule, which takes the gradient into account for both, uphill

and downhill steps, is preferable, in order to avoid an intrinsic diffusion limit.

Such a rule was first introduced by Kyozi Kawasaki [36] for studying time-

dependent Ising models.

Due to Kyozi Kawasaki the symmetric rule evaluating the transition be-



5.4 The Barrier Tree Approximation 54

tween the two states i and j connected by the reaction channel α is formulated

as:

kij := e−
∆G
2kT (31)

Note that the free energy difference ∆G between the two states i and j

must be divided by 2kT to get the detailed balance right. The Kawasaki

dynamics approaches the Boltzmann distribution at equilibrium because it

satisfies microscopic reversibility [25]. For a detailed discussion of other pos-

sibilities to formulate the transition probabilities pij, see [9, 26]. As long as

the law of detailed balance is satisfied by the rule, evaluating the transition

probabilities, and the move set does not introduce too large conformational

changes, the choice of a particular rule for the transition probabilities has

only a small effect on the dynamics of the system, because then a state i

quickly equilibrates with it’s neighboring states.

5.4 The Barrier Tree Approximation

In the last section, the general model for the kinetic folding of RNA was

introduced. In a previous section we learned that the conformation space

grows exponentially with the chain length of the RNA molecule. Due to the

fact that the algorithm of kinfold makes use of a stochastic model, very

many trajectories have to be calculated to get a representative impression

on the real folding behavior of the molecule. Furthermore one has to bear

in mind that all secondary structures within a certain energy interval must

be considered within such a simulation. These are the reasons which make

realistic kinfold-simulations for longer, biologically more relevant sequences

very intensive in terms of time and computer resources and this even leads

so far that it is not possible to simulate the kinetic folding of RNA sequences

with n > 500. As a matter of fact we have to replace this stochastic model

with a deterministic one: It is necessary to reduce the conformation space.

Which states should be considered within the new, restricted conforma-

tion space? A short investigation of possible alternatives leads us back to



5.4 The Barrier Tree Approximation 55

the concept of barrier trees. As mentioned in section 4.1, a barrier tree rep-

resents the energy landscape of a RNA molecule, i.e. it shows local minima

and saddle points. Why shouldn’t we make use of exactly these structures

and ’map’ the original (very large) conformation space onto the barrier tree?

We constitute that the energy landscape is represented ’as-is’ by the barrier

tree and its local minima and saddle points and there are no additional states

(structures) that the system can attain. More formally, we can say that the

state space S is partitioned into macro states (subsets of S). In our case,

such a macro state is characterized by a local minimum of the barrier tree.

With this ansatz, it is interesting to find out about the population proba-

bility of certain local minima on the barrier tree with respect to the fact that

they are separated by more or less high energy barriers. In fact, we focus our

investigations on the following questions:

• When starting the simulation at a specific local minimum of the tree

(e.g. the denatured, open chain conformation), how long does it take

for the system to reach an equilibrium state.

• To which extent are other local minima being populated on the way

from the start structure to the minimum free energy structure.

To investigate these questions we make use of the concept of continuous

time Markov chains introduced in section 5.2. As mentioned before, the

conformation space is reduced in a way that we are only interested in local

minima present in the barrier tree. In our special case, the system is the

RNA chain and a state is the population probability of local minima of the

energy landscape.

Let γ(i) be the basin/gradient basin of local minimum i. Let further α

and β be two different arbitrary macro states, πα and πβ the equilibrium

distribution for state α or β respectively. Then the partition function of γ(i)
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is given by1

Z∗
γ(i) =

∑

j∈γ(i)

exp(−Ej/kT ) (32)

and the free energy is

Gγ(i) = −kT ln Z∗
γ(i) (33)

As we have to deal with a partition, it follows that

Z =
∑

i

Z∗
γ(i) (34)

From the last two equations we can derive

∑

α

e−Gα/kT = Z (35)

which illustrates that it is allowed to use macro states within our calculations.

We are interested in formulating transition rates between different states of

the system. To do this, it is necessary that the following requirements are

fulfilled. First, we claim that

πα =
∑

i∈α

πi (36)

and second it is necessary that detailed balance (compare equation 12) must

be fulfilled.

uβαπα = uαβπβ for all α, β (37)

In fact, the detailed balance condition can also be seen as a condition for the

reversibility of the system. With combination of

πi = exp(−Ei/kT )/Z (38)

and equation 32 it follows that

πα = Z∗
α/Z = (1/Z) exp(−Gα/kT ) (39)

1For the remainder of this thesis we will calculate with gradient basins.
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which defines an equilibrium distribution for state α. This can be used (in

combination with the detailed balance condition 37) to derive

uβα

uαβ

=
e−Gβ/kT

e−Gα/kT
(40)

which can be extended to

uβα

uαβ
=

e−(ESαβ−Gα)/kT

e−(ESαβ−Gβ)/kT
(41)

where ESαβ denotes the energy of the saddle connecting states α and β.

We are finally able to formulate an ’effective transition rate’ kαβ from state

α to state β. In our case the off-diagonal elements of matrix U (section 5.3)

are given by

uβα = kαβ = Γαβ exp(−(Eαβ − Gα)/kT ) (42)

Gα denotes the free energy of state α, k represents the Boltzmann-constant

(which must not be confused with the transition rate kαβ) and T the absolute

temperature. Γαβ = Γβα is a prefactor that can be related to the entropy of

the ’transition state’. In the simplest case it could be approximated by the

multiplicity µαβ of the saddle point:

Γαβ = Γ0µαβ (43)

The prefactor Γ0 sets the time unit. At present we do not have a satisfactory

model for Γ0. Due to the fact that µαβ are small (section 4.3), we set it equal

to 1, to simplify matters.

5.5 Reliability and Comparison

One of the most important facts that we always must be aware of is the fact

that the model presented here builds onto the assumption that the dynamic

behavior of a folding RNA molecule should be simulated using a barrier

tree. In contrast to our model, the conformation space of RNA molecules in

vivo is not limited to some ’macro-states’ (represented by the local minima
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of the landscape), i.e. the dynamics develops by making use of very many

secondary structures. This leads us to the question: What is the actual

dynamic behavior of a RNA molecule and how can we prove the correctness

of our simulations?

To give a reasonably correct answer to that question, we need to include

the whole conformation space of the observed molecule in our calculations.

As we learned in section 2.3, the number of suboptimal secondary structures

of a given RNA sequence grows exponentially with the chain length n. Even

for small molecules it becomes very soon very big, even as big as it cannot

be treated any more within a computer simulation. The limiting factor con-

cerning computer resources is RAM, as the transition matrix (section 5.3)

has to be stored as a whole during diagonalization. Nevertheless it is possible

to calculate the dynamic behavior for some reasonably small conformation

spaces with up to a few thousand secondary structures on modern machines

with 1GB RAM. We call this the full process - in contrast to the tree process

within our model. Due to the fact that the full process includes the entire

conformation space of a given RNA molecule, it represents the ’real’ dynamic

behavior of the sequence and hence is an ideal reference for our simulations.

Again, we modified barriers to gather information on the neighborhood

relations among all secondary structures. Within the full process we formu-

lated transition rates between the different secondary structures using the

Metropolis and the Kawasaki rule introduced in section 5.3.
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6 Computational Results

In the last sections the theoretical background of this thesis and the under-

lying model was introduced. With knowledge of the fundamental properties

of RNA chains, the move set, the landscape described by barrier trees, the

stochastic model of Markov chains and the formalism given in the last section

we are now able to investigate the dynamic behavior of RNA molecules of

moderate size, i.e. this allows us to calculate the time-evolution of popula-

tion probabilities of local minima on the barrier tree. The tool which does

the effective calculation is called markov and was written in ANSI C.

This section is divided into three subsections:

• The first one can be seen as an introduction to markov. We will demon-

strate its capabilities with a small RNA sequence of length n = 15.

• In the second part we take a closer look at a slightly longer RNA chain

whose entire conformation space consists of 876 structures and hence

the full process can still be treated within markov.

• Finally we show the capabilities of the algorithm when investigating

a longer RNA sequence, whose full process cannot be calculated any

more (due to the fact that there are too many suboptimal secondary

structures).

6.1 A first example: sexi

As a first application of the algorithm we will analyse the small artificially

designed RNA chain with sequence ACUGAUCGUAGUCA and length n = 15 (the

same sequence, which we will denote ’sexi’ from now on, was used before in

section 4.2 to explain the output of barriers). There is a simple reason why

sexi is an ideal model sequence: As it is very short, its conformation space

C (see section 2.3) does only consist of 142 structures. Figure 24 shows

a barrier tree of sexi, which gives an impression on the simple shape of the

associated energy landscape. From the bar-file we know that local minimum 3
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Figure 24: Barrier tree of the RNA sequence ACUGAUCGUAGUCAC with n = 15, illustrating

that the conformation space is very small and there exist just 5 local minima (illustrated

by bracket-dot-notation). Local minimum 3 denotes the open chain conformation. For

details see text.

denotes the denatured open chain conformation. We further know that local

minimum 3 was merged with local minimum 2, which itself was merged with

the global minimum 1. Local minimum 4 is also connected with 2, whereas 5

is directly linked with the subtree containing the global minimum at higher

energy. We start our simulation assigning local minimum 3 a population

probability of 1, which means 100 percent of the population is situated in

this local minimum initially. The upper part of figure 25 shows how the

population probabilities of the lowest four local minima evolve with time,

ending with the reach of an equilibrium distribution after approximately

1046 time steps. (Note that we use arbitrary time-units here). Figure 25

shows that at the beginning of the simulation, the population of 3 descends

rapidly, allowing a population of the other local minima. Local minimum
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4 reaches a population maximum at about 7 time-units, whereas 2 reaches

its maximum after about 43 time-steps. At this time almost 100 percent

of the total population is shared among local minima 1 and 2, just a little

percentage is still populating 3 and 4.

The lower part of figure 25 reveils that the results gained within the

simulation using the concept of the barrier tree are in general accordance

with the ’real’ dynamic behavior of the folding RNA molecule. Although

we have to deal with a different time range (still in arbitrary units), the

qualitative results are very similar. With the full process (and the standard

Metropolis transition rates discussed in the last section), our model sequence

reaches an equilibrium population distribution after approximately 2960 time

units.

local minimum population probability secondary structure

1 0.6035 ..((((....)))).

2 0.3459 ((((....))))...

3 0.0294 ...............

4 0.0197 ((.....))......

5 0.0015 .......((....))
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Figure 25: Dynamic behavior of the four lowest local minima of the model sequence sexi.

The upper image shows the results of the simulated process from the barrier tree, whereas

the lower image shows the results for the full process including all secondary structures

assuming transition rates of the Metropolis-type. ’Method B’ in the upper image denotes

that transition rates between all local minima have been considered, not just between

connectivities listed in the bar-file.
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6.2 The medium-sized molecule: bertl

After illustrating the capabilities of markov with a small example in the last

section we will now step onwards to a sequence with a bigger conformation

space containing 876 secondary structures. The artificial sequence to be dis-

cussed here (denoted ’bertl’) is CGCGCUACUCCUAGAGCU with n = 18. Although

it is just slightly longer (3 bases) than sexi, the energy landscape now contains

11 local minima (figure 26). Appendix A lists the bar-file and a dot-plot.
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Figure 26: Barrier tree of the artificial RNA sequence bertl. Local minima 1 and 2 are

separated by an energy barrier of 5.10 kcal/mol, local minima 7 on the left hand side

represents the open chain conformation. Note that the subtrees containing 2 and 7 are

connected with 1 at the same energy of 2.4 kcal/mol.
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The ground state which folds into the the structure ...(((........))). has

an energy of -3.30 kcal/mol. Figure 27 shows the dynamics of this second

example molecule: As in the previous section, the upper picture shows the

simulated process from the barrier tree, whereas the lower one shows the full

process including all 876 suboptimal secondary structures calculated with

the Metropolis rule.

We started the simulation with a population probability of 1 at the open

chain conformation (local minimum 7). In both plots, 7 disappears so rapidly

that its population probability can be neglected after approximately 100

steps. By observing the barrier tree we see that the lowest three local minima

are situated in a rather narrow energy interval (in contrast to the other

valleys). This elucidates that in the equilibrium case, there should be three

minima which are observably populated: 1, 2 and 3. This fact is proved by

the curves in figure 27.

Although generally the results of both runs (tree and full process) are

very similar (especially the curve for local minimum 1), the curves for local

minima 2 (red) and especially 5 (yellow) are slightly different. In the tree

process, 2 has its population maximum at approximately 47 time steps (42,52

percent) and is (at this point in time) definitely more populated than 1 (36,60

percent). In contrast to that, 2 has its maximum after 270 time steps (37,85

percent) in the full process and hence is less populated than 1 at the same

time (41,10 percent). Local minimum 5 is only slightly populated in the tree

process, whereas it shows a population probability of even 16,25 percent after

37 time steps in the full process.

local minimum population probability secondary structure

1 0.5486 ...(((........))).

2 0.2441 .((.(((....))).)).

3 0.1548 ...(((.((...))))).

4 0.0294 .((............)).

5 0.0015 .......(((...)))..

7 0.034 ..................
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Figure 27: Dynamic behavior of the lowest local minima of the model sequence bertl.

Similar to figure 25 in section 6.1, the upper image shows the results of the simulated

process from the barrier tree, whereas the lower image shows the results for the full process

including all secondary structures assuming transition rates of the Metropolis-type. Again,

’Method B’ in the upper image denotes that transition rates between all local minima have

been considered.
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6.3 The switching molecule

After an exhaustive discussion of markov with small molecules in the last two

sections, we will now leap to a RNA molecule with (1) a large conformation

space of more than 60000 secondary structures and (2) a very interesting

behavior. To be more precise, we will focus our investigations on the RNA

sequence GUGUUUGAGAGGAUAUGGCGUUUUUUUGGAUGC which was used in [17] as

an example of a bi-stable RNA sequence. Bi-stable RNA molecules (also

denoted RNA switches) can fold into two or more thermodynamically stable

secondary structures which are separated by a high energy barrier, which

means that besides the subtree containing the global minimum, there are

other dominating subtrees in the barrier tree (figure 28). Recently, artifi-

cial RNA switches have been designed. An impressive example is described

in [51], where a sequence that can satisfy the base-pairing requirements of

both the hepatitis delta virus self-cleaving ribozyme and an artificially se-

lected self-ligating ribozyme, which have no base pairs in common, has been

designed. Software tools for constructing RNA switches were introduced,

see [17] and [20] for further details. Current research in our group focuses on

RNA sequences that can fold into more than two stable secondary structures.

We simulated two different scenarios with this RNA molecule.

• First, the same scenario which was used in the previous section: The

open chain conformation is assigned a population probability of 1 at

the beginning.

• Second, the refolding dynamics of this RNA switch when starting the

simulation with the metastable structure.

Both runs show interesting dynamic behavior of the molecule.

Let us first discuss the case when starting with the denatured, open chain

conformation (upper plot in figure 29). From the bar-file (not listed) we know

that local minimum 81 in figure 28 corresponds to the open chain conforma-

tion. This is represented by the green trajectory, which falls off very quickly,

enabling a slight population of the deepest minimum in the left subtree, 8, as
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Figure 28: Barrier tree of the bi-stable RNA sequence GUGUUUGAGAGGAUAUGGCGUUUU

UUUGGAUGC. The deep local minimum 8 (-6.7 kcal/mol) on the left hand side is sepa-

rated from the subtree on the right hand side via an energy barrier of 10.10 kcal/mol. The

energy of the mfe structure is -8.20 kcal/mol, directly followed by local minimum 2 with

-8.10 kcal/mol. The denatured open chain conformation is represented by local minimum

81 in the very left part of the tree.

well as a population of local minimum 20. (Note that adjacent local minima

are being populated in the region between approximately 2 and 50 time-steps

as well, but due to the fact that neither of these local minima shows an effec-

tive population probability of more than 10 percent, they are not included

in figure 29.) Nevertheless the more interesting region is between 10 and ap-
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Figure 29: Dynamic behavior of the switching molecule. The upper plot shows the results

of the simulation when starting with the open chain conformation (local minimum 81).

Within this simulation, the left subtree from figure 28, i.e. local minimum 8 is being

populated noticeably. The lower plot shows the results of a refolding-simulation from

local minimum 8 to the mfe structure. Only the first three local minima in the right

subtree are being populated clearly. Note that in both plots only noticeably populated

local minima from the barrier tree are shown.
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proximately 1000 time-steps. After its population maximum at 19 time steps,

the trajectory of 20 falls off again, enabling a population of local minimum 8

containing the metastable structure ((((((....)))))).((((((....))))))

Besides 8, local minima 1 and 2 are being populated as well in this region.

Note that the population probabilities of 1 and 2 have to be added to get

an impression on the population ratio between the left and the right subtree

in figure 28. Local minimum 8 has reached its population maximum after

530 time-steps. Finally, after 272100 time-steps the equilibrium has been

reached. Local minimum 8 has fallen off and almost 62 percent of the total

population is shared among local minima 1 and 2 in the right subtree and

only 4.45 percent remain in local minimum 8.

A completely different scenario is given in the lower plot of figure 29. To

be more precise, the refolding dynamics of our switching molecule is shown

here. Refolding means that we start the simulation with a population prob-

ability of 1 in the lowest minimum of the left subtree in figure 28, local

minimum 8. What stands out at first is the fact that during the first 1000

time steps, the whole population seems to remain in the left subtree. This

is evident and can be explained by the high energy barrier (10.10 kcal/mol)

that has to be overcome to change into the subtree containing the mfe struc-

ture. In the subsequent time region, say between 1000 and 100000 time

steps, the population ratio changes dramatically: A large percentage crosses

the energy barrier and hence the lowest local minima of the right subtree

are populated. (Note that we have the same situation as in the upper plot

here where only strictly populated local minima are shown.) Finally, after

approximately 311000 time steps the equilibrium has been reached and more

than 90 percent of the total population is situated in the right subtree. See

the table below for the exact population values of selected local minima.
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loc. min. eq. pop. prob. secondary structure

1 0.3394 (((((..(((((((.....)))))))..)))))

2 0.2789 (..((..(((((((.....)))))))..))..)

3 0.0770 (((((..(((..((.....))..)))..)))))

4 0.0633 (..((..(((..((.....))..)))..))..)

5 0.0411 ((((..((((((((.....))))))))..))))

6 0.0349 ((((((((((((((.....))))))))))))))

7 0.0338 (..(..((((((((.....))))))))..)..)

8 0.0445 ((((((....)))))).((((((....))))))

Having the information about the folding kinetics within our barrier tree

model, we are now able to compare these results with computational results

of the same molecule generated with kinfold (section 5.3). This is shown

in figure 31. The upper plot shows the results of 4000 kinfold - simulations

of the observed molecule, i.e the first passage times of the folding starting

with the open chain conformation and ending in the mfe structure. At first

glance, two different folding mechanisms are visible: The first, fast mech-

anism describes the direct fold of a small percentage from the open chain

conformation to the ground state (time ≤ 500). After the large plateau the

majority of the folded molecules take times greater than 100000 time-units

to reach the ground state (slow mechanism via the metastable structure).

Note that the shape of this trajectory is similar to the trajectory for the mfe

structure in the upper plot of figure 32, where we made the mfe an ’absorb-

ing’ state, meaning that in the transition matrix the rate to other states are

extremely small.

The lower plot shows the refolding of our sequence from the metastable

structure to the ground state. Evidently, this takes a long time as the high

energy barrier separating local minima 8 and 1 on the barrier tree must be

overcome. The lower plot of figure 32 shows the results of markov refolding-

simulations from the metastable to the stable structure, yielding qualitative

similar results.

Figure 30 shows the energy profile of the refolding from the metastable



6.3 The switching molecule 71

structure 8 to the mfe structure 1 (generated with barriers). Appendix B

lists all secondary structures mentioned here. It is interesting that the refold-

ing takes place via the open chain conformation (13). At the beginning, one

of the two stems in (00) is opened, ending in an energetically favorable struc-

ture (07). Note that the open chain conformation must be visited because

another nucleation center is needed. This is gained in (14). The subsequent,

energetically unfavorable region can be explained with the fact that the nu-

cleation region started in (14) is not yet optimal. After (23) has been visited,

the way is opened for the formation of the mfe structure (36).
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Figure 30: Energy profile showing the complete refolding path from the metastable struc-

ture to the mfe structure. Interesting steps are 7 (only one stem remains), 13 (open

chain conformation) and 20 (unfavorable lonely pairs in structure). Appendix B lists all

secondary structures displayed here.
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Figure 31: upper plot: 4000 kinfold - simulations of the switching molecule. Three

dominating regions are visible: A small percentage folds directly (or within less than 500

time-units) to the ground state. Approximately 18-19 percent folds within 500 and 100000

time units (second area). Finally, the majority has folding times greater than 100000 time

- units. Lower plot: 2000 kinfold - simulations showing the slow refolding dynamics of

the RNA switch. For details see text.
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Figure 32: markov-simulations of the switching molecule with the assumption that the

ground state is absorbing. Results gained here are qualitatively similar to the results

gained from kinfold-simulations. Although the shape of all curves is similar fo figure 31,

the time-depencency is different and can be explained with the pre-exponential factor

within the transition rates.
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7 Conclusion and Outlook

RNA is known to exhibit important tasks in living cells. It does not only serve

as information-transmitting unit but also shows catalytic activity. RNA sec-

ondary structures provide a convenient form of coarse graining, hence their

study yields information useful in the prediction of the full three dimen-

sional structure as well as in the interpretation of the biochemical function

of the molecules. The secondary structure model is sufficiently simple to al-

low efficient algorithms to compute (almost) any thermodynamic quantity of

interest, yet it is still close enough to reality to address problems of particular

interest.

The inter-conversion between different secondary structures is determined

by a metric, called move set. The most elementary move set (at the level of

secondary structures) consists of removal and insertion of a single base pair

(with the assumption that no knots or pseudo-knots are inserted into the

structure). Besides this simple move set, a slightly more sophisticated move

set which enables additional base pair ’shift moves’ is supported. These shift

moves faciliate sliding of the two strands of a helix, bulge diffusion along

the helix and the inter-conversion of partially overlapping helices, which are

assumed to be important effects in the dynamics of RNA molecules.

Evidently, the structure of the energy landscape of a RNA molecule, i.e.

the definition of ruggedness is associated inmost with the choice of the move

set. In this thesis we introduced the tool barriers which allows an efficient

computation of the energy landscape and yields a graphical representation of

the landscape, so called barrier trees. A barrier tree gives an impression on

the shape and ruggedness of the associated landscape and hence shows the

distribution and energy ratios of local minima. With this tool at hand, it is

possible to discuss folding kinetics of RNA at the level of barrier trees. To be

more precise, it opens the door for a thorough investigation of the dynamic

behavior of RNA molecules.

With this ansatz it was possible to formulate a Markov process in con-

tinuous time describing population probabilities of different local minima on
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the barrier tree, i.e. we were interested in the computation of trajectories

describing the change of population rates while time elapses. Evidently, after

a sufficiently long period of time, the dynamics end in a stable equilibrium

distribution. The tool which does the effective calculations is called markov

and was written in ANSI C.

To confirm the results of our simulations, we made use of two concepts:

For smaller RNA chains we were able to compare the results gained from

the tree process with a full process including all secondary structures on the

energy landscape. For larger molecules we had to revert on the tool kinfold

written by Christoph Flamm which calculates trajectories for single folding

pathways using a stochastic ansatz.

As one would expect, the results gained from the full process are qualita-

tively very similar to the ones gained by the tree process. We were not able to

detect significant discrepancies within our simulations. The only parameter

which differs is time, but this is evident, since the rate constants between lo-

cal minima in the barrier tree and those between secondary structures in the

full process are different. We could also show that our results from the barrier

tree kinetics are in general accordance with results calculated by kinfold.

Again, the time constants are different.

The present work presents a first step towards a qualitative modeling of RNA

folding kinetics. The main problems that still remain are:

• Integration of multiple saddles into the model: As mentioned above,

the concept of multiple saddles on the energy landscape has to be inte-

grated into the model of barrier tree kinetics. A transition between two

states should be the more probable, the higher the saddle multiplicity

connecting the two states is. In fact, it is necessary to include the en-

tropy of the transition state into the model and hence draw conclusions

about the border regions of basins / gradient basins. The remaining

problem is that we hoped to find more multiple saddles than we actually

did.

• Calibration of the time axis: The time-dependency of the trajectories
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calculated by markov is crucially connected with the choice of the pre-

exponential factor in the transition rate. Although we tried to set up

a model for Γ0 (including the edges of basins / gradient basins) we

were not able to define general rules for Γ0. To be more precise, it is

necessary to calibrate the time axis from the tree process in a way that

it can be perfectly aligned to the trajectory calculated with kinfold,

i.e. both curves should end at the same time.

• We need a measure to qualify the difference between trajectories calcu-

lated with different models: Although the trajectories from markov as

well as those from kinfold show a qualitative similar run, there remain

discrepancies. This is evident, as trajectories calculated with kinfold

show the first passage times for reaching a pre-defined stop structure.

On the other hand, trajectories from markov always end in a stable

equilibrium distribution. Hence, it is necessary to refine the model in

a way that the qualitative shape of both curves becomes more similar.

Although there remain several problems which have not been solved so

far, we could think of an biologically relevant implementation of our kinetic

barrier-tree-model (figure 33). Imagine a Flow-Reactor where a replicating

species (sequence) can coexist in two conformations: a metastable (M) and a

stable (S) one. The metastable structure is being formed with a rate constant

kM , the stable structure can be attained via the metastable structure with a

rate constant kMS as well as directly with a rate constant kS. The sequence

Figure 33: A schematic representation of a possible implementation of markov. For details,

see the text

can replicate via the metastable structure with a rate constant kr. Within
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this simple model it would be interesting to let this system evolve for a certain

period of time and to see how the replication behavior is changed. Will there

be stable mutants? Evidently, kM , kS and kMS can be calculates easily from

the markov-simulations. The replication-rate kr is connected with the rate-

constant kMS to reach the stable state from the metastable state. It is easy

to see that, if a sequence remains in the metastable state for a long period

of time, there is a high probability that many replication steps are made and

’fitter’ species are generated.
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Appendix A

Output of barriers for the RNA sequence bertl discussed in section 6.2.

Data on basin sizes and partition functions are omitted.

CGCGCUACUCCUAGAGCU

1 ...(((........))). ( -3.30) 0 16.60 0

2 .((.(((....))).)). ( -2.70) 1 5.10 1 ....(........)....

3 ...(((.((...))))). ( -2.60) 1 0.60 1 ...(((.(.....)))).

4 .((............)). ( -1.49) 2 1.09 1 .((.(........).)).

5 .......(((...))).. ( -0.80) 1 2.90 1 ...(...(((...)))).

6 .((....((...)).)). ( -0.50) 2 0.60 1 .((....(.....).)).

7 .................. ( 0.00) 1 2.40 1 .....(........)...

8 ....(((....))).... ( 0.10) 2 1.40 1 .(..(((....)))..).

9 ...((...((...)))). ( 0.40) 1 0.60 1 ...(((...(...)))).

10 .......((...)).... ( 0.80) 7 0.60 1 .......(.....)....

11 .(((...)((...)))). ( 1.60) 1 0.97 1 .((......(...).)).

bertl

C G C G C U A C U C C U A G A G C U

C G C G C U A C U C C U A G A G C U
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Figure 34: Dot plot of bertl. For details how to read it see figure 8
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Appendix B

switch

G U G U U U G A G A G G A U A U G G C G U U U U U U U G G A U G C
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Figure 35: Dot plot of the swithing molecule (sequence GUGUUUGAGAGGAUAUGGCGU

UUUUUUGGAUGC) treated in section 6.3. The lower left triangle shows the bape pairing prob-

abilities within the thermodynamical equilibrium, whereas the upper right triangle displays

few alternative suboptimal base pairing probabilities. The mfe structure in bracket-dot

notation is (((((..(((((((.....)))))))..)))))
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Additionally, we list the refolding path from the open chain conformation to

the mfe structure here (energy in kcal/mol in brackets):

................................. (000.00)

...........(......).............. (002.40)

.........(.(......).)............ (003.10)

........((.(......).))........... (001.90)

.......(((.(......).))).......... (001.20)

......((((.(......).))))......... (000.10)

...(..((((.(......).))))....).... (003.10)

....(.((((.(......).))))....).... (003.40)

....((((((.(......).))))...)).... (003.10)

...(((((((.(......).))))...)))... (002.00)

(..(((((((.(......).))))...)))..) (-01.20)

(..(((((((.(......).)))...))))..) (000.40)

(..(((((((.(......).))...)))))..) (-00.30)

(..(((((((.(......).)...))))))..) (000.40)

(..(((((((.(......)....)))))))..) (-00.10)

(..(((((((.............)))))))..) (-01.22)

(..(((((((..(.......)..)))))))..) (-04.40)

(..(((((((..((.....))..)))))))..) (-05.80)

(..(((((((.(((.....))).)))))))..) (-03.90)

(..(((((((((((.....)))))))))))..) (-06.70)

(..((.((((((((.....)))))))).))..) (-04.80)

(..((..(((((((.....)))))))..))..) (-08.10)

((.((..(((((((.....)))))))..)).)) (-05.40)

(((((..(((((((.....)))))))..))))) (-08.20)
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The refolding path between local minimum 8 (metastable structure) and local

minimum 1 makes use of the following secondary structures:

00 ((((((....)))))).((((((....)))))) (-06.70)

01 ((((((....))))))..(((((....))))). (-03.90)

02 ((((((....))))))...((((....)))).. (-02.40)

03 ((((((....))))))....(((....)))... (-00.80)

04 ((((((....)))))).....((....)).... (000.30)

05 ((((((....)))))).....(......).... (000.80)

06 ((((((....))))))..(.........).... (000.00)

07 ((((((....))))))................. (-03.50)

08 .(((((....))))).................. (-02.20)

09 ..((((....))))................... (-01.30)

10 ...(((....))).................... (000.20)

11 ....((....))..................... (001.30)

12 .....(....)...................... (001.80)

13 ................................. (000.00)

14 ...........(......).............. (002.40)

15 .........(.(......).)............ (003.10)

16 ........((.(......).))........... (001.90)

17 .......(((.(......).))).......... (001.20)

18 ......((((.(......).))))......... (000.10)

19 ...(..((((.(......).))))....).... (003.10)

20 ....(.((((.(......).))))....).... (003.40)

21 ....((((((.(......).))))...)).... (003.10)

22 ...(((((((.(......).))))...)))... (002.00)

23 (..(((((((.(......).))))...)))..) (-01.20)

24 (..(((((((.(......).)))...))))..) (000.40)

25 (..(((((((.(......).))...)))))..) (-00.30)

26 (..(((((((.(......).)...))))))..) (000.40)

27 (..(((((((.(......)....)))))))..) (-00.10)

28 (..(((((((.............)))))))..) (-01.22)
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29 (..(((((((..(.......)..)))))))..) (-04.40)

30 (..(((((((..((.....))..)))))))..) (-05.80)

31 (..(((((((.(((.....))).)))))))..) (-03.90)

32 (..(((((((((((.....)))))))))))..) (-06.70)

33 (..((.((((((((.....)))))))).))..) (-04.80)

34 (..((..(((((((.....)))))))..))..) (-08.10)

35 ((.((..(((((((.....)))))))..)).)) (-05.40)

36 (((((..(((((((.....)))))))..))))) (-08.20)



LIST OF FIGURES 83

List of Figures

1 Rugged and smooth landscape . . . . . . . . . . . . . . . . . . 8

2 tRNAphe structure . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Molecular structure of a typical A-RNA . . . . . . . . . . . . 12

4 Secondary structure of tRNAphe . . . . . . . . . . . . . . . . . 14

5 Circular representation . . . . . . . . . . . . . . . . . . . . . . 15

6 Mountain Representation . . . . . . . . . . . . . . . . . . . . . 16

7 Various representations of RNA secondary structure . . . . . . 17

8 Dot-plot of tRNAphe . . . . . . . . . . . . . . . . . . . . . . . 18

9 Density of states of the yeast tRNAphe . . . . . . . . . . . . . 20

10 Thermodynamic versus kinetic reaction coordinate . . . . . . . 21

11 Elementary moves in the RNA folding algorithm . . . . . . . . 26

12 Defect diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 27

13 Shift moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

14 Conformation space of a short RNA molecule . . . . . . . . . 30

15 Neighborhood of local extrema . . . . . . . . . . . . . . . . . . 31

16 A typical barrier tree . . . . . . . . . . . . . . . . . . . . . . . 32

17 Influence of the moveset onto the barrier tree . . . . . . . . . . 34

18 Internal structure of barriers . . . . . . . . . . . . . . . . . . 37

19 The flodding algorithm . . . . . . . . . . . . . . . . . . . . . . 38

20 Output produced by barriers . . . . . . . . . . . . . . . . . . 39

21 Multiple Saddles . . . . . . . . . . . . . . . . . . . . . . . . . 41

22 Multiple Saddles in a short RNA sequence . . . . . . . . . . . 43

23 Multiple Saddles in tRNAphe . . . . . . . . . . . . . . . . . . . 44

24 Barrier tree and mountain plot of sexi . . . . . . . . . . . . . . 60

25 Dynamic behavior of sexi . . . . . . . . . . . . . . . . . . . . . 62

26 Barrier tree of bertl . . . . . . . . . . . . . . . . . . . . . . . . 63

27 Dynamic behavior of bertl . . . . . . . . . . . . . . . . . . . . 65

28 Barrier tree of the switching molecule . . . . . . . . . . . . . . 67

29 Dynamic behavior of the switching molecule . . . . . . . . . . 68

30 Energy path for refolding metastable - stable structure . . . . 71



LIST OF FIGURES 84

31 kinfold-Simulations of the switching molecule . . . . . . . . . 72

32 markov-Simulations of the switching molecule . . . . . . . . . 73

33 Schematic representation of an implementation of markov . . . 76

34 Dot plot of bertl . . . . . . . . . . . . . . . . . . . . . . . . . 78

35 Dot plot of the switching molecule . . . . . . . . . . . . . . . . 79



REFERENCES 85

References

[1] D. Aldous and J. A. Fill. Reversible Markov chains and ran-

dom walks on graphs. available at http://www.stat.Berkeley.EDU/

users/aldous/book.html.

[2] A. R. Banerjee, J. A. Jaeger, and D. H. Turner. Thermal unfolding of a

group i ribozyme: The low-temperature transition is primarily disrup-

tion of tertiary structure. Biochemistry, 32:153–163, 1993.

[3] O. Bastert, Dan Rockmore, P.F. Stadler, and G. Tinhofer. Landscapes

on spaces of trees. submitted to Applied Mathematics and Computa-

tions.

[4] O.M. Becker and M. Karplus. The topolgy of multidimensional poten-

tial energy surfaces: Theory and applications to peptide structure and

kinetics. J. Chem. Phys., 106:1495–1517, 1997.

[5] N. Breton, C. Jacob, and P. Daegelen. Prediction of sequentially optimal

RNA secundary structures. J. Biomol. Struct. Dyn., 14:727–740, 1997.

[6] P. Brion and E. Westhof. Hierarchy and dynamics of RNA folding.

Annu. Rev. Biophys. Biomol. Struct., 26:113–137, 1997.

[7] J. H. Cate, A. R. Gooding, E. Podell, K. Zhou, B . L. Golden, A. A.

Szewczak, C. D. Kundrot, T. R. Cech, and J. A. Doudna. Crystal

structure of a group I ribozyme domain: Principles of RNA packing.

Science, 273:1678–1685, 1996.

[8] T. R. Cech. RNA as an enzyme. Scientific American., 11:76–84, 1986.

[9] Hue Sun Chan and Ken A. Dill. Protein folding in the landscape per-

spective: Chevron plots and non-Arrhenius kinetics. Proteins: Struc-

ture, Function, and Genetics, 30:2–33, 1998.



REFERENCES 86

[10] P. E. Cole, S. K. Yang, and D. M. Crothers. Conformational changes

of transfer ribonucleic acid. equilibrium phase diagrams. Biochemistry,

11:4358–4368, 1972.

[11] D. M. Crothers, P. E. Cole, C. W. Hilbers, and R. G. Shulman. The

molecular mechanism of thermal unfolding of escherichia coli formylme-

thionine transfer RNA. J. Mol. Biol., 87:63–88, 1974.

[12] J. Cupal. The density of states of RNA secondary structures. Master’s

thesis, University Vienna, 1997.

[13] J. Cupal, I. L. Hofacker, and P. F. Stadler. Dynamic programming

algorithm for the density of states of RNA secondary structures. In
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