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Abstract

The ability to fold into well-defined native conformation is a prerequisite for
biologically functional biopolymers. Since RNA secondary structure can be
computed relatively easily and accurately it provides an ideal model system
for theoretical investigations. The topology of the energy landscape of a
given sequence strongly influences its folding pathways and mechanisms. The
energy landscape for RNA molecules is believed to be rugged, exhibiting
many deep local optima, in which the folding process may become trapped.
In this thesis a kinetic folding algorithm has been developed in order to study
the dynamics of RNA folding on such an energy landscape.

The new algorithm uses the most elementary move set possible for the
inter conversion of RNA secondary structure. It consists in the insertion
or the removal of single base pairs, as well as the exchange of one pairing
partner in a base pair. Since the changes made during one simulation step
are small, no unrealistic assumptions about the transition rates have to be
made. Furthermore a more realistic concept of a folding path arises, if the
introduced structural changes are small.

Folding simulations of natural and artificial tRNA sequences exhibit cases
where the sequence finds the native state efficiently and often via the same
intermediate structures, as well as cases where a large fraction of runs get
trapped in local minima from which they cannot escape on the time-scale
of the simulation. By prohibiting base pairing for a few crucial nucleotides,
the base modifications present in natural tRNAs strongly bias the folding
kinetics as well as the equilibrium ensemble towards the native state.

An analysis of the folding behaviour of various tRNAs shows, that the
folding process is hierarchically organized. Local secondary structure ele-
ments form early and progressively reorganize into larger sub-domains dur-
ing the folding process. Often secondary structure elements near the 5’-end
form faster, than comparable ones near the 3’-end. This might well be a re-
sult of evolutionary selection of sequences to support efficient folding during
transcription.

Information about folding paths can be inferred directly from folding
simulations. In particular, important kinetic traps can be easily identified.
For small RNA molecules it is possible to observe the escape from such traps
within the simulation time. Simulations of SV-11, an RNA molecule with a
known metastable structure, are in excellent agreement with experimentally
measured data.
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Zusammenfassung

Die Faltung von Biopolymeren in einen wohl definierten Grundzustand, ist
eine Voraussetzung dafür, daß diese Moleküle ihre biologischen Funktionen
erfüllen können. Die relative Leichtigkeit, mit der sich die Sekundärstruktur
von RNA berechnen läßt, macht diese Molekülklasse zu einem idealen Stu-
dienobjekt für theoretische Untersuchungen. Die Topologie der Energieland-
schaft, die dem Faltungsprozeß eines RNA-Moleküs zugrunde liegt, beeinflußt
sowohl den Mechanismus als auch den Faltungsweg im Speziellen. Es wird
vermutet, daß die Energielandschaft von RNA auf Grund vieler lokaler Op-
tima von sehr rauher Gestalt ist. Der Faltungsprozeß kann deshalb in einem
der vielen lokalen Minima zum Stillstand kommen.

In der vorliegenden Arbeit wird ein neuer kinetischer Faltungsalgorith-
mus vorgestellt, der das Studium der Faltungsdynamik von RNA-Molekülen
gestattet. Der Algorithmus benützt einen Satz elementare Transformatio-
nen um RNA Sekundärstrukturen in einander umzuwandeln, die alle auf
einzelnen Basenpaaren operieren. Solche Transformationen sind beispiel-
sweise das Einsetzen eines Basenpaars in eine gegebene Sekundärstruktur
oder das Entfernen eines Basenpaars aus derselben. Da die strukturellen
Veränderungen bei solchen Transformation im allgemeinen klein sind, wird
ein plausibler Faltungsweg erhalten, ohne das unrealistische Näherungen für
die Übergangsraten zwischen zwei Strukturen gemacht werden müssen.

Faltungssimulationen von natürlichen und künstlichen tRNA-Molekülen
zeigten, daß die faltende Kette dem Grundzustand, effizient und oftmals
über eine Kaskade ähnlicher Zwischenstrukturen, zustrebt. In manchen Fälle
bleibt der Faltungsprozeß allerdings in einem lokalen Minimum hängen. Ei-
nige wenige modifizierte Basen in den natürlichen tRNA Sequenzen reichen
aus, um das Auffinden des Grundzustandes zu erleichtern.

Aus Faltungssimulationen läßt sich sehr einfach Information über Fal-
tungswege erhalten, die dazu benützt werden kann, kinetische ‘Fallen’ aufzu-
spüren, sowie jene Wege zu studieren, auf denen RNA-Moleküle aus diesen
‘Fallen’ entkommen. Der Faltungsprozeß selbst scheint hierarchisch organ-
isiert zu sein. Lokale Sekundärstrukturelemente bilden sich früh aus und
ordnen sich später zu strukturell größeren Einheiten um. Sekundärstruktur-
elemente am 3’-Ende bilden sich schneller als solche am 5’-Ende, was effiziente
Faltung während der Transkribtion gestattet. Die Faltungssimulationen von
SV-11, einem RNA-Molekül das eine metastabile Struktur ausbildet, stehen
in exzellenter Übereinstimmung mit dem Experiment.
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1 Introduction

1.1 General Context

Polymers are macromolecules, consisting of a linear arrangement of building

blocks. The building blocks, or monomers, are linked together by covalent

bonds to form the sequence. A “homopolymer” is built up by one type of

monomer. The physical properties of homopolymers are essentially deter-

mined by the nature of the monomer, the length of the sequence and the

nature of the junction between the monomers (e.g. cis-trans-isomery).

Nearly all biopolymers are “heteropolymers”, hence the sequence is built

up by a hand full of different monomers. For example the building blocks for

proteins are 20 amino acids, and those for RNA are 4 nucleotides Adenin (A),

Guanin (G), Cytosin (C) and Uracil (U). In addition to the length and the

nature of the monomer junction, the physical properties of heteropolymers

are strongly influenced by the succession of the monomers along the sequence.

Polymers have the ability to fold back on themselves, due to interac-

tions between individual residues of the sequence. If the interaction between

individual residues is weaker than the interaction between residues and sol-

vent molecules, than both homo- and heteropolymers tend to form arbitrary

compact conformations called “random coils”. For most homopolymers the

interactions between residues are unspecific. In contrast, for biopolymers like

proteins and RNA these interactions are specific, and can lead to the adap-

tion of a “unique” compact conformation called “native state”. During the

structure formation process both, RNA and proteins, try to minimize the

solvent exposure of hydrophobic residues by burying these residues in the

interior of the structure. But it is self-evident from the different chemical na-

ture of RNA and proteins, that the ways how these macromolecules achieve

their compact conformation is different. For proteins the driving force of

the collapse into compact conformations is the formation of a hydrophobic

core. For RNA the formation of compact conformation is promoted by the

tendency to maximize the stacking interaction between base pairs.
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Due to the close inter-relation between function and structure, it is essential

for living cells, that a folding macromolecule not only adopts its correct and

functional conformation, but does this also in a biological relevant sufficiently

short time. To gain more insight into performance and control of biochem-

ical reactions, it is indispensable to understand the physical principles and

mechanisms that underlie the folding process of biological macromolecule.

Unfolded proteins contain numerous solvent-exposed hydrophobic regions

and therefore have a great tendency to form both intramolecular and inter-

molecular aggregates. Molecular chaperones are proteins that function to

prevent or reverse such improper associations. The molecular chaperones

comprise several unrelated classes of proteins including heat shock proteins

Hsp70, chaperonins of the Hsp60 family (GroEl in E. coli, Cpn60 in chloro-

plasts), chaperonins of the Hsp10 family (GroES in E. coli, Cpn10 in chloro-

plasts) and nucleoplasmins.

The mechanism by which molecular chaperones carry out their functions

is not yet understood in detail. However, many of them are ATPases, which

bind to unfolded polypeptides and apparently apply the free energy of ATP

hydrolysis to effect their release in a favorable manner. For example, certain

Hsp70 proteins bind to not yet fully synthesized polypeptide chains as they

emerge from the ribosome. Ulrich Hartl [53] has demonstrated that GroEL

and GroES act in concert in an ATP-driven process to enclose unfolded pro-

teins in a protected environment that prevent their non-specific aggregation

while they spontaneously fold to their native conformations. The energy pro-

vided by ATP hydrolysis is used to disrupt incorrect interactions allowing a

“misfolded” protein to escape from kinetically trapped conformations [85].

This mechanism is supported by the observation that chaperonins do not

increase the rate of protein folding [77, 103, 128, 129] but, rather increase

the yield of correctly folded product [17, 68, 78, 120, 139]. Some of them

where shown can to slow down folding.

Although in vivo protein folding can be guided by molecular chaperones

many proteins fold to their native state in the absence of accessory proteins,
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albeit with low efficiency. Moreover the molecular chaperones are not compo-

nents of the native state of the proteins whose folding they facilitate. Hence

they mediate the proper folding of a polypeptid to a conformation governed

solely by the polypeptide’s amino acid sequence.

In vitro folding experiments of several tRNAs, self-splicing group I introns

and 5S rRNA showed, that RNA-molecules as-well can get kinetically trapped

in non-active alternative conformations [133]. Such “misfolded” RNAs can

be renatured to their active conformation by non-specific RNA-binding pro-

teins [57]. The RNA folding problems observed in vitro could be of rele-

vance to the in vivo behaviour of RNA. These experimental results brought

Richard Karpel [73] to suggest the hypothesis, that non-specific RNA-binding

proteins act as a kind of “RNA chaperones” in the living cell, to facilitate

proper RNA folding. Till today there exist no established examples support-

ing the existence and action of such “RNA chaperones” in vivo. For a more

detailed review on the hypothesis of RNA chaperones see a review by Kevin

Weeks [138].

From a theoretical point of view, the problem of how biopolymers achieve

their native state splits up into two aspects. The first aspect is the structure

prediction problem. The second aspect deals with the dynamics of the folding

process itself.

Since the sequence of a biopolymer specifies its three-dimensional struc-

ture, it should be possible, at least in principle, to predict its native structure

solely from the knowledge of its sequence. The fact that experimental meth-

ods like X-ray crystallography or NMR-spectroscopy yield time-averaged

“snapshots” of the structure of a biopolymer may leave the false impres-

sion that biopolymers have fixed and rigid structures. In fact, as is becoming

increasing clear, biopolymers like proteins or RNA are flexible and rapidly

fluctuating molecules whose structural mobilities have functional significance.

The native states of proteins and RNA consists of a large ensemble of closely

related and rapidly inter-converting conformational sub-states of nearly equal

stabilities.
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Theoretical methods for the three-dimensional structure prediction of pro-

teins and RNA are still kind of an art and require extensive computation.

Besides the sequence these methods require additional information from spec-

troscopy, chemical probing or biochemical degradation. The enormous diffi-

culty in making such calculations reliable, sufficiently accurate and compu-

tational tractable has, so far, limited their success.

However the structure prediction problem for both proteins and RNA can

be solved with reasonable accuracy on the level of secondary structure. The

secondary structure of proteins is defined as the local conformation of the

backbone, and is formed by hydrogen bonds between backbone atoms. The

secondary structure of RNA is defined as the pattern of base pairs, which

is formed by hydrogen bonds between atoms of the four bases. Thus, in

contrast to proteins, the secondary structure of RNA is formed by the “side

chains”. In the following structure means always secondary structure and

we shall mention explicitly when the 3D structure is considered. For RNA

powerful algorithms [100, 146] based on the method of dynamic program-

ming [10] and experimentally measured energy parameters [40, 55, 69, 131]

have been developed. Using these algorithms the sequence to structure map

for RNA [38, 39, 118] and its consequences for evolutionary adaption [65]

have been characterized in detail.

For the protein secondary structure prediction Peter Chou and Gerald

Fasman [23] devised the most popular algorithm. The propensity for an

individual amino acid to adopt a local conformation (α helical, β strand

or coil) is evaluated from a database of known structures as a ratio of the

occurrences in one local conformation to the number of examples not in that

local conformation. This method has the advantage of being easy to use and

relatively accurate (∼50–55%). It suffers from the slow increase in accuracy

with the increasing data base. Other methods are “homology modeling [76,

96]”, “threading [37, 79]” or use of “knowledge based potentials [119]”.

These algorithms, however, use heavy input of known protein structures

from databases, and yield in many cases only approximate structures. In



1 Introduction 8

many situations, such an approximate structure may be useful for answering

the biologically relevant questions, or for designing mutagenesis experiments.

The structural information obtained by the methods mentioned above is sel-

dom detailed or reliable enough to investigate the protein folding landscape.

In contrast to the RNA case, it is therefore not possible to study the sequence

to structure map for proteins by explicit folding. However the topology of the

sequence to structure map for proteins can be probed using inverse folding

techniques. Such investigations [8] reveal surprising similarities between the

generic properties of the sequence to structure map of RNA and proteins.

The second question concers the kinetics of folding, the approach to

the essentially unique folded state, which has been extensively investigated

within the protein field. Analytic studies based on “beads on a string” mod-

els [16, 41, 102, 116] and simulations of simplified lattice [30, 52] or off-lattice

protein models [11, 48, 67] uncovered fundamental aspects of protein folding

dynamics. Theory and experiment have converged to yield the basic prin-

ciples and the particular mechanisms for initiation of folding. The ability

to analyse structure at a level of individual residues in polypeptides and

denatured states using NMR spectroscopy as well as, in unstable intermedi-

ates and transition states using protein engineering methods, has permitted

detailed analyses of folding pathways. The results from experiments and sim-

ulations resulted in a synergistic agreement between experiment and theory.

While a lot of theoretical and experimental questions concerning protein

folding kinetics have been extensively investigated, the information available

on similar questions for RNA is rather sparse. Reasons for this difference in

knowledge may be rooted in the fact, that for a long time RNA molecules

have been viewed as a largely passive class of molecules within the interplay

of metabolism.

About a decade ago the discovery of RNA molecules with catalytic activ-

ities [20, 72] (ribozymes) and the evidence for an active role of messenger and

ribosomal RNAs in gene expression [28, 66], provided convincing proof that

RNA molecules are much more functionally sophisticated than previously
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assumed. The great ability of RNA to catalyze chemical reactions lies within

its propensity to fold into three dimensional structures by forming helices via

Watson-Crick base pairing that delineates single-stranded regions or loops

capable of creating binding sites for various substrates and metal ions.

In vitro selection and evolution methods [82, 130] have proved to be very

successful for generating “new ribozymes” (at least in part). The relative

ease with which RNA binds metal ions can explain the success of all natural

and most artificial ribozymes. The catalytic repertoire of ribozymes include

reactions like phosphorylation, ligation, polymerization transesterification or

cleavage of bonds. For a detailed discussion on the structural and functional

complexities of ribozymes see a recent review by Luc Jaeger [70].

1.2 The Folding Problem

Biopolymers achieve their native conformation by spontaneous folding. The

native state seems to be the most stable one, since it is commonly adopted

through folding from different starting conformations as has been shown ex-

perimentally for proteins [3, 4]. For the great majority of biopolymers the

folding itself happens under physiological conditions on time scales of less

then a minute. However an exhaustive search of the conformational space to

find the native state (based on equal probabilities of conformations) would

take a biopolymer of moderate length at least billions of billions of years.

This puzzle of finding the ‘needle’ (native state) in the haystack (conforma-

tion space) and doing so quickly is called the “Levinthal paradox” [29, 147].

The solution of the puzzle is unequal probabilities of conformations leading

to conformational landscapes supporting fast approach to the global or at

least a local minimum. The landscape perspective readily explains the pro-

cess of reaching a global minimum in free energy and doing so quickly by

multiple folding routes on funnel-like energy landscapes [15, 31, 80, 127]. In-

stead of viewing folding as a process in which all chains perform essentially

the same sequence of events to reach the native state, the landscape per-

spective envisions folding as representing the ensemble average of a process
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that is microscopically more heterogeneous. Each individual polymere chain

may follow its own trajectory, but just like skiers down a mountain, they all

may enentually reach the same point at the bottom, the native state. Un-

derstanding the folding mechanism is highly relevant for understanding how

these molecules carry out their function.

On it’s way from the denatured state to a compact conformation, the fold-

ing chain follows only instructions encoded on the sequence. During this self-

assembly process frequently competing interactions between residues happen

until the specific frame of interactions, resembling the native conformation,

is formed.

The driving force of protein folding is the formation of a compact hy-

drophobic core reflecting the preference of hydrophobic groups to be buried

inside the protein to minimize solvent exposer. Since the hydrophobic resi-

dues are dispersed throughout the primary sequence, it is clear that all hy-

drophobic residues cannot be satisfied simultaneously. In RNA, for instance,

the strong hydrophobic stacking interaction between base pairs promotes the

formation of compact structures while the high negatively charged phosphate

backbone works against this tendency. Systems exhibiting such behavior are

considered to be energetically “frustrated”, in a sense that notall favorable

interactions can be satisfied simultaneously. According to this conflict be-

tween local requirements and global tendencies the free energy landscape of

biopolymers is rugged. Several minima exist separated by barriers of various

heights. Distribution of minima and barriers over several orders of energies

indicates (limited) self-similarity. Assuming however, that natural selection

“designed” biopolymers, it is probable that frustration of the energy land-

scape has been minimized during evolution. For instance free energy bias

toward the native conformation [16] could prevent the folding chain from ex-

ploring an astronomical number of possible conformations in order to find the

native one in reasonable time. In the protein field such a type of landscape

is discussed as the “folding funnel”.

High thermodynamic stability of RNA double helixes can unfortunately
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trap the folding molecule in a deep local minimum. For example, the stacking

free energy for the formation of a helix of 5 base pairs can easily be around

10 kcal/mol, whereas the thermal energy kT is only 0.6 kcal/mol at a tem-

perature of 300 K. When stacking free energies are large compared to kT it

is difficult to open helices once they are formed. Such misfolded structures

are believed to play an important role in the kinetics of folding, especially

for longer RNA sequences [94]. To a certain extent the RNA folding prob-

lem [32, 108] shows a lot of parallels to the much more intensively studied

protein folding problem.

1.3 Organization of this work

In the following chapter, the basic concepts of the RNA secondary structure

model are introduced. Various commonly used algorithms for RNA secondary

structure prediction, based on thermodynamic methods are discussed and

applied to explore the conformation space.

Chapter 3 presents a novel and efficient algorithm for the simulation of

the folding dynamics of RNA secondary structure. Starting with a brief

overview of the state of the art of RNA kinetic folding, the physical model,

underlying the algorithm, is developed. Afterwards the crutial components

of the algorthm and their computational implementation are discussed in

detail.

In chapter 4 the results of various simulations are showes. A Discussion

and an outlook in chapter 5 concludes the work.



2 Thermodynamic Folding 12

2 Thermodynamic Folding

2.1 RNA Structure

The structure formation process of RNA can be partitioned conceptually into

two consecutive stages. First, the string of bases, called sequence or primary

structure, is transformed into a pattern of complementary base pairings called

the secondary structure. Second the secondary structure distorts, to form a

three dimensional object referred to as the spatial structure. The considera-

tion of the secondary structure of RNA as a coarse grained approach to the

three dimensional spatial structure is supported by several facts:

• RNA secondary structure formation covers the major part of the free

energy of folding.

• As opposed to the protein case, the secondary structure of RNA is well

defined and assigns all bases to secondary structure elements.

• The secondary structure provides a scaffold of distance constraints to

guide the formation of the tertiary structure.

• RNA secondary structure is conserved in evolution and has been used

successfully by biochemists to interpret RNA function and reactivity.

The secondary structure of RNA is formed by aggregation of planar com-

plexes of purine and pyrimidin bases. The geometry of such a complex, or

base pair, is determined by hydrogen bonds between the two bases. The orig-

inal set of base pairs, namely the Watson-Crick base pairs G≡C and A=U,

was soon complemented by a G–U “wobble” base pair, which is admissible

within RNA double helices.

Depending on their biological function, naturally occuring RNAs either

display long, double helical structures or they are globular, with short double

helical domains connected by single stranded streches. RNA double helices

display two major, structurally similar conformations, depending on the salt
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concentration of the solvent. At low ionic strength the A-RNA double helix

with 11 base pairs per helix turn predominates. If the salt concentration is

raised, A-RNA is transformed into A’-RNA with a 12-fold helix [6]. Both A-

and A’-RNA structures exhibit features typical of Watson-Crick base pairs.

A typical A-RNA helix is shown in figure 1.

Especially double-stranded structural elements like helices can be very

stable. For instance, a RNA duplex of 10 base pairs has a half-time for disso-

ciation of ∼30 min, and G/C-rich duplexes of 10 base pairs have dissociation

half-times of up to ∼100 years at a temperature of 300 K [132]. By com-

parision the most stable protein α-helices dissociate on the sub-microsecond

time scale [44].

Figure 1: Illustration of the molecular structure of A-RNA. For A-RNA the number of

nucleotides per helix turn is 11, the axis rise per residue is 2.73 to 2.81 Å and the base

pair tilt 16◦ to 19◦. Views are parallel (l.h.s.) and perpendicular (r.h.s.) to the helix axis.
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2.2 Definition and Computation of RNA Secondary

Structure

A secondary structure S is formally defined as the set of all base pairs (i, j)

with i < j such that for any two base pairs (i, j) and (k, l) with i ≤ k the

two following conditions hold [137]:

1. i = k if and only if j = l.

2. There are no knots or pseudo knots allowed. For any two base pairs

(i, j) and (k, l) the condition i < k < l < j or k < i < j < l must be

satisfied.

The first condition simply means that each nucleotide can take part in at

most one base pair. Prominent examples of tertiary interactions breaking this

condition are base triples [22, 126], G-quartets [1, 7, 74] and A-platforms [18].

The second condition guarantees, that the secondary structure can be

represented as a planar graph. The most abundant structural elements, which

break this condition are pseudoknots. A pseudoknot is governed by Watson-

Crick base pairing between a hairpin loop and a single-stranded strech or

between two single-stranded streches. Consequently, a pseudoknot can be

considered as either a secondary structural element or a tertiary interaction.

While pseudoknots are important in some natural RNAs [104, 140], they

can be considered as part of the tertiary structure for our purposes. Not all

secondary structures can be formed by a given biological sequence, since not

all combinations of nucleotides form base pairs.

Let A be some finite alphabet of size κ, let Π be a symmetric Boolean

κ × κ-matrix and let Σ = [σ1 . . . σn] be a string of length n over A. A

secondary structure is compatible with the sequence Σ if Πσp,σq
= 1 for all

base pairs (sp, sq). Following [63, 137] the number of secondary structures S

compatible with a specific string can be enumerated as follows: Denote by
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Sp,q the number of structures compatible with the substring [σp . . . σq]. Then

Sl,n+1 = Sl,n +

n−m
∑

k=l

Sl,k−1Sk+1,nΠσk ,σn+1
(1)

A secondary structure compatible with a given sequence with maximal num-

ber of base pairs can be determined by a dynamic programming algori-

thm [101]. The restriction to knot-free structures is necessary for efficient

computation.

Usually, only Watson-Crick (AU and GC) and GU pairs are allowed.

The secondary structure indicates the position of base paired helices. These

are linked by single-stranded regions that can form hairpins, internal bulges

within helices, multi-branched loops or link helices. The complexity and

design variability of such structures is stunning and revals those present in

proteins.

Secondary structures can be represented as strings composed of the sym-

bols (, ), and . representing nucleotides that are paired with a partner

towards the 3’ end, towards the 5’ end, and that are unpaired, respectively.

Pairs of matching parentheses therefore indicate base pairs. A short hairpin

structure, consisting of 4-loop and a helix of length 3 will therefore be written

as (((....))), see [62, 59].

Any secondary structures can be uniquely decomposed into loops as

shown in figure 2 (note that a stacked base pair may be considered a loop

of size zero). A secondary structure graph is equivalent to an orderd rooted

tree. An internal node (black) of the tree corresponds to a base pair (two

nucleotides), a leaf node (white) corresponds to one unpaired nucleotide.

Contiguous base pair stacks translate into “ropes” of internal nodes, and

loops appear as bushes of leaves. The tree representation will be of special

importance if the implementation of the kinetic folding algorithm is discussed

in section 3.5.

The energy of an RNA secondary structure is assumed to be the sum of the

energy contributions of all loops. Energy parameters for the contribution of
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individual loops have been determined experimentally (see e.g. [40, 69, 134])

and depend on the loop type, size and partly its sequence.

The additive form of the energy model allows for an elegant solution of

the minimum energy problem through dynamic programming, that is similar

to sequence alignment. This similarity was first realized and exploited by

Michael Waterman [135, 137]. His observation was the starting point for the

construction of reliable energy-directed folding algorithms [59, 145].

The first dynamic programming solution was proposed by Ruth Nussi-

nov [100, 101] originally for the “maximum matching” problem of finding

the structure with the maximum number of base pairs. Michael Zuker and

Patrick Stiegler [145, 146] formulated the algorithm for the minimum energy

problem using the now standard energy model. Since then several varia-

tions have been developed: Michael Zuker [144] devised a modified algori-

thm that can generate a subset of suboptimal structures within a prescribed

increment of the minimum energy. The algorithm will find any structure

S that is optimal in the sense that there is no other structure S ′ with

lower energy containing all base pairs that are present in S. As shown

o

o
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o

o
o

o

o

o

o
oo

o

o
o

o

o

o

o oooo

o oo

multi-loop

stacked base pair

hairpin-loop

interior-loop

bulge-loop

Figure 2: Various representations of RNA secondary structure: The tree representation of

the secondary structure graph in the middle (l.h.s); Representation of an RNA secondary

structure as a planar graph (middle); The loop decomposition of the secondary structure

graph in the middle (r.h.s). The closing base pairs of the various loops (base pair, hairpin,

bulge, interior, multiloop) are indicated by dotted lines (Note that a helix of length n

decomposes in n-1 stacked base pairs).
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by John McCaskill [88] the partition function over all secondary structures

Q =
∑

S exp(−∆G(S)/kT ) can be calculated by dynamic programming as

well. In addition his algorithm can calculate the frequency with which each

base pair occurs in the Boltzmann weighted ensemble of all possible struc-

tures, which can conveniently be represented in a so called “dot-plot”. Fig-

ure 3 shows such a dot-plot of the Sarkin-Ricin-loop, the longest conserved

ribosomal RNA sequence, located in the principal RNA of the large ribosomal

subunit [49, 99].

It is the site of attack of two protein toxins, ricin and α-sarcin, that kill

cells by inactivating ribosomes. The two toxins recognise the Sarcin-Ricin-

loop specificaly and damage it [35, 36]. Once damaged, ribosomes do not

bined elongation factors properly [54], and that failure results in the ces-

sation of protein sythesis. The conformation of the Sarcin-Ricin-loop has
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Figure 3: Dot-plot (l.h.s.) and minimum free energy structure (r.h.s.) of the Sarcin-Ricin-

loop; The equilibrium frequency p of a base pair (i, j) is represented by a square of area

p in position i, j and j, i of the matrix. The lower left triangle shows only base pairs

contained in the ground state, which occure with segnificant frequency. The upper right

triangle displayes the frequencies within the thermodynamic equilibrium. A large number

of base pairs from suboptimal structures are visible.
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been determined in solution by NMR-spectroscopy [123]. The equilibrium

frequency p of a base pair (i, j) is represented by a square of area p in posi-

tion i, j of a triangular matrix. The lower left triangular matrix shows the

optimal fold of the Sarkin loop, namely the ground state. In contrast the

upper right triangular matrix displays the base pair frequencies within the

structure ensemble at the thermodynamic equilibrium as optained from the

partition funktion. Note that in this example a large number of base pairs

from suboptimal folds are visible. While the helix is very well defined, the

loop region can can fold into various alternatives. This indicates, that the

loop region of the ground state is flexible in a structural sense.

The memory and CPU requirements of these algorithms scale with se-

quence length n as O(n2) and O(n3), respectively, making structure predic-

tion feasible even for large RNAs of about 10000 nucleotides, such as the

entire genomes of RNA viruses [61, 64]. A for academic use freely available

implementation of these algorithms is the Vienna RNA Package [59, 60].

2.3 Conformation Space: The Thermodynamic View

The conformation space C of a given sequence is the total set of secondary

structures S compatible with this sequence. As mentioned each secondary

structure S ∈ C itself is a list of base pairs (i, j) in a way, that any two base

pairs from S do not cross each other, if S is represented as a graph in the

plain. From the total recursion (equation 1) an asymptotic formula for the

growth of the number of secondary structures with chain length n can be

derived.

Sn
� n−

3
2 · αn (2)

Counting only those planar secondary structures that contain hairpin loops

of size three or more (steric constraint), and that contain no isolated base

pairs one finds α = 1.8488. The size of the conformation space increases

exponentially with the chain length.
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The density of states g(ε) is a convenient measure to get a survey of the

conformation space C of a given sequence. It displays the energies of the

individual structures S, and their distribution with regard to the ground

state. Furthermore g(ε) is the basis for the equilibrium statistical mechanics

of any system, because the average of any physical property P, depending

on the energy, is given by the Boltzmann-weighted sum,

〈P〉eq ≡
1

Z
·
∑

ε

P(ε) · g(ε) · e−ε/kBT (3)

where kB is the Boltzmann’s constant, T is the absolute temperature and

Z ≡
∑

ε

g(ε) · e−ε/kBT (4)

is the partition function, giving a complete thermodynamic description of

the system.

A variation of John McCaskill’s algorithm can be used to compute the

complete density of states [27] for a given sequence. In figure 4 the den-

sity of states is shown for yeast tRNAphe. The conformation space of yeast

tRNAphe, a molecule of only 76 nucleotide length, has the astronomical size

of ∼ 14.9 · 1016 secondary structures (By comparison the human brain is

built up of ∼ 1 · 1010 neurons). The overall shape of the density of states

for this example is Gaussian. This is not surprising since ε is composed of

a large number of additive contributions. The overwhelming majority of the

secondary structures however has positive energy. Hence only a small sub-

set of all possible structures is physically important. These approximately 2

million structures have negative energy, the reference state being the open

chain. The folding process of RNA molecules is believed to operate mostly

on this smal subset of C.

Unfortunately g(ε) provides almost no information about the folding land-

scape, with respect to dynamics. If the kinetic progress in folding of a

biopolymer is modeled, it is helpful to define a reaction coordinate. The

reaction coordinate serves as measure, to gauge the “closeness to the native
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structure”. A thermodynamic reaction coordinate defines closeness to the

native state in terms of the energy of the conformation, whereas a kinetic

reaction coordinate defines closeness to the native structure in terms of how

quickly that conformation can transform to the native state. For instance the

density of states defines “closeness” between two states of the energy land-

scape in terms of energy. In this sense all states which take energies similar

to the ground state, seem to be close to the ground state. No information is

obtained whether the ground state and these “energetically close” states are

structurally similar enough to allow a rapid inter-conversion. This informa-

tion however is of utmost importance, since it elucidates the local features

of the folding landscape, which have a feed back onto the folding dynamics.

Figure 5 illustrates the problem. A thermodynamic reaction coordinate sees

some deeply trapped conformation B as being “nearly native”, because B

has low energy, even though such conformations must overcome high-energy

N(F)

MFE 0.0 25.0 50.0 75.0 100.0
 0

2.10
14

 4.10
14

 6.10
14

 8.10
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 1.10
15

Figure 4: Density of states of the yeast tRNAphe with an energy resolution of 0.1 kcal/mol.

Less than 2 million structures have negative energy, the reference state being the the open

structure.
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barriers to reach the native state. But a kinetic progress coordinate should

describe, at least at some rudimentary level, the fraction of time that has

elapsed, or that remains, for the folding, rather than the fraction of energy

that remains. By using a thermodynamic reaction coordinate, B in figure 5

is closer to native N than A is. But by using a kinetic reaction coordinate, A

is closer to N, since A has to climb a smaller energy barrier to reach N than

B. For landscapes with kinetic traps, thermodynamic reaction coordinates

do not characterize well the kinetics, because they completely neglect energy

barriers.

Therefore a measurement called move set, which captures “structural

vicinity” in a kinetic sense, needs to be developed before the relationship

between the folding dynamics and the topology of the underlying energy

landscape can be studied. The move set and its influence on the topology of

the folding landscape will be discussed in further detail in the sections 3.2

and 3.3.

E
n

e
rg

y

A

N

B

Figure 5: Thermodynamic versus kinetic reaction coordinate. State B is energetically

closer to N (lower energy), but state A is kinetically closer to N (smaller barrier to cross).

For didactic reasons a continous reaction coordinate is used as abscissa. In the realm of

RNA secondary structures energy and reaction coordinate are discrete.
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3 Kinetic Folding

3.1 State of the Art

The present understanding of RNA folding is still largely based on classic

studies of tRNA. In the 1970s the crystal structure of tRNAphe [25, 111]

became available. Temperature jump and NMR experiments were used to

identify the conformations of intermediates on the path to the equilibrium

fold of different tRNAs [9, 24, 33, 43, 84, 121]. More structural information

and insight into RNA catalysis came from the first crystal structure of a

hammerhead ribozyme [105] in 1994. A great impact on the understanding

of RNA spatial structure came from high-resolution cristallography of one of

the two structural domains of the catalytic core of a group I intron [19].

Recently, kinetic studies [142, 143] of a ribozyme derived from the Tetra-

hymenea group I intron, a considerably more complex molecule than tRNA

or hammerhead ribozyme, introduced some previously unexplored features

of RNA folding. As pointed out by Patrick Zarrinkar and James Williamson,

the Tetrahymenea ribozyme folds by a hierarchical pathway with succes-

sively larger structures generally requiring longer time scales. Short range

secondary structure appears to form rapidly to yield a state in which much

of the secondary structure is present, but which is still very flexible and

lacks stable tertiary contacts. The native structure is then formed from this

“quasi fluid” state by the successive formation and stabilization of larger

folding units, which generally correspond to identifiable structural subunits.

These subunits seem to form in a hierarchical manner, where the presence of

the fast forming elements is required for the formation of the slower folding

subunits. The formation of specific long range contacts that allow the fold-

ing units to interact then occure late on the folding pathway. The sequential

folding of domains in the ribozyme show striking parallels to the way how

the α-subunit of the protein tryptophane synthetase achieves its fold.

Several groups developed kinetic folding algorithms for RNA secondary

structure, mostly in an attempt to get better structure predictions than their
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thermodynamic counterparts. Only little effort has been put into the re-

construction of folding pathways [46, 47, 117, 124], or the consideration of

pseudo-knots [2, 45]. The great majority of these algorithms are based on

Monte-Carlo methods [89]. In general these algorithms start from some ini-

tial structure (e.g. the open chain) and progress, by incorporation of whole

helixes, through a series of nearly optimal structures to the most probable

one at the end of the folding process.

The first attempts modeled the folding process as a strictly sequential

process. Different criteria for choosing the next stem for incorporation, like

choosing the stem with the maximal number of base pairs [71] or the stem

with the largest equilibrium constant [86] have been tested. A disadvantage

of the sequential methods is their inability to destroy already constructed

stems, and hence simulations get easily stuck in local minima.

Next, the folding process was modeled as a Markovian random pro-

cess [14, 90, 92, 122] to circumvent the problems of sequential methods.

These algorithms differ mainly in the method how they reduce the state

space to make the calculation of the transition probability matrix compu-

tationally feasible. Helix formation rates are approximated through models

using parameters derived from experimental results [5], helix fusion rates are

deduced from the formation rates by using a Boltzmann distribution hypoth-

esis on the structure space. With the appearance of experimental evidence

for the fact that the folding of an RNA molecule takes place simultaneously

during transcription [13, 93], various algorithms [91, 117] have been altered

in order to consider this “history-based” aspect of RNA folding too.

3.2 The Move Set

The conformation space C, as has been illustrated in section 2.3, is a multi-

dimensional space. Depending on the coarsegraining of the energy, confor-

mation space can being highly degenerated. A priori it is not clear how to

move in such a complex space, therefore a set of rules is needed to control

the movement. Such a set of rules is called a move set. It is basically a
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collection of operations, which, applied to an element of C, transforms this

element into another element of C. Strictly spoken a move set is an order

relation on C, defining adjacency between the elements of C. It fixes the

possible conformational changes that can take place in a single step during

the simulation of folding and thus defines the topology of the conformational

space. The following properties are important for move sets:

1. Each move has an inverse counterpart. At thermodynamic equilibrium

the quotient of forward and backward reaction rates must give the

microscopic equilibrium constant (If there is no backward reaction, the

law of microscopic reversibility is broken).

2. The outcome of an operation always leads to an element of the under-

lying state space (Any operation yielding an element outside the state

space is illegal).

3. The move set has to be ergodic. In other words starting from an arbi-

trary point of the state space every other point must be reachable by a

sequence of legal operations (If this property is not fulfilled, and only

a subset of the state space is accessible to the system the expectation

〈F〉 of any state function F(S) will be incorrect or at least biased).

4. Every move set defines a metric on the underlying state space.

Two more terms are of importance for the further discussion. A trajectory is

defined as a sequence of consecutive states of the state space generated by a

series of legal operations from some initial state. A path (or folding path) is

defined as a cycle free trajectory, more concrete, each state occurs only once

within the sequence of adjacent states. In other words any trajectory can be

transformed into a path by eliminating the cycles.

The most elementary move set, on the level of RNA secondary structures

consists of insertion and deletion of a single base pair (i, j). This move set

will be designated as MS1 in the further discussion. It is always possible to

construct a path between any two Si, Sj ∈ C by using operations from MS1.
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To find such a path, remove from Si all base pairs that do not occur in Sj ,

and insert afterwards into this intermediate structure Sk all base pairs from

Sj that do not occur in Si. (Note, that Sk = Si ∩ Sj can be the empty set,

which resembles the open chain, being as well an element of C).

It is easy to see, that the path, constructed by the rule given above is

also the path of minimal length connecting the two structures Si, Sj. Deleting

base pairs from a legal structure always returns a legal structure. This means

that the intermediate structure Sk is a legal structure as well. Sj is also a

legal structure by definition. Hence inserting the missing base pairs into Sk to

transform this structure into Sj in an arbitrary succession, must run through

a cascade of legal structures. Because of the restriction to legal intermediate

structures, any other combination of moves to transform a structure into

another one must result in a longer path. Since every element of C can be

connected to every other element of C by a path, it follows that MS1 is an

ergodic move set on C.

A dominant mechanism for helix formation is the highly cooperative “zip-

per mechanism [106]”. Starting from a suitable nucleus which can still dis-

sociate easily into its components, addition of new base pairs stacked to the

nucleus leads to favorable, negative free energy contributions. From then

on, growth of the helix is spontaneous and leads to stepwise construction of

the helix just as a zipper is closed. MS1 is capable to describe this helix

formation process properly.

Figure 6: Defect diffusion: The bulge can easily migrate along the helix. For the left to

right transformation the shift moves are indicated by arrows
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An other important mechanism in the dynamics of RNA is believed to be

“defect-diffusion”. Since helix nuclei will be formed statistically along the

RNA chain, intermediate formation of helices with incomplete base pairing

is expected. Such intermediate mismatched helices can be annealed by a fast

chain slide mechanism. For instance the loop base of a bulge loop present in

a helix, will be subjected to a rapid base pair formation and dissociation pro-

cess. According to experimental data [106] defect-diffusion is some orders of

magnitude faster then zippering. As a consequence of this rapid equilibration

a bulge loop may move quite rapidly along the helix sequence. If a bulge loop

forms at one end of the helix and disappears at the opposing end, the bulge

loop diffusion results in a shift of the nucleotide strands by the nucleotide

residues of the loop against each other (see figure 6). In the framework of

MS1 the defect-diffusion is in most cases not a favorable process. It can only

be achieved be a double move in contrast to zippering and therefore does not

reflect the experimental results correctly.

To facilitate chain sliding MS1 must be extended by a further move called

“shift”. The shift converts an existing base pair (i, j) into a new base pair

(i, k) or (l, j) in one step. The resulting move set will be referred to as

MS2 in the following sections. Besides, defect diffusion, MS2 facilitates the

metamorphosis of overlapping helices into each other. Especially if the two

helices are located within a multi-loop the energetic profile of this process

using the simple move set MS1 is unfavorable. Figure 7 illustrates this special

Figure 7: Inter-conversion of overlapping helices is facilitated by shift moves (indicated by

arrows).
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“macro movement”. Every ergodic move set that is extended by new moves

naturally results in an ergodic move set again.

The algorithms cited in the section 3.1 generally operate on a list of

all possible helices and consequently use move sets that destroy or form

entire helices in a single move. The physical model of such a move set seems

unrealistic because ad hoc assumptions about the rates of helix formation and

disruption have to be made to cope with the introduction of large structural

changes per time step. Furthermore the concept of “folding pathway” looses

it’s physical meaning, if structural changes are to large. For this reasons a

more local move set like MS1 or MS2 is preferable if one aims at observing

realistic folding trajectories.
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3.3 Conformation Space: The Kinetic View

The energy landscape of a RNA molecule is a complex surface of the (free)

energy versus the conformational degrees of freedom. In our case our allowed

conformations are the secondary structures which are compatible with a par-

ticular sequence. The degrees of freedom are the transformations provided

by the move set. A concept similar to sequence space, which was originally

invented in information theory [50], can be used for representing the ordering

of conformations. There are several examples of applications of the concept

of sequence space to problems in biophysics and biology [34, 87]

Like sequence space, the conformation space of secondary structures is

a discrete space. Every secondary structure, a particular sequence can fold

into, is represented by one vertex in the conformation space of the sequence.

As has been illustrated in section 3.2 the move set induces a metric onto

conformation space. If two conformations can be converted into each other,

by applying a single move from the move set, the two conformations are

neighbours of each other according to the move set. The vertices of the con-

formation space corresponding to neighbouring conformations are connected

by an edge. The object obtained in that manner is a complicated graph.

In general, the graph representing conformation space is irregular, while the

graph representing sequence space is alway a regular one (generalized hyper-

cube).

Figure 8 illustrates the conformation space for a short RNA molecule,

which can form only 3 base pairs and 8 legal structures. The neighbourhood

of any vertex of the conformation space can easily be displayed in two di-

mensions. The entire conformation space, however, can be displayed only in

two dimensions and for very small sizes.

A value landscape is obtained by taking the graph of conformations as

the support of a function that assigns a value to every conformation. In

particular, a representation of the energy landscape of a RNA molecule is

obtained by plotting the energy of a conformation according to the standard

energy model over conformation space. Two factors characterize the shape
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of an energy landscape: (1) the density of states, and (2) a measure of

structural similarity or kinetic “nearness” of one conformation to another.

For the construction of the conformation space it is necessary to generate all

possible secondary structures in a given energy range. The density of states

gives only the number of conformations in a certain energy range, but not

their explicit structures. Therefore suboptimal folding techniques are needed

to provide this information.

Several approaches for the computation of suboptimal structures have

been suggested. The development of these methods was motivated by sev-

eral facts: (1) Under physiological conditions RNA sequences may exist in

alternative conformations whose energy difference is small. (2) Aside from

their possible biological significance, the density and accessibility of subopti-

mal conformations may determine how well-defined the ground state confor-

mation actually is. (3) The energy parameters on which the minimum free

energy folding algorithms rely are inevitably inaccurate.
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Figure 8: One move neighbourhood of a vertex of the conformation space (l.h.s.) and

its embedding in the graph representing the conformation space (r.h.s) for a small RNA

molecule which can exhibit 3 base pairs.



3 Kinetic Folding 30

Akihiro Nakaya [97, 98] uses a combinatorial approach with a search tree

pruning algorithm with dynamic load balancing across the processor ele-

ments in a parallel computer. Michael Zuker uses an extension [144] of his

widely used dynamic programming procedure for the minimum energy prob-

lem [146], which generates for each admissible base pair in a given sequence

the energetically best structure containing that base pair. While these ap-

proaches represent an improvement for the issues stressed above, they share

a common problem: they do not compute all suboptimal structures within a

given energy range, as needed for the construction of the conformation space.

The program RNAsubopt [141], implemented by Stefan Wuchty, does not

share this problem, and generates all suboptimal folds of a sequence within

a desired energy range. The Waterman-Byers scheme [136] forms the core of

RNAsubopt. Michael Waterman and Thomas Byers developed their scheme in

the context of suboptimal solutions to the shortest path problem in networks,

and applied it later to obtain near-optimal sequence alignments. Table 1 lists

the most stable structures of a typical RNA sequence of 30 nucleotide length

as produced by RNAsubopt.

With both features at hand now, namely all suboptimal structures within

a given energy range and a metric (move set), a more detailed investigation

of the energy landscape of RNA is possible. Such a closer look at the energy

landscape will uncover topological details like local optima or saddle points.

A structure is a local minimum if its energy is lower than the energy of all

legal neighbouring structures. A structure is called a local maximum if its en-

ergy is higher than the energies of all legal neighbouring structures. Figure 9

illustrate which criteria the neighbourhood of a point of the conformation

space must fulfill to be a local optimum.

All configurations that are not local minima or maxima of the energy

surface are called saddle points. However it is more convenient to use a more

restrictive definition of a saddle point: A secondary structure S is a saddle

point if there are at least two local minima that can be reached by downhill

walks starting at S. Of course the saddle point with lowest energy that
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separates the basins of two local minima s and s′ is of particular importance.

Those saddle points can be found by applying a flooding algorithm to the

energy landscape. Figure 10 shows the local minima and their connecting

saddle points for a typical RNA sequence with length n = 30 as a tree

representation. Figure 10 was constructed in such a way, that any two local

minima are joined by the saddle point with the lowest energy, connecting the

two minima. The ruggedness of the energy landscape is strongly influenced

by the definition of neighbourhood. In other words the choice of the move set

critically forms the topology of the energy landscape. Figure 10 illustrates

this strong metric dependency of the energy landscape. With the change of

the move set the connectivity of the local optima change dramatically. The

barrier heights as well seem to lower in general if the “shift” move is used,

which facilitates the annealing of defects. Since move set MS1 is subset of

move set MS2, as has been explained in the section 3.2, all local optima of

move set MS2 are also local optima under MS1, but not vice versa.

Figure 9: Illustration of the simple neighbourhood of a local minimum (l.h.s), a local max-

imum (middle) and a saddle point (r.h.s). The signs within the circles denote neighbours

with higher (+) or lower (–) energy compared to the structure in the center.
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Figure 10: The tree representation of the 20 lowest local minima (leaves) and the saddle

points (nodes) in the energy landscape of a typical RNA sequence. The lowest saddle points

connecting two local minima are shown for move set MS1 (l.h.s: insertion/deletion) and

move set MS2 (r.h.s: insertion/deletion/shift). The local minima are labeled in ascending

order starting with the ground state. Equivalent minima are labeled identically in both

trees. The length of the whiskers are scaled by the heights of the energy barriers. The

barrier heights and the connectivity is strongly influenced by the move set.



3 Kinetic Folding 33

It is interesting to compare the local minima with respect to move set MS1 or

MS2 to the set of structures that are produced by Michael Zuker’s suboptimal

folding algorithms [144]. It generates for each admissible base pair in a given

sequence the energetically best structure containing that base pair. Hence,

for a sequence of length n at most n(n− 1)/2 suboptimal structures are pro-

duced. Furthermore, each base pair present in the ground state regenerates

by definition the ground state as the best structure containing it. It follows

that no structures are generated with differ from the ground state by the

absence of one or more base pairs. In addition, if the ground state consists of

two substructures connected by a stretch of unpaired bases, no suboptimal

alternatives will be produced that are suboptimal in both modules.

A secondary structure S is Z-suboptimal if there is no other secondary

structure S ′ with lower energy containing all base pairs that are present in

S. Obviously, the ground state is a local minimum with respect to any move

set and it is also Z-suboptimal.

It is surprising to see, however, that a substantial fraction of the low

energy structures are not Z-suboptimal. In fact, there are local minima

with respect to the move sets MS1 and MS2 that are not Z-suboptimal, and

conversely, some Z-suboptimal structures are not local minima, see Table 1.

The data compiled in figure 10 in combination with Table 1 can be used

to extract possible folding pathways. In figure 11 the three most favorable

pathways leading from the open (denatured) structure to the ground state

are displayed. The first saddle point is determined by the nucleation of the

first base pair. Adding base pairs to an established stack leads to lower

energies. If the correct base pair is formed in the first step, the ground

state is found without further obstacles. However, the energy barrier to the

correct folding pathway is not the lowest in our example. Most saddle points

encountered along the folding pathways contain an isolated base pair, i.e.,

they correspond to the nucleation of a novel stem. This is consistent with

experimental findings on RNA folding. While the nucleation of a helix is a

slow, closing additional base pairs is a fast cooperative process [106].
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F Structure local minimum Z-sub-
kcal/mol ACUAGUCGCGGGGAAUACCUUGGUUCCAAC MS1 MS2 optimal

-3.54 ...........(((((......)))))...
� � �

-2.14 .........(.(((((......)))))..)
�

-2.03 ........(((((....)))))........
� � �

-1.84 ...((((..(((.....))).)))).....
� � �

-1.70 .((......))(((((......)))))...
� � �

-1.54 .........(((.....)))..........
� � �

-1.45 ...........((((........))))...

-1.44 ((((.....(((.....)))))))......
� � �

-1.43 ...(((((.(((.....)))))))).....
�

-1.35 ....(((..(((.....))).)))......

-1.11 ......(.(((((....)))))).......
�

-1.03 .....((..(((.....))).)).......

-0.95 ...(((((.((......)).))))).....
� � �

-0.94 .......(...(((((......)))))..)
�

-0.94 ....((((.(((.....)))))))......

-0.91 ....((.....(((((......))))).))
� � �

-0.71 ...(((((..(((....)))))))).....
� �

-0.70 ..........((((.........))))...
� � �
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-0.56 ............((((......))))....

-0.52 .......((.(((....)))..))......
� �

-0.52 .......(((((.....)))..))......
� � �

-0.47 (((((....((......)))))))......
� � �
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-0.44 ..........(((....)))..........
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-0.13 ...........(((((.(...))))))...
�

-0.10 (((......(((.....))).)))......
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�

-0.05 .........(.((((........))))..)

Table 1: Energetically favorable Structures of a small RNA computed by RNAsubopt.
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3.4 The Model

In the previous section the move set and its effect on the topology of the

conformation space has been has discussed. The next important component

in the construction of an algorithm capturing the folding dynamics of RNA is

to pack the conception about the “real” folding process into a proper physical

model.

Imagine a “gedanken experiment” where the folding of an RNA molecule

is traced by a camera. Each time the conformation of the folding molecule

changes, a snapshot is taken. The resulting series of snapshots allows to

follow important properties of the folding process.

First, the resolution of the folding process is determined by the choice of

the move set. A move set, which introduces only small changes when applied,

yields a much longer and more detailed series of snapshots and hence captures

the process in higher resolution.

Second, certain conformational changes happen more frequently along

the series of snapshots, some only rarely. Some changes are more likely then

other ones. This fact leads to the conclusion that it is necessary to introduce

a measure for the likelihood of a transitions between two conformational

states.

Third, conformational changes, which are “far” from each other along

the series of snapshots seem to happen independently in a sense, that the

molecule apparently has no memory of what happened earlier on the trajec-

tory.

The observations from the “gedanken experiment” above can be tied into

a model of the following form. The chain moves from state to state in the

conformation space governed by a transition probability law. The conforma-

tional changes are controlled by the chosen move set. The movement of the

chain in the conformation space however seems to be arbitrary on a large

time scale.

The model described above is called a Markov chain. A Markov chain is

a random walk in an N -dimensional state space with a very short memory
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of only one step. In symbols, if Xn denotes the state of the system at time

n, then

P{Xn+1 = j|Xn = i} = pij (5)

gives the probability to find the system at time n + 1 in the state j. Since

the transition probabilities do not depend on time the Markov chain is called

homogeneous.

Translated into the language of chemical kinetics, the system is the RNA

chain and a state of the system is a certain conformation of the RNA chain.

In this sense folding can be viewed as a very complex isomerisation reaction

network.

In the stochastic formulation of first order chemical reaction kinetics the

probability that a transition from a secondary structure i to a secondary

structure j occurs within the infinitesimal time interval dt is given by kijdt,

where kij is the rate constant in the deterministic description [42]. The prob-

ability P (i, t) that a given RNA molecule will have the secondary structure

i at time t is then given by the master equation

dP (i, t)

dt
=

∑

j

[P (j, t)kji − P (i, t)kij]. (6)

Manfred Tacker et al. [124] have integrated numerically equation 6 on a very

restricted subset of conformations, to assess the feasibility of a particular

folding pathway. Since we will consider all secondary structures on a given

sequence, our reaction network becomes combinatorial in nature. We resort

to a numerical simulation of the situation described by the master equation 6.

This simulation is based on a continuous time Monte Carlo method proposed

by Daniel Gillespie [42]. More precisely, we will not be interested in the

equilibrium solution of equation 6, but rather in computing the distribution

of first passage times from some initial state to the thermodynamic ground

state. In this framework the first passage time represents the folding time.

Let the probability for a transition from i to j in the interval dt be given by

kijdt. We next compute the probability density, pij(t)dt, that this transition
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occurs between time t and t+dt. Consider first the probability p
(0)
ij (t) that no

transition to j has happened up to time t. This probability can be obtained

by observing that

p
(0)
ij (t + dt) = p

(0)
ij (t)(1 − kijdt). (7)

That is, the probability that no tranistion happens up to time t + dt is the

probability that no tranistion happened up to time t times the probability

that none will occur within the following dt, which, by definition, is precisely

1 − kijdt. This can be written as

[p
(0)
ij (t + dt) − p

(0)
ij (t)]/dt = dp

(0)
ij (t)/dt = −kijp

(0)
ij (t) (8)

whose solution is p
(0)
ij (t) = exp(−kijt). The pij(t)dt we are seeking is then

simply given by the probability that no transition occurs up to time t times

the probability that a transition occurs within the following dt, which yields

the exponential density pij(t)dt = kij exp(−kijt)dt.

To simulate the process described by equation 6 we need the probability

P (i → j, t)dt that a transition occurs from conformation i to j between

time t and t + dt. This is computed as the product between the conditional

probability that a transition occurs to j (from i) given that some transition

(from i) happens between t and t + dt times the probability for the latter:

P (i → j, t) = P (i → j|t)Pi(t). (9)

Since all reaction channels from i to its neighbouring conformations j are

independent with exponential density pij(t)dt = kij exp(−kijt)dt, the overall

probability that some transition happens between time t and t + dt is the

product of these exponentials: Pi(t)dt = ai exp(−ait)dt, with ai =
∑

j kij .

The conditional probability P (i → j|t) is simply given by the relative weigths

P (i → j|t) = kij/ai. This yields

P (i → j, t)dt = kij exp(−ait)dt. (10)

(This can also be derived by observing that exp(−ait) is the probability that

no channel fires up to time t, and kijdt is the probabilty that the particular
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transition i → j fires at the following dt.) Thus, the Monte Carlo simulation

of the folding process is simply performed by following the prescription 9.

This means operationally to first advance our clock by a random number t

distributed according to Pi(t) = ai exp(−ait) (assuming we are in state i),

and then to select a transition to one of i’s neighbours j with probability

kij/ai. The current state is update to j, and the procedure repeats until we

first hit the ground state.

What is still needed for completing our model of RNA folding, is a rule

for calculating the rate constant kij, which characterizes the transition from

conformation i to conformation j. A standard rule is the Metropolis rule [89],

originally designed for studying equilibrium properties of matter. It was also

applied successfully to kinetic problems like protein folding [125]. Let Gi be

the free energy of the secondary structure i from which an allowed move to

structure j with free energy Gj is made.Then, the transition probability kijdt

as given by the Metropolis rule is:

kij =







e−
∆G
kT if Gj > Gi,

1 if Gj ≤ Gi,
(11)

where ∆G = Gj − Gi.

The gradient of an energy landscape is an important determinant of the

speed of moving uphill or downhill. The Metropolis rule only recognizes

the uphill gradient. For uphill steps, by using the Boltzmann coefficient,

sampling gets rarer as ∆G > 0 increases. In contrast, all downhill steps

(∆G ≤ 0) are accepted with the same probability. This corresponds to the

physical assumption that the spatial range of “favorable” contact interaction

is literally zero, so residues along the chain would not “feel” any attraction to

form a favorable contact. Since in Metropolis sampling the rates of forming a

favorable contact does not increase with the contact’s favorability an intrinsic

upper limit to downhill folding rates is set, which can be understood as a

“diffusion limit” of the model. A symmetric rule, which takes the gradient

into account for both, uphill and downhill steps, is preferable, in order to
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avoid an intrinsic diffusion limit. Such a rule was first introduced by Kyozi

Kawasaki [75] for studying time-dependent Ising models.

Due to Kyozi Kawasaki the symmetric rule evaluating the transition be-

tween the two states i and j connected by the reaction channel α is formulated

as:

kij := e−
∆G
2kT (12)

Note that the free energy difference ∆G between the two states i and j must

be divided by 2kT to get the detailed balance right. The Kawasaki dynamics

approaches the Boltzmann distribution at equilibrium because it satisfies

microscopic reversibility [51]. For a detailed discussion of other possibilities

to formulate the transition probabilities pij, see [21, 58]. As long as the

law of detailed balance is satisfied by the rule, evaluating the transition

probabilities, and the move set does not introduce too large conformational

changes, the choice of a particular rule for the transition probabilities has

only a small effect on the dynamics of the system, because then a state i

quickly equilibrates with it’s neighbouring states.
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3.5 The Algorithm and its Implementation

As outlined in the previous section the folding dynamics is simulated by the

Gillespie method. It is a variant of the standard Monte Carlo algorithm

without rejections.

In standard Monte Carlo, the time spend in a certain state is proportional

to the number of trials that have to be made until a new acceptable state

is found. Imagine sitting on a pathologic point of the energy landscape for

example at the bottom of a deep local minimum, then the rejection rate

becomes rather high because all conformations in the neighbourhood posses

obviously higher energy. A lot of trials have to be made, before a new

conformation is accepted and hence for many steps no progress is made,

slowing down the simulation reasonably.

As mentioned in the previous section, the Gillespie method provides an

internal clock to measure time. Here, the time spent in a certain state is

inversely proportional to the total flux Φ leading away from this state. If Φ

is small, as for example at the bottom of a deep local minimum, the internal

clock is advanced by a big time increment. For each step, the rate constants

from the current state to all its neighbours are computed. Then, the time is

advanced by an appropriate time increment adjusted to the sum of the rate

constants. Finally, the current state is replaced by a state chosen from the

set of neighbours. The consequence of this kind of procedure is progress at

each step, because of the lack of waiting times due to rejection, resulting in

a very efficient and fast simulation.

It should be mentioned, that the Monte Carlo method has a better per-

formance than the Gillespie method if rejection rates are low. This roots in

the fact, that the Gillespie method computes all the neighbours of the cur-

rent state at each step, whereas the Monte Carlo method computes only one

(acceptable) neighbour. However, the folding landscape of RNA molecules is

supposed to be a rugged landscape with a lot of deep local minima. This sug-

gests that the over-all behaviour of the Gillespie method should be superior

to the Monte Carlo method.
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The check for knot-freeness of the generated secondary structures is another

factor, which can slow down the performance of the algorithm dramatically in

a naive implementation. This problem can be circumvented by implementing

the secondary structure as an ordered rooted tree. As explained previously

(see section 2.1) each secondary structure can be uniquely decomposed into

k-loops. Each k-loop is realized as a linked list in such a way that the list

items are ordered corresponding to their 5’ to 3’ positions along the sequence.

(Note that a base pair, a loop of k = 0, is a linked list with a single list item).

The various k-loops are then linked together to yield an ordered rooted tree

(see figure 12). Since a tree is per definition knot-free, the check for knots is

obsolete if the move set operates on the tree itself.
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Figure 12: Illustration of the data structure used in Kinfold (filled cycles indicate base

pairs, open cycles indicate unpaired bases; dashed lines within the tree representation

signal links between different k-loops).
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The tree can be traversed recursively by visiting the root, then visiting its

subtrees in left to right order. During this traversal the various linked lists,

the tree is composed of, can be examined for the insertion of possible “new”

base pairs, or the deletion of “existing” ones, resulting in a simple reorgani-

zation of the tree.

Energy parameters for branched loops, based on experimental measure-

ments are not available. The standard energy model extrapolates these multi

loop parameters by the linear ansatz approach,

∆G = 4.6 kcal/mol + 0.4 kcal/mol · u + 0.1 kcal/mol · m

(u ... number of branches, m ... loop size)

allowing a faster prediction by a dynamic programming algorithm. This

linear ansatz results in a high penalty for multi loops of moderate size.

However folding simulations of tRNA with the developed program Kinfold

showed, that a nucleation parameter for the formation of branched loops

must be introduced to compensate for the linear ansatz of the standard

energy model. To avoid such an “artificial” parameter, the linear size de-

pendence of branched loops was changed to a logarithmic one, which seems

more natural, since coaxial stacking of helices within the multi loop increases

the stability of these structural motifs [134]. The basic algorithm of Kinfold

works as follows:

Step 0. (Initialization).

(a) Set the time variable t = 0 and the “stopping time” tstop.

(b) Specify the move set (MS1 or MS2) and the rule for calculating

the channel weights Rα
i (e.g. Kawasaki, Metropolis).

(c) Specify the start structure and initialize the current structure Scur

with the start structure.

(d) Specify and store the stop structure Sstop.

Step 1. Generate the set of legal neighbour structures {Sn} from Scur.
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Step 2. Calculate all the reaction channel weights R
(α)
curr and the total flux

Φcur =
∑

α R
(α)
cur. Afterwards normalize the R

(α)
cur’s.

Step 3. Draw two random numbers r1, r2 ∈ [0, 1] from a uniform number gen-

erator.

Step 4. Cumulatively adding the successive values R
(1)
cur, R

(2)
cur, ... until their

sum is observed to equal or exceed r1. Choose the structure with the

index of the last term added to the sum as the new Scur.

Step 5. Calculate the time increment tinc = 1
Φcur

· ln
(

1
r2

)

and advance the clock

t = t + tinc.

Step 6. If t > tstop or if Scur equals Sstop, terminate the calculation; otherwise,

return to Step 1.

By following the above procedure from time 0 to time t, only one possible

realization of the stochastic process is obtained. In order to get a statistically

complete picture of the temporal evolution of the folding of a RNA molecule,

several independent realizations or “runs” have to be carried out. Each run

must start with the same initial conditions and should proceed to the same

time t.

A small hairpin has been used to scale the time axis of the folding process

simulations of Kinfold. This hairpin is formed by the AAAAAACCCCCCUUUUUU

oligonucleotide and its folding kinetics has been measured experimentally [107].

Since the simulations have not yet been compared with measurements on

longer RNA molecules, the times given in the figures of the sections below

should only be taken as rough estimates.

Kinfold is written in ANSI C. Apart from the logarithmic multi-loop

energies Kinfold uses the standard energy model as implemented in the

latest version of the Vienna RNA Package [60].
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4 Computational Results

4.1 Folding Kinetics of tRNA

As a first application of the algorithm we analysed the folding kinetics of the

well known phenylalanine tRNA from yeast. Transfer RNA molecules from

most organisms contain several modified bases, particularly methylations.

These modified bases occur mostly in unpaired regions and often the mod-

ifications are such that base pairing is made impossible. Hence, one might

speculate that the modified bases help to stabilize the correct fold.
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Figure 13: Base pair probabilities for an tRNAphe with and without modified bases. The

equilibrium frequency p of a pair [i, j] is represented by a square of area p in position i, j

and j, i of the matrix. Lower left: only base pairs contained in the ground state occur with

significant frequency for the sequence with modified bases. Upper right: The unmodified

sequence displays a large number of base pairs from suboptimal structures, although the

ground state remains unchanged.
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The phenylalanine tRNA from yeast used in the following, contains six mod-

ification in 76 nucleotides which prohibit base pairing. As can be seen in

figure 13 the modifications have a strong effect on the equilibrium ensemble

of structures. While for the sequence with modified bases only base pairs con-

tained in the ground state occur with significant frequency, the unmodified

sequence displays a large number of base pairs from suboptimal structures,

although the ground state remains unchanged.

The frequency of the correct fold in the thermodynamic ensemble rises

from 4.4% to 28% and suboptimal folding shows that the lowest six subop-

timal structures are prohibited by the modifications and consequently the

energy gap from the ground state to the next possible structures increases

from 0.4 to 0.9 kcal/mol. The density of states and the density of local min-

ima with respect to the move set MS1 for the modified sequence are shown

in figure 14.

Local minima are of particular importance for the folding dynamics. All

configurations within 15 kcal/mol of the ground state have been checked

for local optima using the same move-set as in the folding simulation. The

resulting distributions can be seen in the lower part of figure 14. For this plot

all structures within 15kcal/mol of the ground state have been generated by

suboptimal folding and tested whether or not they are local minima. The

tRNA sequence with modified bases used here displays only a few suboptimal

structures within a few kT above the native state. The modified sequence

exhibits very few local minima in the low energy region, there are only 10

local minima within 5 kcal/mol of the ground state compared to 173 for the

unmodified sequence (not shown). Finding low energy local minima is an

example for the analysis of the folding landscape made possible by the new

suboptimal folding algorithm, without resorting to complete enumeration of

structures [26].

To study the kinetic effect of the modifications, 1000 Kinfold simula-

tions of the folding were performed for both modified and unmodified tRNA

sequences. The resulting trajectories were then analysed for the existence of
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typical folding pathways. Data from a representative simulation are shown

in figure 15. In this particular run the RNA folds somewhat slower than

average, but nevertheless shows features common to all trajectories. A rapid

collapse leads to a structure with almost as many base pairs as the native

state but only small overlap with it. Folding then proceeds through a series

of local minima that have more and more structural elements in common

with the ground state. The waiting times in the local minima increase with

decreasing energy. Many trajectories visit the same low energy intermedi-
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Figure 14: Density of states and the density of local minima for yeast tRNAphe in the

region above the native state at higher resolution. For this plot all structures within

15kcal/mol the ground state were generated by suboptimal folding and tested for being

local minima. The tRNA sequence with modified bases used here displays only a few

suboptimal structures within a few kT above the native state.
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ates, in particular, the stem closing the multi-loop forms latest in almost all

simulations. Interestingly, the correct hairpins closest to the 5’-end are often

formed first, which might support efficient folding during transcription.

As a measure of foldability we recorded the folding times, i.e. the times

after which the ground state appears in the simulation for the first time. The

resulting distribution can be seen in figure 16. Thick lines show the fraction

of simulations that have found the ground state as a function of time. Thin

lines show the distribution of folding times, scaled such that the maximum

has height one. 1000 simulations were run for each sequence.

0.0 100 200 300
time [µs]

-20.0

-15.0

-10.0

-5.0

0.0

5.0

10.0

en
er

gy
 [k

ca
l/m

ol
]

G C
G
G

A

U
U U

A

G
C

U
C

A G
N

N

G
GG

A

G
A

G
C

GC
C

A

G A C U

G
A A N

A

U

C
UGG

AG
N

UC
C

U

G

U

G N
U
C

G

N

U
C

CAC
A

G

A

A

U
U

C

G

C

AC
C

A

G C G
G
A
U

U

U

A

G
C

U
C

A G
N

N

G
GG

A

G
A

G
C

G
C
C
A
G
A C

U

G
AA

N

A

U
C

U
G

GAGNU
C

C
U

G
U

G

N
U

C
GNU

C
C

A

C

A
G
A

A U U
C
G

C
A

C

C

A

G C G
G
A

U

U

U
A G

C

U

C
A

G

N
N G

G

G

A
G

A

G

C
G
C C A G A

C U
G

A

A
NA

UCUGG

A
GNU

C
C
U

G
U

G

N
U C

G

N
UC

C
A

C
A

G

A

A
U

UCGC
A

C

C

A

G C G G A U U U

A
G

C

U

CA
G

N
N

G G
G

A
G

A

G

C G
C
C
A
G
A

C
U G

A

A

N
AU

C
U

G
G

A

G

N
U

CC
U

G
U

G

N
UC

G

N

U
C C

A
C
A

GAAUUCGC
ACC

A

Figure 15: Energy as a function of time for a representative simulation of the modified

tRNAphe. A few intermediate structures are shown at the top, the last one being the native

cloverleaf structure. The stem closing the multi-loop forms last in most simulations.
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The modified sequence folds very efficiently and found the ground state in

all of the 1000 simulations. This is consistent with recent analysis of exper-

imental data by Devajaran Thirumalai [127], suggesting a directed pathway

to the native state for tRNAs. The unmodified sequence folds much more

slowly and only 46% of runs reach the ground state within the simulation

time. The fraction of folded sequences is still rising at that point and longer

simulation will be needed to decide whether the curve saturates at less than

unity.
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Figure 16: Folding kinetics of modified and unmodified Phenylalanine tRNAphe. Thick

lines show the fraction of simulations that have found the ground state as a function of

time. Thin lines show the distribution of folding times, scaled such that the maximum has

height one. While the modified sequence folds very efficiently, the unmodified sequences

do not find the correct fold within the simulation time in over 50% of the cases.
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In the tRNA data base six more sequences from Escherichia coli. exist, which

fold into a “clover leaf” ground state as well. Table 2 shows the percentage of

trajectories, which found the ground state. The simulations were performed

under the same conditions established for tRNAphe. Although all six se-

quences are modified, which has a stabilizing effect on their thermodynamic

stability, their individual folding behavior is rather scattered. Only in two

cases ∼ 98% of the trajectories reach the ground state. Unfortunately, the

corresponding unmodified sequences fold into an complete different ground

state and can therefore not be compared to the runs with the modified se-

quences. Within the data there is no real trend visible showing that fast

folding is a special property of tRNAs. In experiments in vivo RNA struc-

tures can be very sensitive to the procedures used, and even relatively simple

molecules like tRNA can sometimes get trapped in other structures [133].

Sequence Successful runs

RV1661 99%

RR1661 98%

RV1660 65%

RI1660 53%

RD1669 50%

RI1661 28%

Table 2: Percentage of trajectories which found the ground state for six other modified

tRNAs possessing the “clover leaf” as ground state.
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4.2 Foldability versus Thermodynamic Stability

In case of the phenylalanine tRNA the modified bases improved both ther-

modynamic stability, conferred by a large energy gap between native and

mis-folded states, and foldability. The same relation has been claimed for

lattice protein models by Sǎli et. al. [115]. To test this hypothesis two artifi-

cial sequences with the tRNA structure as ground state have been computed

by means of the RNAinverse program from the Vienna RNA Package.

The thermodynamics of the first testsequence are average, the frequency

of the ground state in the ensemble is about 7% and several alternative

foldings can be seen in the base pair probability matrix, see inset of figure 17.

The other testsequence had been designed to be especially stable. For this

sequence the ground state dominates the ensemble with a frequency of 96%

and no alternative foldings are recognisable in the dot plot.

1000 folding Kinfold simulations for each sequence have been made the

results of which can be seen in figure 17. Surprisingly, it is the thermodynam-

ically more stable sequence that folds poorly in this example. While ∼98%

of the trajectories of the randomly chosen sequence reach the ground state,

this fraction drops for the optimized sequence to ∼50%. Note, allthough the

the randomly chosen sequence is a relatively good folder, the distribution of

the folding times is much broader then for tRNAphe (see figure 16).

Even an isolated example such as this one shows that it is easy to con-

struct cases where the kinetics cannot be predicted from thermodynamic

properties. More test cases will be needed in order to decide if and how

strongly thermodynamic stability and foldability correlate on average.
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Figure 17: Thermodynamic stability and “foldability”. A randomly chosen sequence with

tRNA structure (Top). A sequence designed to be thermodynamically extra stable (Bot-

tom). Although many alternative foldings are visible in the dot plot ( see Insert) of the

randomly chosen sequence it foldes efficiently to the ground state. In contrast the sequence

designed to be thermodynamically extra stable (see Inset) folds only in less than 50% of

the simulations.
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4.3 Folding Paths

Another topic, being animatedly discussed with in the protein field, con-

cerns the question whether or not the folding landscape of a biopolymer is

structured in such a way that pronounced folding paths do exist. A folding

pathway embodies the idea that the folding molecule goes through a sort of

funnel on the folding landscape, like water flowing down a gutter, to the na-

tive structure. This process is more directed than a random search. Accord-

ing to this idea, a pathway of folding means that there exists a well-defined

sequence of events which follow one another [81]. The gutter represents a

particular series of conformational changes. It may have valleys representing

intermediate states and hills exhibiting transition states on its way to the

native state. While the pathway idea handily “ solves” the random search

problem of the biopolymer, the physical basis for such specific sequences of

events is unclear. A pathway leads from a specific point (e.g. the denatured

state) on the folding landscape to another one (e.g. the native state).

The problem with the concept of a pathway is, that the denatured state is

not a single point on the landscape, but rather all the points on the landscape

except for the ground state. A pathway is too limited an idea to explain the

flow from everywhere else, the denatured ensemble of structures, to one point,

the native conformation. To throw light on the question of folding pathways

for RNA molecules, the frequency with which individual trajectories visit the

same local minima along their way to the native state, has been investigated.

Figure 18 shows a compilation of the data for a couple of 1000 folding

simulations, of tRNAphe. In the energy range between −9.0 kcal/mol and

0.0 kcal/mol the same local minima are visited with a very low frequency.

This finding suggests, that in this region of the folding landscape, a lot of

equally efficient but distinct “folding paths” exist. The folding chain has no

apparent preference for a special path, but rather proceeds down the folding

landscape by many different routes. The dynamic behavior of the folding

chain in this energy range of the folding landscape, is the observed and pre-

viously mentioned rapid collapse of the chain to a “compact” conformations
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possessing little overlap to the native structure.

Within an energy of about −12.0 kcal/mol a whole bunch of local minima

is visited on average by ∼ 25% of the trajectories. Here the various fold-

ing trajectories, which arrived through different routes, must pass a kind of

bottle-neck to proceed further towards the native conformation. The bottle-

neck seems to be a kind of transition state ensemble with a relatively broad

distribution of structural variety. The bottle-neck can be reached through

various energetically not so favorable conformational rearrangements from

the bunch of local minima. The activation energies are moderate, since all
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Figure 18: Distribution of local minima visited by the folding modified tRNAphe. The

folding paths are very heterogeneous, until the trajectories visit conformations with energie

below ∼ –9kcal/mol. In that region about ∼30% of the trajectories visit the same local

minima.
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the trajectories reach the ground state and no fraction of trapped chains is

observable within the allowed simulation time. The overall dynamic behavior

of the folding chain can be summarized as a diffusive-like random search for

the “escape pathways” to the native state.

To verify this folding behavior the distribution of the first passage times,

the time the chain reaches for the first time the ground state, was reexamined.

Figure 19 shows this distribution. Here the fraction of folding trajectories,

which reach the ground state within the time interval [t, t + ∆t] multiplied

by t is plotted versus the first passage time in a log-log-plot. The plot
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Figure 19: The kinetic signature of the modified tRNAphe shows only a single peak. The

time scale of folding is set by the closing of the multiloop.
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shows one broad hump with nearly no fine-structure. This indicates, that

the folding mechanisms of tRNAphe form a quasi-continuous spectrum. The

first passage times of this spectrum are nearly equal distributed within a

broad time interval.

A complete different folding behavior is shown in Figure 20. Here an

artificial RNA of 25 nucleotide length has been folded. The sequence was

designed in such a way, that it can form either of two overlapping hairpins.

One located against the 5’ end of the sequence with an extra stable tetra

loop. The other hairpin located near the 3’ end of the sequence resembles
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Figure 20: Distribution of folding times of a short RNA. The curve shows two distinct peaks

corresponding to two different dominating folding pathsways. A less prominent folding

pathway manifests itself as shoulder on the right hand side of the first peak (indicated by

an arrow).
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the ground state. Figure 20 shows to distinct humps. The left hump corre-

sponds to the direct folding path from the open chain to the ground state (see

left insert of figure 20). After insertion of the loop closing base pair, which is

the rate limiting step, the ground state is reached without further obstacles

by a smooth “zipper”. The energy profile for this folding path is shown in

figure 22. In the right flank of this hump a shoulder is visible marked by an

arrow. This shoulder depicts a slightly more complicated folding mechanism.

Here the chain first misfolds into a set of local minima with slightly nega-

tive energies (see figure 21 bold lines). The escape from these local minima

back to the unfolded state is fast, since the barriers on the way to the open
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Figure 21: Distribution of local minima for different folding mechanisms (see text for

details).
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chain are relatively low. The chain then takes the direct folding path to the

ground state. However the round about way to misfolded states results in an

elongation of the folding time.

The hump to the right portraits pathways leading to local minima with

energies near the ground state. Escape from these minima involves extensive

“hill climbing” over high free energy barriers and therefore the folding times

are resonably elongated. Figure 22 shows the escape pathway from the deep-

est local minimum. Of all the paths connecting this local minimum to the

ground state, the path involving the smallest barrieres is shown. It is easy to

see, that the escape pathway from this local minimum is energetically very

expensive.

First, a misfolded hairpin at the 3’-end has to be molten. Second, the

activation energy for the nucleation of the base pair, closing the hairpin loop

of the ground state has to be overcome. Third, the overlapping extra stable

hairpin at the 5’-end, has to be disrupted, involving again “hill climbing”,

before the ground state can be formed (see figure 22). The energy profile of

this last step is flattened by the shift move. The alternative path without

base shifts, indicated by a dotted line in figure 22, showes two more free

energy barriers.

Within the left flank of the second hump another folding mechanism is

hidden. Here the chain forms parts of the two above mentioned hairpins.

Before the helix of the ground state structure can be formed, the helix of

the extra stable hairpin near the 5’ end must be melted. This is again an

energetically expensive process.
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Figure 22: The upper l.h.s plot showes the energy profile of the two most prominent folding

paths: The fast path a simple zipper (bold line) and the escape path from the folding trap

(normal line); the dashed line indicate the energy barriers in the absence of shift moves.

The upper r.h.s plot shows the energy barriers between the 20 lowest local minima. In the

lower part the structures, which are realized along the escape path are shown.
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4.4 Metastable Structures

Since biopolymers in living cells operate at temperatures far from 0 K, energy

levels above the ground state are populated to a certain extend. Therefore

the “real structure” of an RNA molecule fluctuates around the ground state

structure. This ensemble of alternative foldings must be strictly distinguished

from metastable conformations, because the later are not in thermodynamic

equilibrium with the ground state conformation. Metastable conformations

of RNA are conformations which are stable for a limited time span under

certain environmental conditions.

In some cases metastable conformations can be essential for cellular func-

tion of RNA as has been shown for the live cycle of viroids [56, 83, 109] or

the processing of mRNA [113]. They can be identified experimentally by us-

ing temperature-gradient gel electrophoresis [110, 112, 114]. Another RNA

which is known to fold into a metastable structure is SV-11.

SV-11 is an RNA species of 115 nt length. The molecule is able to fold

into two alternative structure, a long hairpin resembling the ground state

and an hairpin-hairpin-multi-loop motif resembling the metastable form (see
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Figure 23: Ground state and metastable state of SV-11. While the metastable state is a

template for the Qβ replicase, the ground state is not.
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figure 23). While the less stable structure is an active template for the Qβ

replication assay, the ground state of the molecule is unable to replicate. The

transition from the metastable structure to the ground state is rather slow

but has been observed experimentally [12]. This suggests that the lifetime of

the metastable folding could be rather long.

SV-11 provides an excellent test case for Kinfold because its results can

be compared with experimental results as well as with results achieved by

kinetic folding simulations of other groups [46, 94]. The simulations with

Kinfold show, starting from the open chain, only about 16% of the trajecto-
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Figure 24: Fraction of local minima visited per trajectory. The metastable structure

ensemble is marked by a filled cycle. Only about sim16% of the trajectories reach the

ground state. The great majotity get trapped within the basin of the metastable structure

(Dawn at Shiprock, New Mexico).
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ries find the ground state within 500µs. The great majority of the trajectories

get trapped in a cluster of states around -58 kcal/mol marked by a circle in

figure 24. A closer look at these structures shows that they form a thermody-

namically equilibrated ensemble around the proposed metastable structure

of SV-11.

The simulation had been counter checked by starting from the metastable

structure. In this case the trajectories remained in an energy interval around -

58 kcal/mol, and reproduced exactly the distribution of the metastable struc-

ture ensemble. In the energy range between 0.0 kcal/mol and -45.0 kcal/mol

different trajectories visit rarely the same local minima, witch means that in

this region a lot of different and independent folding pathways seem to exist.

Translated into the language of folding landscapes this behaviour corresponds

to a very smooth funnel.

Steven Morgan and Paul Higgs [95] employed a Monte Carlo routine for

addition and removal of whole helices to simulate the folding of SV-11. The

molecule folded to the metastable structure, if folding occured during chain

growth. Folding of SV-11 after chain growth was completed lead exclusively

to the ground state structure.

Alexander Gultyaev et al. [46] used a genetic algorithm operating as well

on a move set of whole helix insertion or deletion. His findings however

critically depended upon intrinsic parameters of the genetic algorithm, like

population size or chain growth rate. Starting from the full-length chain the

genetic algorithm failed to predict the metastable structure.

In figure 25 the base pair probability matrix for the ground state and the

metastable structure ensemble are shown. The frequency of occurrence of the

ground state within the thermodynamic equilibrium is ∼ 30%, indicating

that the native state is thermodynamically well defined. In contrast the

metastable structure occurs only with a frequency of ∼ 0.07% and is therefore

not visible in the dot-plot of the thermodynamic equilibrium.

SV-11 is a clear example where the structure prediction using thermody-

namic prediction methods fails. Since the ensemble of metastable structures
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is invisible at thermodynamic equilibrium. In such cases only kinetic folding

algorithms or, if enough homologous sequences are available, phylogenetic

comparison can predict the structure with high accuracy.
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Figure 25: Dot-plot of the ground state (left) and the metastable structure ensemble (right)

of SV-11. Note that the metastable structure ensemble posses such a low frequency within

the thermodynamic equilibrium, that it is invisible in the dot-plot of the optimal fold.
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5 Conclusion and Outlook

The ability of biopolymers to fold into a well-defined native state is a pre-

requisite for biologically functional biopolymers. RNA secondary structures

provide an ideal model system to study the structure formation process. The

secondary structure model is sufficiently simple to allow efficient algorithms

to compute (almost) any thermodynamic quantity of interest, yet it is still

close enough to reality to address problems of particular interest.

During this thesis an efficient program called Kinfold has been developed

for the simulation of the folding dynamics of RNA secondary structure .

Due to pairing rules and high stability of RNA secondary structure, the

folding landscape of RNA molecules is the prototype of a rugged landscape.

Therefore a rejection free Monte Carlo method is used by the algorithm,

which is especially capable for the sampling on rugged landscapes.

A crucial component for the simulation of the RNA folding kinetics is

the choice of the move set for inter-converting secondary structures. The

move set lays down the topology of the folding landscape by defining which

secondary structures are neighbours of each other. It also encodes the set of

structural changes that RNAs can undergo at moderate activation energies.

The move set is so to speak the basis of any kinetic algorithm for RNA

folding.

The most elementary move set, on the level of secondary structure, con-

sists of removal and insertion of a single base pair (while making sure that

no knots or pseudo-knots are introduced into the structure). Beside this

simple move set Kinfold makes use of an additional base pair “shift” move

(in which one of the two positions of a given base pair is converted into a

new one). These “shift” moves facilitate sliding of the two strands of a helix,

bulge diffusion along a helix and the inter-conversion of partially overlapping

helices, which are assumed to be important effects in the dynamics of RNA

molecules. The move sets used in Kinfold are local move sets, allowing

only small structural changes, which is of utmost importance if one hopes to

observe “realistic” folding trajectories.
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Folding simulations have been performed for various tRNAs. These simula-

tions revealed cases where the folding molecule found efficiently the native

state, and cases where a large fraction of folding molecules got trapped in

local minima, from which they could not escape on a realistic time-scale. A

closer examination of the folding trajectories of tRNAphe, a “good” folding

molecule, showed, that the folding process is hierarchically organized. This

implies the early formation of small-scale secondary structure elements which

progressively reorganize to larger sub-domains during the folding process. A

slight tendency for a interdependence between sub-domain formation was

observed as well. Secondary structure elements near the 5’-end of tRNAphe

formed in nearly all trajectories before others located farer to the 3’-end,

which might support efficient folding during transcription. This might well

be a result of evolutionary selection of sequences that fold better when pro-

duced in 5’ to 3’ direction.

Observations based on lattice protein models lead to the hypothesis, that

high thermodynamic stability of proteins correlate with their good foldabil-

ity. To test this hypothesis for RNA the effect of the modification of tRNAs

onto their thermodynamic stability and their foldability has been investi-

gated. The correlation found was not as distinct as in the protein case. In

addition artificial RNAs with a completely different behaviour can be easily

designed. However, in order to decide how strong thermodynamic stability

and foldability correlate on average further investigations are required.

Information about folding paths can be inferred directly from Kinfold

simulations. In particular, folding paths through metastable states can easily

be identified in curves of the fraction p(t) of molecules that have reached

the the ground state at time t versus t. Such p(t)-curves are in principle

experimentally measurable and provide an excellent check for the theoretical

predictions of Kinfold. The analysis of p(t)-curves uncovered that some

molecules have folding paths with very different time-scales. In general,

this behaviour is determined by local minima with large basins of attraction

on the folding landscape. For small examples it is possible to observe the
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escape from these basins within the simulation time, and analyse exactly the

sophisticated pathway, that allows the molecule to escape from the trapped

conformation.

The program Kinfold is organized in a modular fashion, making exten-

sions of the move set or changes of the simulation method easy to handle. A

conceivable extension would be the incooperation of 3D-contacts like pseudo-

knots, if experimental measured energy parameters for this kind of contacts

become available in the future.

Several interesting evolutionary questions can be investigated using the

kinetic folding algorithm. Examples are: How does the energy landscape of

an RNA molecule evolve when selection pressure is put on shape conservation

and foldability simultaneously? Are the heights of the energy barriers or the

density of paths, connecting two points of the energy landscape targeted by

the point mutations during such a process? The investigation of the sequence

to structure map revealed that sequence space is percolated by extended

neutral nets. Does the fine structure of this picture change if fast foldability

is taken into account ? Does the structure of the neutral nets in the sequence

space change if foldability is also taken into account ?

A fruitful area to which Kinfold can be applied for is the design of

improved antisense RNA inhibitors on a theoretical basis. Partial or complete

annealing between natural complementary RNAs is a crucial process in living

cells including gene expression, splicing and antisense regulation. Despite a

substantial number of successful applications of artificial antisense RNA in

plant genetics or molecular medicine, as a tool to suppress aberrant gene

expression or viral functions, little is known about the rules that govern

the relationship between RNA structure and annealing kinetics. Computer

supported structural design of antisense RNA can serve as a valuable tool

to determine RNA–RNA association in vitro and biological effectiveness in

living cells.
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[115] A. Šali, E. Shakhnovich, and M. Karplus. Kinetics of protein folding.

A lattice model study on the requirements for folding of native states.

J. Mol. Biol., 253:1614–1636, 1994.

[116] M. Sasai and P. G. Wolynes. Unified theory of collapse, folding and

glass transition in associative-memory hamiltonian models of proteins.

Phys. Rev. A, 46:7979–7997, 1992.

[117] M. Schmitz and G. Steger. Discription of RNA folding by simulated

annealing. J. Mol. Biol., 225:254–266, 1996.

[118] P. Schuster, W. Fontana, P. F. Stadler, and I. L. Hofacker. From se-

quences to shapes and back: A case study in RNA secondary structures.

Proc. Roy. Soc. London B, 255:279–284, 1994.

[119] M. J. Sippl. Calculation of conformational ensembles from potentials

of mean force. An approach to the knowledgebased prediction of local

structures in globular proteins. J. Mol. Biol., 213:859–883, 1990.



References 80

[120] R. A. Staniforth, S. G. Burston, T. Atkinson, and A. R. Clarke. Affin-

ity of chaperonin-60 for a protein substrate and its modulation by nu-

cleotides and chaperonin-10. Biochem. J., 300:651–658, 1994.

[121] A. Stein and D. M. Crothers. Conformational changes of transfer RNA.

the role of magnesium(II). Biochemistry, 15:160–167, 1976.

[122] A. A. Suvernev and P. A. Frantsuzov. Statistical description of nucleic

acid secondary structure folding. J. Biomol. Struct. Dyn., 13:135–144,

1995.

[123] A. A. Szewczak and P. B. Moore. The sarcin/ricin loop, a modular

RNA. J. Mol. Biol., 247:81–98, 1995.

[124] M. Tacker, W. Fontana, P. F. Stadler, and P. Schuster. Statistics of

RNA melting kinetics. Eur. Biophys. J., 23:29–38, 1994.
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bei Prof. Dr. Edda Gössinger (Naturstoffsynthese)

Titel: Synthetische Untersuchungen zum Antibiotikum
Nodusmicin

Dissertation: Inst. für Theor. Chemie (1996-98)
bei Prof. Dr. Peter Schuster)

Titel: Kinetic Folding of RNA

List of Publication
[1] Christoph Flamm, Susi Rauscher, Christian Mandl and Peter F. Stadler.

New conserved secondary structure motifs at the 3’end of rna genome
of tick-borne flaviviruses. In Symposium on Modern Approaches to Fla-

vivirus Vaccines, Vienna, Austria, page B18, 1996.

[2] Jan Cupal, Christoph Flamm, Alexander Renner, and Peter F. Stadler.
Density of states, metastable states, and saddle points. Exploring the
energy landscape of an RNA molecule. In T. Gaasterland, P. Karp,
K. Karplus, Ch. Ouzounis, Ch. Sander, and A. Valencia, editors, Pro-

ceedings of the ISMB-97, pages 88–91, Menlo Park, CA, 1997. AAAI
Press.

[3] Ivo L. Hofacker, Martin Fekete, Christoph Flamm, Martijn A. Huynen,
Susanne Rauscher, Paul E. Stolorz, and Peter F. Stadler. Automatic
detection of conserved RNA structure elements in complete RNA virus
genomes. Nucl. Acids Res., 26:3825–3836, 1998.

[4] Susanne Rauscher, Christph Flamm, Christian Mandl, Franz X. Heinz,
and Peter F. Stadler. Secondary structure of the 3’-non-coding region of
flavivirus genomes: Comparative analysis of base pairing probabilities.
RNA, 3:779–791, 1997.
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Ronke Babajide, Jan Cupal, Martin Fekete, Thomas Griesmacher, Chris-
tian Haslinger, Stephan Kopp, Bärbel Krakhofer, Stefan Müller, Susanne
Rauscher, Alexander Renner, Roman Stocsits, Norbert Tschulenk, Günther
Weberndorfer, Andreas Wernitznig, Stefan Wuchty, die alle für ein angenehmes
Arbeitsklima sorgten.

Eine innige Umarmung gilt meiner Freundin Mano.

Zum Schluß meinen Eltern, die mir durch ihre Unterstützung ein Studium
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