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Abstract

Facing the ever-growing list of newly discovered classes of functional RNAs, it can be
expected that further types of functional RNAs are still hidden in recently completed
genomes. The computational identification of such RNA genes is, therefore, of ma-
jor importance. While most known functional RNAs have characteristic secondary
structures, their free energies are generally not statistically significant enough to
distinguish RNA genes from the genomic background. Additional information is
required. Considering the wide availability of new genomic data of closely related
species, comparative studies seem to be the most promising approach. Here we
show that prediction of consensus structures of aligned sequences can be a signif-
icant measure to detect functional RNAs. We report a new method how to test
multiple sequence alignments for the existence of an unusually structured and con-
served fold. We show for alignments of six types of well known functional RNA
that an energy score consisting of free energy and a covariation term significantly
improves sensitivity compared to single sequence predictions. We further test our
method on a number of non coding RNAs from C. elegans/C. briggsae and seven
Saccharomyces species. Most RNAs can be detected with high significance. We pro-
vide a Perl implementation which can be readily used to score single alignments
and discuss how the methods described here can be extended to allow for efficient
genome-wide screens.
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1 Introduction

In the past few years our knowledge on the molecular and cellular functions of
RNA has increased dramatically. In particular the identification of numerous
RNA transcripts that function directly as RNA without ever being translated
to protein (non coding RNAs) has made clear that the traditional view of RNA
must be extended profoundly. To mention just one example, the discovery of
micro RNAs1–3 has led to an new paradigm of RNA-directed gene expression
regulation. There are many other examples of such new ‘RNA-genes’.4,5

Another aspect of RNA function are cis-acting regulatory elements within
protein coding genes. A recent example is the regulation of metabolic path-
ways in bacteria through ‘riboswitches’ . These riboswitches occur in leader
sequences of operons and interact directly with small metabolites6 in order to
control protein expression.

These findings not only force experimental biologists to reconsider their strate-
gies and methods, but also pose new challenges to bioinformatics. In particular,
the computational identification of functional RNAs in is a major, yet largely
unsolved, issue.

Current methods mostly are based on similarity searches and are successful
in the identification of functional RNAs that are members of already known
families.7–10 A more general approach that detects new classes of functional
RNAs without relying on any a priori knowledge would be helpful. This,
however, proved to be difficult. In contrast to protein coding genes, which show
strong statistical signals like open reading frames and codon bias, the primary
sequences of functional RNAs seem to lack comparable signals completely.

Since most known functional RNAs depend on a defined secondary struc-
ture, it was suggested by Maizel and co-workers that functional RNAs have a
more stable secondary structure than expected by chance.11–13 However, efforts
to build a general RNA gene finder based on secondary structure prediction
failed. Rivas & Eddy had to conclude in an in-depth study on the subject that
secondary structure alone is generally not significant enough for the detection
of non-coding RNAs.14 Some other statistical measures, partly derived from
secondary structure predictions, have been proposed.15–17 Still, additional in-
formation seems to be required for reliable predictions on a genome-wide scale.

The most promising source of information comes from comparative studies.
Already, a number of complete genomes from closely related species are avail-
able. Some of them have been sequenced solely for the purpose of genome
comparisons. Readily available sets for comparison are: more than 15 enteric
bacteria,18,19 seven yeast species,20,21 two nematodes22,23 and the two mam-
malian genomes from human24 and mouse.25 Facing the ever-growing pace of
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genome projects, even more can be expected in the near future.

QRNA is a program that makes use of this comparative information and scans
pairwise alignments for conserved secondary structures using probabilistic
models based on stochastic context free grammars.26 This approach has been
applied successfully to predict candidates for non coding RNAs in E.coli and
S. cerevisiae. Some of which could be verified experimentally.27,28

In this contribution, we propose an alternative method to assess a multiple
sequence alignment for the existence of a conserved secondary structure. We
compute an averaged folding energy of aligned sequences, that also takes into
account sequence covariations. Following the ideas of the Maizel group, we
compare this to a set of random alignments in order to estimate if there is an
unusually stable and conserved fold. We address the question, if this can be a
significant measure to detect functional RNAs in genome-wide screens.

2 Results and Discussion

2.1 MFE predictions for single sequences are of limited statistical signifi-

cance.

Secondary structure is a useful level on which to understand RNA function.
Fairly reliable models can be predicted with computational methods. Since
many known functional RNAs are tied to a defined secondary structure, such
predictions appear a straightforward measure for their detection. However,
prediction programs readily calculate minimum free energy (MFE) structures
also for arbitrary random sequences. The question arises, if natural RNAs
are more stable (have lower MFE) than random sequences. This question was
partly addressed previously.14 Here, we test it again for sequences from a set of
six structural RNA families (tRNA, 5S rRNA, Hammerhead ribozyme type III,
Group II catalytic intron, Signal recognition particle RNA, U5 spliceosomal
RNA). We used RNAfold for the prediction and calculated z-scores from a
sample of 100 random sequences (see Material and Methods). The results are
shown in Table 1. On average, the structural RNAs have all z-scores clearly
below zero, meaning they have lower folding energy than the random samples.
Is this significant enough to reliably distinguish single sequences from the
random background? Fig. 2 illustrates this for the tRNA test set. The topmost
panel shows the distribution of z-scores for 579 tRNAs together with the z-
scores of 579 random sequences (one shuffled version for each tRNA). If we use
a conservative limit of −4 to define a significant z-score, we can only detect
2% of the tRNAs. To detect half of all tRNAs we would have to lower the
cutoff to −1.8. Then, however, we would encounter 4% of false positives. For
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genome-wide screens where a huge number of candidates has to be scored,
this selectivity is too low (especially for a corresponding sensitivity of only
50%). Some of the tested families form more stable structures (e.g. Group II
catalytic intron: average z=−3.88, Hammerhead ribozyme III: z=−3.08) but
generally the native sequences are not efficiently separated from the bulk of
random sequences.

An additional point seems noteworthy regarding these experiments. Work-
man & Krogh29 pointed out that dinucleotide content influences secondary
structure predictions, because of the energy contributions of stacked base-
pairs. A correct randomization procedure should, therefore, generate random
sequences of the same dinucleotide content. It is impossible to consider this in
the randomization of multiple sequence alignments (see next section). For sin-
gle sequences, however, we performed the z-score calculations with both mono-
and dinucleotide shuffled random sequences. The results (Table 1) show that
a systematic bias is not recognizable for our test sets. The values differ only
minimally and the mononucleotide-shuffled z-scores. Thus, while dinucleotide
composition was important in the study of Workman & Krogh where long
(> 500 nucleotides) mRNAs are tested for an (obviously non-existent) subtle
bias towards lower folding energies, it can be neglected in our case.

2.2 Additional information from aligned sequences shifts MFE predictions

towards significant levels.

The results so far show that folding energy is indeed a characteristic signal
of (structural) ncRNAs, but is in itself not sufficient for a reliable detection.
Given the availability of comparative data mentioned in the introduction, we
wondered how to efficiently make use of this information. We use the program
RNAalifold, which was originally developed to predict consensus secondary
structures of aligned sequences.30 RNAalifold calculates an averaged mini-
mum free energy for the alignment, incorporating covariance information into
the energy model. We consider RNAalifold-MFEs to be a good measure for
the existence of a conserved fold and a good alternative for the probabilistic
approach implemented in QRNA. RNAalifold makes use the standard energy
model for RNA secondary structures, and thus reduces to simple MFE struc-
ture prediction in the case of single sequences. For an alignment of several
sequences the energy model is augmented through covariance information.
Furthermore, RNAalifold is not limited in the number of input sequences.

To test if the consensus folding of homologous sequences is more significant
than the folding of single sequences, we generated test sets of multiple se-
quence alignments from the same RNA families as before and subsequently
calculated z-scores based on RNAalifold-MFEs. For this purpose we had to
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develop a reliable randomization procedure for multiple sequence alignments.
Our algorithm takes care not to introduce randomization artifacts (see section
Material and Methods and Fig. 5) and generates random alignments of the
same length, the same base composition, the same overall conservation, the
same local conservation and the same gap pattern. This is the most conser-
vative randomization procedure possible but it is effective enough to remove
correlations arising from secondary structures.

The results for the z-score calculations are summarized in Table 1 and Fig. 1.
If we compare the average z-score from the single sequences to the average
z-scores of the pairwise alignments (N=2), we observe in all cases that the av-
erage z-score drops by almost 2. It further drops for the alignments consisting
of three and four sequences. We want to recall that the units of z-scores are
standard deviations, so that even small changes shift the sensitivity signifi-
cantly (for fixed z-score threshold). In Table 1 we calculated the sensitivities
for a threshold of −4. In Fig. 2 the z-score distribution is shown for the tRNA
alignments with varying N . Folding of pairwise alignments instead of single
sequences improves sensitivity from 2.1% to 71.1%. For N = 4, the native
alignments are completely separated from the random alignments and almost
all score below −4 (98.4%).

2.3 z-scores of random alignments are well approximated by a standard nor-

mal distribution

Sensitivity and selectivity depend on a predefined z-score threshold. Assuming
a normal distribution, one can readily estimate the false-positive rate of a
given z-score threshold. For −4 it is below 0.003%, meaning one false positive
can be expected in approximately 31500 alignments. Since one should not
expect the MFEs of randomized alignments to follow the normal distribution
exactly, it makes sense to empirically estimate the significance of z-scores. The
distribution of 11633 random z-scores is shown in Fig. 3. It is, indeed, well
approximated by a standard normal distribution (mean µ = 0.01, standard
deviation σ = 0.99). The distribution is slightly skewed with a fat tail: There
are apparently more z-scores below −3 than z-scores above +3. This tail
is not due to our shuffling algorithm. Single sequences (whether mono- and
dinucleotide shuffled) show the same skew in the distribution (not shown), as
noted also in other studies.14

The expected and observed frequencies for several thresholds can be found in
Fig. 3. The observed frequencies are slightly above the theoretically expected
ones. For the experiments shown here, all thresholds below −3 have a false-
positive rate below 1% and can be regarded as significant.
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The threshold of −4 used so far has a false-positive rate of 0.06% and thus
represents a rather conservative definition of significance. It must be noted,
however, that all these values are based on the 11633 ClustalW alignments
made from Rfam entries in this study. For genome-wide studies it cannot
be assumed that the genomic background behaves exactly like random align-
ments and it might be possible that various inhomogeneities cause more false
positives than experienced here. The false-positive rate will depend on prepa-
ration of the data (e.g. masking of repeats and low complexity regions) and
the quality of the alignments.

2.4 Sensitivity depends on sequence divergence and alignment method.

RNAalifold takes a multiple sequence alignment as input. It can predict an
existing consensus structure only if the sequence alignment reflects common
structural properties. Ideally, one would like to feed RNAalifold with struc-
turally aligned sequences. However, existing algorithms,31 are much too slow
to make this a feasible alternative for a large number of alignments, so that
typically alignments based on sequence similarity alone will be used. To test
to which extent the performance of our method depends on the alignment
method, we did the following experiment: We took 73 eukaryotic SRP-RNAs
and generated 2083 pairwise alignments with a wide variety of pairwise identi-
ties. For this test set, manually curated structural alignments exist.32 We cal-
culated z-scores for structurally aligned pairs and for ClustalW aligned pairs
(Fig. 4). The detection performance for the structural alignments constantly
increases with increasing sequence divergence over the full range of pairwise
identities. This is exactly what could have been expected, since higher sequence
divergence means more information-rich covariances. From appr. 60% to 100%
pairwise identity, the z-scores of the sequence based alignments are essentially
the same. Below 60%, the detection performance drops remarkably. Extrap-
olating from this example, we can conclude that there is obviously no need
for structural alignments above 65% pairwise identity and that our method
scores best somewhere between 60% and 70%.

2.5 Most structural ncRNAs from S. cerevisiae and C. elegans can be signif-

icantly detected.

The results so far show that detection sensitivity highly depends on the quality
of the available data. A large number of homologous sequences with high
divergence (but still alignable) is desirable. In real-life applications, such ideal
data sets will hardly be found. To test our method not only for the rather
artificial data sets taken from Rfam, we created tests sets of known non-
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coding RNAs from C. elegans and S. cerevisiae (see Material and Methods).
The genome of a second nematode C. briggsae was finished recently.22 For
S. cerevisiae, unassembled draft sequences of six related yeast species exist.20,21

In the case of the yeast sequences, we tried an automatic alignment procedure.
We chose MultiPipMaker,33 which is currently the only program available
which can align a reference sequence to unassembled contigs on a genome
wide level off-the-shelf. Sometimes it worked well, but in many cases manual
refinement was necessary.

Table 2 and 3 show the results for the genomic examples. For scanning whole
genomes it will not be feasible to predict structures longer than appr. 200
nucleotides. We therefore scored alignments longer than 150 columns using
a sliding window (size 150, slide 20) and report the lowest z-score obtained.
To estimate the contribution of secondary structure stability alone, we also
scored single sequences from C. elegans and S. cerevisiae using RNAfold.

We found that ncRNA sequences are highly conserved between C. elegans and
C. briggsae. Pairwise identities are above 90% in most cases. Still, most genes
score well below −4. Some of them (e.g. SRP RNA or let-7 pre-miRNA) form
exceptionally stable structures that can also be detected by single sequence
predictions without problems. However, the alignment scores are more sig-
nificant in all cases with values below the single scores in the order of appr.
one standard deviation. Only the spliceosome RNAs U4 and U6 cannot be
detected. This shows the inherent limitation of this method. U6 for example
is known to form extensive intermolecular interactions with U4 rather than
forming a stable intramolecular secondary structure. U6 only features a short
5’-stem loop. Although predicted by RNAalifold in the native alignment, this
loop is too short to be significantly different from the random background.

For the yeast genes we encounter similar results. Here we have more sequences
(up to seven homologs) and sometimes also higher divergence with mean pair-
wise identities below 90%. Therefore, the alignment scores differ significantly
(up to 4 standard deviations) from the single sequence scores. Many genes
which would have been missed with a −4 threshold with the single score
can be reliably detected by the alignment score. As seen before, RNA genes
lacking a stable secondary structure are missed. This is the case for all C/D
snoRNAs. The H/ACA snoRNAs show z-scores around −3, but the typical
two stem loops of H/ACA snoRNAs are not stable enough to be detected at
a threshold of −4. The covariance information could help in this case, but
the H/ACA snoRNAs in yeast are too conserved (appr. 90% mean pairwise
identity).
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2.6 Towards genome wide scans

Our method is readily available to analyze a given multiple sequence align-
ment. For example, if a new gene has been cloned and found to have an
evolutionary conserved untranslated region, it can be tested for the existence
of an unusually stable and/or conserved secondary structure.

Our results show that the sensitivity and selectivity are suitable even for
genome wide scans. Some important issues have to be considered regarding
such large scale applications.

A straightforward approach to fold large genomic regions is to apply a sliding
window. As already mentioned, the maximum length is practically limited to
appr. 200 nts. Although many known functional RNA structures are longer
than 200 nucleotides, this seems to be long enough to detect local substruc-
tures. However, a sliding window has several other drawbacks. Only for a
step-size of one, all possible regions are covered. In practice, the use of a much
larger step-size is inevitable which leaves us with a ‘blind spot’ and many
relevant local structures are ignored. Another problem arises, if for example a
small structured motif of 50 nts should be detected within a much longer win-
dow of 200 nts. This will result in a low signal to noise ratio which probably
hinders detection. Again for performance reasons, the use of different sized
windows is not an alternative. To avoid problems of that kind, a local pre-
diction algorithm is desirable. Such an algorithm is for example implemented
in the probabilistic model of QRNA. Similarly, energy based dynamic program-
ming algorithms can be modified to allow for the efficient prediction of all
locally stable structures of a given maximum size, as shown recently in our
group.34 In principle, the idea can also be applied to RNAalifold for local
consensus structure prediction.

Generally, the RNAalifold algorithm is fast for moderate window sizes. Middle-
sized genomes like S. cerevisiae or C. elegans could be analyzed within hours
on a modern desktop computer. However, the Monte Carlo procedure to esti-
mate the significance imposes a serious performance problem. A direct mea-
sure for the significance of a calculated MFE would have to consider alignment
properties like the GC-content, the degree of conservation, the gap pattern and
of course the length of the structure. It appears difficult to put all this together
into a meaningful ad hoc score.

Shuffling is the only remedy but, theoretically, a genome must be folded 200
times if both forward and reverse strand are analyzed with a sample number
of 100. In practice, the number of calculations can be reduced drastically.
First, only conserved regions have to be analyzed and even in closely related
species only a fraction of the genome can be reliably aligned on the nucleotide
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level. Second, RNAalifold will not predict stable consensus structures in all
regions. There is no sense in extensively shuffling and folding a structure which
is not even stable in its native conformation. Third, we only want to test if
a structure has a z-score below a certain threshold, we are not interested in
the exact z-score if it is above the threshold. This means that we can roughly
estimate the z-score based on a small sample and then decide if it is worth to
do a precise evaluation. E.g., if the estimated z-score from a sample of 10 is
above −1 it is unlikely the real z-score will fall below −3.5. For these reasons
number of computations can be reduced remarkably. Finally, the folding of
random samples can be performed independently and is, therefore, an easily
parallelizable task. To conclude, our method is computationally demanding
but feasible if reduced to the essential.

3 Conclusions

In this work we have introduced z-scores of RNAalifold MFEs as a mea-
sure for the detection of functional RNA structures. The combination of free
energy and covariance used by RNAalifold provides a reliable measure to dis-
tinguish functional from random RNAs. We have shown for several test cases,
that this method can detect known structural RNAs with high sensitivity and

selectivity. This is not only true for ideal data sets featuring high sequence
divergence, even for datasets with few and closely related sequences as in
the case of C. elegans/C. briggsae, it shows good detection performance and
clearly outperforms single sequence predictions. Encouraged by these results,
we are currently working on a general (structural) RNA gene finding program
based on the ideas discussed here. We hope that this will be a useful addition
to the arsenal of today’s sequence analysis tools.

4 Supplementary Material and Programs

Supplementary material including all data sets is available on our website
http://www.tbi.univie.ac.at/papers/SUPPLEMENTS/Alifoldz/.

A Perl 5 script alifoldz.pl which implements the procedures shown here
can be downloaded from the same location. It depends on the RNAalifold

program which can be downloaded as part of the Vienna RNA Package from
http://www.tbi.univie.ac.at/RNA/. Another Perl script shuffle-aln.pl

is provided, which implements the shuffling algorithm described in this work.
It might be useful also for other purposes.
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5 Methods

5.1 Co-folding of aligned sequences

We use the program RNAalifold30 from the Vienna RNA package35 version
1.5 to perform consensus secondary structure predictions of multiple sequence
alignments. RNAalifold essentially uses the same algorithms36 and energy
parameters37,38 as standard programs for minimum free energy (MFE) pre-
diction. The energy contributions of the single sequences in the alignment
are averaged. Covariance information is incorporated into the energy model
by rewarding compensatory and consistent mutations, while non compatible
base-pairs are penalized. RNAalifold thus calculates a combined MFE com-
posed of an energy term and a covariance term.30 We simply call this MFE
of the alignment, although it is of course not an energy in a strict physical
sense. RNAalifold depends on some predefined parameters. We used standard
parameters throughout this work to ensure consistency.

Secondary structure prediction for single sequences was performed using RNAfold
with standard parameters.

5.2 Estimation of statistical significance

In analogy to previous work11–13 we use a Monte Carlo approach to estimate
statistical significance of a MFE. For each alignment we generate 100 random
alignments (see next section). We then calculate the MFE m of the native
alignment and the mean µ together with the standard deviation σ of the ran-
dom samples. The significance of m is expressed in units of standard deviations
from the mean as a z-score z = m−µ

σ
. Negative z-scores indicate that the MFE

of the native alignment is lower than those of the randomized alignments.

5.3 Randomization of multiple sequence alignments

The randomization procedure is of crucial importance for the calculation of
meaningful z-scores. A straightforward algorithm would simply shuffle the
columns of the alignment. This would result in an alignment of the same
length, the same base composition and the same overall conservation. How-
ever, the gap structure and the local conservation pattern would be different.
Possible consequences for consensus folding and z-score calculations are illus-
trated in Fig. 5. If there is for example a gap of length 10 in the alignment,
the shuffling probably would produce 10 gaps of length 1. This can result in

10



artefactual low z-scores since many gaps spread over the complete alignment
can remarkably impair the consensus folding, while one long gap probably
does not. The same is true for local conservation patterns, meaning that a
well conserved column AAAAAGG should not be shuffled with a less conserved
column AGUACUA, but rather with a column CCCCCAA of the same pattern. We
considered this in our shuffling algorithm: First we collect all columns which
have the same gap structure and local conservation pattern into individual
groups of columns. We memorize which column of the initial alignment has
which pattern. Subsequently, we shuffle the groups individually using a stan-
dard procedure.39 Finally, we reassemble the alignment. Since the shuffling
procedure of the individual sets is provably random and independent from
each other, all possible alignments are sampled with the same probability.

It must be pointed out that we only shuffle columns with exactly the same
pattern of nucleotide succession (i.e. we shuffle AAAAAGG with CCCCCAA but no
with CCAAAAA). Alternatively, one might shuffle columns of the same degree

of conservation but different pattern. While we cannot think of a possible
scenario where this could introduce randomization artifacts, we decided to
use the more restrictive version here.

As the conservative shuffling procedure restricts the possible number of per-
mutations, the question arises if it is effective enough to destroy a secondary
structure. It is known that if only a small fraction (around 10%) of a sequence
is randomly mutated this leads almost certainly to unrelated structures.40

These theoretical considerations, as well as our computational results, suggest
that the shuffling procedure is effective enough to destroy any native secondary
structures.

5.4 Randomization of single sequences

Single sequences were randomized both by mono- and dinucleotide shuffling
(see Results and Discussion for further explanation). Mononucleotide shuffling
was performed simply by shuffling the single nucleotides of the sequences. For
dinucleotide shuffling, we used a recent implementation by Clote et al. (http:
//clavius.bc.edu/~clotelab/) of an algorithm developed by Altschul &
Erickson.41

5.5 Creation of test sets

Most of the RNA sequences used in this work were taken from the Rfam
database release 5.0.42 We took the sequences from the full alignments of
Hammerhead ribozyme III (RF00008), Group II catalytic intron (RF00029)
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and U5 spliceosomal RNA (RF00020). For tRNA (RF00005) and 5S rRNA
(RF00001) we used the sequences from the seed alignment. In the case of
tRNA, the number of the sequences in the seed alignment was reduced to
579 (we removed every second of the 1161 sequences). The signal recognition
particle RNA test set was taken from the SRP database.32 We used the 73
eukaryotic sequences that could be found in the database as of January 2004.

To get a reasonable number of non-redundant alignments of different size N

(2 to 4 sequences) within a defined range of mean pairwise identity (65%
to 85%) and ideally with all sequences of the test set equally represented,
we used the following procedure: First, we roughly clustered the sequences
using BlastClust (available from NCBI, http://www.ncbi.nlm.nih.gov/)
and created clusters with approximate pairwise identities between 60% and
95%. Within those clusters we computed all possible combinations for a given
N . From each cluster we randomly chose a varying number of combinations
taking into account the size of the cluster. This should avoid that the resulting
alignments are made up just by a fraction of the sequences of the initial test
set (which can easily happen because the number of possible combinations
can get very large). In the next step, the collected sequence combinations
were realigned using ClustalW43 and the mean pairwise identities were calcu-
lated. For most of the experiments presented in this paper, we eventually used
alignments with mean pairwise identities between 65% and 85%.

5.6 Genomic examples

For the C.elegans/C.briggsae alignments, we tried to take one example of
each ncRNA family (excluding tRNAs and rRNAs) reported in.22 If available,
sequences were simply taken from the respective Rfam family. C. elegans RNA
genes which could not be found in Rfam were taken from Wormbase release
117 (www.wormbase.org) and the corresponding C. briggsae homologs were
searched using BLASTN. We could not find annotated sequences of RNAse P
and U3 snoRNA although they have been reported to exist.22

The alignments of the yeast examples were created in a semi-automatic way:
We downloaded the (draft-)sequences of seven yeast species from the Saccha-
romyces Genome Database (ftp://ftp.yeastgenome.org/yeast): S. cere-

visae, S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii and
S. kluyveri. Next, we created chromosome wide multiple sequence alignments
using MultiPipmaker.33 Then we extracted the regions of annotated RNA
genes known for S. cerevisiae. Most of the resulting alignments needed man-
ual refinement. We removed single sequences which obviously did not align
well in the automatic alignment and occasionally performed a re-alignment
using ClustalW. We included all non-tRNA, non-rRNA genes which produced
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a reasonable multiple alignment after this procedure. In the case of the nu-
merous snoRNAs, however, we took only five examples of the H/ACA-type
and five of the C/D-type each (picked out arbitrarily, i.e. the first five in the
alphabetical annotation list).
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Table 1. z-scores and detection sensitivities for single and aligned sequences of various functional RNAs

Number of sequences in alignment

Single sequence 2 3 4

ncRNA Type n Zmono Zdi S n ID Z S n ID Z S n ID Z S

tRNA 579 -1.84 -1.71 2.24 329 76.60 -5.15 71.12 479 73.29 -6.13 84.47 244 75.65 -6.76 98.36

5S rRNA 606 -1.62 -1.71 5.11 87 77.34 -3.89 40.23 81 80.03 -5.26 70.37 102 79.24 -5.12 69.61

Hammerh. III 251 -3.08 -3.17 8.80 94 76.07 -5.50 80.85 120 78.44 -6.10 93.33 130 79.74 -6.11 98.46

Gr. II Intron 116 -3.88 -3.77 44.82 109 75.98 -5.79 89.91 138 76.26 -7.00 94.20 134 76.06 -7.03 96.27

SRP RNA 73 -3.37 -3.09 34.24 135 77.29 -6.52 89.63 55 78.42 -7.09 90.91 50 78.75 -7.59 92.00

U5 199 -2.73 -2.38 17.58 110 74.32 -4.36 49.09 125 74.88 -5.14 64.80 127 74.57 -5.43 71.65

n . . . number of sequences/alignments scored, ID . . . average mean pairwise identity, Z . . . average z-score, S . . . sensitivity (% below −4).
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Table 2
z-scores of ncRNAs in C. elegans aligned to homologs of C. briggsae

z-score

ncRNA Type No. of Seqs. Identity (%) Length Single Alignment

SRP RNA 2 83.8 296 −5.5 −7.9

U1 spliceosome RNA 2 91.5 165 −4.6 −5.0

U2 spliceosome RNA 2 94.5 193 −5.0 −5.9

U4 spliceosome RNA 2 99.3 139 +0.7 +0.2

U5 spliceosome RNA 2 92.7 123 −2.3 −5.0

U6 spliceosome RNA 2 98.0 102 −0.8 −0.4

let-7 pre-miRNA 2 89.0 73 −7.5 −8.4

lin-4 pre-miRNA 2 90.0 70 −4.1 −4.8

SL2 RNA 2 91.3 103 −2.5 −3.6
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Table 3
z-scores of ncRNAs in S. cerevisiae aligned to homologs of six related yeast species

z-score

ncRNA Type Gene Name No. of Seqs. Identity (%) Length Single Alignment

SRP RNA SCR1 5 78.5 709 −2.2 −5.0

MRP RNA NME1 7 81.5 355 −4.6 −8.9

RNAse P RNA RPR1 7 72.3 402 −3.8 −6.7

U1 spliceosome RNA snR19 5 82.9 683 −3.2 −6.7

U4 spliceosome RNA snR14 7 88.0 165 −2.4 −4.2

U5 spliceosome RNA snR7-L 5 88.0 218 −3.6 −4.5

snR7-S 5 91.2 181 −3.3 −4.5

U6 spliceosome RNA snR6 7 92.8 122 −1.9 −0.3

H/ACA snoRNA snR3 4 89.5 196 −2.3 −2.8

snR5 5 91.8 213 −1.5 −2.6

snR8 5 94.4 197 −1.7 −1.9

snR9 5 88.5 191 −1.3 −3.2

snR10 7 83.4 280 −2.1 −3.8

C/D snoRNA snR4 5 77.3 190 −1.3 −1.6

snR13 6 89.9 127 −2.7 −2.9

snR38 7 84.0 100 −0.1 0.0

snR39 7 83.2 97 −0.4 −0.2

snR40 6 80.7 99 +0.7 0.0
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Fig. 1. Mean z-scores of various RNA types dependent on the number of sequences
in alignment. N = 1 means RNAfold predictions for single sequences. Mean pairwise
identities of the alignments are between 65% and 85%. See Table 1 for more details.
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Fig. 2. Distribution of z-scores for the tRNA test sets. The distribution of native
z-scores are shown as bars. The distribution of z-scores of the corresponding random
sequences are shown as dashed line. N is the number of sequences in the alignment.
N = 1 means RNAfold predictions for single sequences. The sensitivity (percent
of native alignments with a z-score below a threshold of −4) and the selectivity
(percent of random alignments with z-scores below −4) are shown for each set.
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Fig. 4. Average z-scores of structural and sequence-based pairwise alignments of
SRP RNAs versus pairwise identity. 2083 alignments were scored and average
z-scores where calculated for seven intervals of pairwise identities between 30%
an 100%. The average z-scores are plotted against the average pairwise identities
calculated for each interval.
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A

B

C

....(((((((((((....................)))))....))))))..

TAGGTGAGCTAGGCCCTCTATGATTCGTGCATCAGGGTCTAATCGGTTCGAG

TAGGTGAGCTAGGCCCTCT--------------GTGGTCTAACCGGTTCGAG

TAGGTAAGCTAGGCCCTCT--------------CCGGTCTAACCGGTTCGAG

TAGGTGAGCTAGGCCCTCGGCTCAGTAGCGGCAGTGGTCTAACCGGTTCAAA

***** ************                 ******* ****** *

↓
....................................................

GCGTAGATGGGTTGTTGGTTCAGTCGCTGAGAACTGCTTGCCAAGACCTCAT

GCG--T-TGG--T-TTG---C-GTCGCTGGGAAC-G-CTGC-AAGA-CTCAT

GCG--C-TGG--T-TTG---C-GTCGCTGCGAAC-G-CTAC-AAGA-CTCAT

GCGGGTGTGGCATATTGTCCCCGTCACTGGGAACGAACGGCTAAGAGCTCAT

***    ***  * ***   * *** *** ****      * **** *****

.......((.....(((((((((((...)))))....))))))......)).

TCGTGTATGATAGGTGAGCTAGGCCCTCGGTCTAATCGGTTCGAGTCATCAG

GCGTTCGCACTAGGTGAGCTAGGCCCTCGGTCTAACCGGTTCGAGTCGATGT

ACGTTTAGACTAGGTAAGCTAGGCCCTCGGTCTAACCGGTTCGAGATGTTCC

GTAGCGGCTCTAGGTGAGCTAGGCCCTCGGTCTAACCGGTTCAAAAGGCAGA

***** ******************* ****** *

↓
.((((...............))))............................

AGGCGACCTGTGTTTCTTCGCGCCGCGTGGACAGCCGTAGATTGTGAACGCT

AGGCAACCTATGATTCATTGCGCCGCGCGGACCACGGAAGTGTGTGAACGGT

AGGCGATATGTGGTTTCTCGCGCCTCAGGGACTGCTGTAAGTTGTAAACGCT

AGGCGAGCTGTGCTTCTTCGCGCCACCTGGACTGCTGAAGATTATAAACGTT

**** *  * ** **  * ***** *  ****  * * *   * * **** *

....(((((((((((....................)))))....))))))..

TAGGTGAGCTAGGCCCTCTATGATTCGTGCATCAGGGTCTAATCGGTTCGAG

TAGGTGAGCTAGGCCCTCT--------------GTGGTCTAACCGGTTCGAG

TAGGTAAGCTAGGCCCTCT--------------CCGGTCTAACCGGTTCGAG

TAGGTGAGCTAGGCCCTCGGCTCAGTAGCGGCAGTGGTCTAACCGGTTCAAA

***** ************                 ******* ****** *

↓
..((((((((...((((..(((.....)))....))))))))))))......

CGTGGGTGGTAGAGTTCCGTCCGTTCTGGAAATGAAGCACTGTCCAATTTCG

CGTGGGTGGTAGAGTTCCG--------------TGAGCACTGCCCAATTTCG

CGTGGATGGTAGAGTTCCG--------------CCAGCACTGCCCAATTTCG

CGTGGGTGGTAGAGTTCCAGTACCCGGTACGGATGAGCACTGCCCAATTGCA

***** ************                 ******* ****** *

-7.56
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-8.39

-4.06
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Fig. 5. Randomization of multiple sequence alignments. Three examples of shuffled alignments are shown.

In A and B, the alignments are randomized by simply shuffling the columns. In C, only columns of the

same gap pattern and local conservation pattern are shuffled. The degree of conservation is illustrated by

black bars of varying size and asterisk for perfectly conserved columns. Each alignment was folded using

RNAalifold. The consensus secondary structure prediction is shown in dot/bracket-notation in the first line.

The RNAalifold-MFE is shown next to the alignment. (A) The alignment has one long gap in the middle

which is spread over the whole length of the alignment after shuffling. In the resulting random alignment,

RNAalifold cannot predict a consensus secondary structure (MFE=0.0). This results in significant low

z-scores (−4.1 in this special case) although there is no unusually stable structure in the initial alignment

(see C). (B) A highly conserved block is embedded in a less conserved region. Shuffling destroys this block

and the consensus structure of the resulting random alignment is thus more unstable. Artifacts of this kind

can lead to low z-scores and thus false positives. (C) The same alignment as in A is shuffled using our

conservative algorithm. The randomized alignment retains the gap pattern and local conservation pattern

of the initial alignment. It has a comparable MFE although the consensus structure is completely different

(they do not have a single base pair in common). Using this shuffling procedure, we obtain a meaningful

z-score of −0.8.
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