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Abstract

Metabolic networks are naturally represented as directed hypergraphs in such a
way that metabolites are nodes and enzyme-catalyzed reactions form (hyper)edges.
The familiar operations from set algebra (union, intersection, and difference) form
a natural basis for both the pairwise comparison of networks and identification of
distinct metabolic features of a set of algorithms. We report here on an implemen-
tation of this approach and its application to the procaryotes. We demonstrate that
metabolic networks contain valuable phylogenetic information by comparing phy-
logenies obtained from network comparisons with 16S RNA phylogenies. We then
used the same software to study metabolic innovations in two sets of organisms, free
living microbes and Pyrococci, as well as obligate intracellular pathogens.
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1 Introduction

The metabolic networks of a wide variety of organisms, in particular procary-
otes, have been reconstructed by means of a combination of genomic anno-
tations with biochemical and physiological data, see e.g. (Becker & Palsson,
2005). These networks are compiled in databases, in particular in the KEGG

resource (Kanehisa et al., 2004).

Large scale bacterial phylogenies that are based on single genes are notoriously
plagued by gene transfer, gene duplication, gene deletion, and functional re-
placement of genes. The same holds for various approaches towards utilizing
gene content for phylogenetic purposes, discussed e.g. by Fitz-Gibbon & House
(1999); Ma & Zeng (2004); Snel et al. (1999, 2002); Wolf et al. (2001); Yang
et al. (2005). A recent article by Hong et al. (2004) addressed this issue by
considering the presence or absence of 64 individual subpathways that were
identified based on the COG division (Tatusov et al., 1997) of the National
Center for Biotechnology Information. A related approach, based on compar-
isons of individual pathways was discussed by discussed Dandekar et al. (1999);
Forst & Schulten (1999, 2001) and Heymans & Singh (2003). The pathways
necessary for such approaches can be derived from a given metabolic network
either “by hand” or using automated procedures such as metabolic flux anal-
ysis, see e.g. (Schilling & Palsson, 1998; Schilling et al., 2000; Schuster et al.,
2000; Xiong et al., 2004; Gagneur & Klamt, 2004).

Instead of attempting to first reconstruct individual pathways, we take here
a more global view by grounding our analysis in the direct comparison of
the metabolic networks. While the application of generic graph distances or
similarity measures, see e.g. (Bunke & Shearer, 1997) is certainly appealing,
they cannot be used in a straightforward manner for metabolic networks. The
reason is that chemical reaction networks do not have a simple representation
as graphs, at least not when metabolites are represented as nodes and reactions
as edges. Instead, a metabolic network is naturally described by a directed
hypergraph (Zeigarnik, 2000), or, equivalently, by a directed bipartite graph,
in which metabolites and reactions (or, equivalently, the enzymes that catalyze
the reactions), are represented by two different types of vertices. More global
comparison of metabolic networks, in terms of various network indices and
networks motifs, can be found in Zhu & Qin (2005).

This contribution is organized as follows: In the next section we summarize
an algebraic approach to comparisons and manipulations of chemical reaction
networks that is motivated by set theory. We briefly describe the C library
that implements this approach. We then demonstrate that the symmetric dif-
ference of two metabolic networks can be used to derive a distance measure
that is suitable for reconstructing phylogenetic relationship from metabolic
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network data. More interestingly, however, the same approach can be used
directly to extract those subnetworks of the metabolism that are innovations
in the particular subtree of the phylogeny. We illustrate our approach using
pathogenic procaryotes as an example.

2 The Algebra of Directed Hypergraphs

A metabolic network is defined by its metabolites and the system of reactions
that inter-convert them. We denote the set of metabolites by X. A chemical
reaction can be described as a pair of multisets (E−, E+), where E− ⊆ X is
the set of educts in the reaction and E+ ⊆ X is the set of reaction products.
Slightly more generally, we can replace the multisets by an ordinary sets and
instead define the multiplicities of product and educt metabolites by means
of the stoichiometric coefficients n+

x,E and n−

x,E of the products and educts,
respectively. A metabolic network is thus a pair (X, E) where E is a set of
reactions. Such a structure is known as a directed hypergraph M(X, E), see
e.g. (Zeigarnik, 2000). The stoichiometric matrix S of the network has the
entries

SxE = n+
x,E − n−

x,E (1)

For completeness, we remark that the set Ec = E+∩E− are the catalysts of the
reaction E. Furthermore, a reaction is autocatalytic if n+

x,E−n−

x,E 6= 0 for some
x ∈ Ec. By abuse of notation we write E = E+∪E− for the set of metabolites
involved in the reaction E. Furthermore, we write suppE =

⋃

{E|E ∈ E}
for the set metabolites that actually take part in the reactions. We call a
network M(X, E) clean if X = suppE and define the clean up operator as
⌊M⌋ = (suppE , E). Furthermore, for a given set E of reactions and set A

metabolites we define

E [A] =
{

E ∈ E|(E+ ∪ E−) ⊆ A
}

(2)

The restriction of a network M(X, E) to a set A of metabolites is defined as
the clean network

M[A] = ⌊ (A, E [A]) ⌋ . (3)

For short we write M[E ] = M[suppE ] for the restriction with respect to a set
of reactions. The number of reactions in a network M will be denoted by ‖M‖.

In order to compare networks in a systematic way, we need to be able to deter-
mine the differences and the commonalities of two networks. In the following
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let M
′(X ′, E ′) and M

′′(X ′′, E ′′) be two networks. Of course we have M
′ = M

′′

iff X ′ = X ′′ and E ′ = E ′′. The empty network will be denotes by ∅.

Union. The union M = M
′∪M

′′ is defined as the network (X ′ ∪ X ′′, E ′ ∪ E ′′).
Note that M is clean if both M

′ and M
′′ are clean.

Intersection. The intersection M = M
′∩M

′′ is defined as the clean network

M = ⌊ (X ′ ∩ X ′′, E ′ ∩ E ′′) ⌋ (4)

Note that (E ′ ∩ E ′′)[X ′ ∩ X ′′] = E ′ ∩ E ′′.

Difference. The difference M = M
′ \ M

′′ is defined as the clean network

M = ⌊ (supp(E ′ \ E ′′), E ′ \ E ′′) ⌋ (5)

The difference Network contains all reactions occurring in M
′ but not M

′′,
and all metabolites occurring in the remaining reactions.

The strict difference M = M
′\\M′′ is the clean network

M = ⌊ (X ′ \ X ′′, (E ′ \ E ′′)[X ′ \ X ′′]) ⌋ (6)

The new network contains only those metabolites occurring in M
′ but not M

′′,
and only those reactions from M

′ that can be performed with the remaining
metabolites. Thus, we have ‖M′\\M′′‖ ≤ ‖M′ \ M

′′‖.

Symmetric difference. The symmetric difference M = M
′△M

′′ is defined
as the clean network M = ⌊(M′ ∪ M

′′) \ (M′ ∩ M
′′)⌋.

Strict symmetric difference. The strict symmetric difference

M = M
′♦M

′′ is M = ⌊(M′ ∪ M
′′)\\(M′ ∩ M

′′)⌋.

The Vienna Reaction Network Library Vienna-RNL implements these basic
set-theoretic operations on chemical reaction networks 1 . It provides basic
ANSI C data structures for chemical reactions and their networks, IO rou-
tines for reading and writing and various formats, as well as set operations
such as the union, intersection, or difference of two chemical reaction networks.
It is intended for the use in conjunction with the user’s own C programs or
PERL scripts.

An extension of the IO-Routines for reading and writing SBML (Hucka et al.,
2004), an XML based dialect for the standardized representation of systems

1 http://www.tbi.univie.ac.at/software/Vienna-RNL/
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biology models, is currently being implemented. The capability of reading and
writing SBML will make the functionality of the Vienna Reaction Network
Library accessible to about 80 other software systems 2 which support SBML.

3 Phylogenies from Networks

Datasets were retrieved from the KEGG database on metabolic networks (Kane-
hisa et al., 2004), which holds genomic and network data of about 20 Archaea,
200 Bacteria and 20 Eucarya, where in particular the data of many Eukaryotes
are incomplete. In a preparatory step we decomposed the individual KEGG-
pathways into their chemical reactions and combined these to a complete
network for each organism.

The simplest approach to inferring phylogenetic relationships form metabolic
networks is to use a distance measure d on the set of reaction networks. We
use here

d(M′, M′′) =
‖M′△M

′′‖

‖M′‖ + ‖M′′‖ − ‖M′ ∩ M′′‖
=

‖M′△M
′′‖

‖M′ ∪ M′′‖
(7)

Alternatively, the strong symmetric difference M
′♦M

′′ could be used to de-
fine a difference measure. Furthermore, other normalizations of the difference
measure could be used. We have observed, however, that equ.(7) performs
best with respect to reproducing trusted 16S RNA phylogenies. Distance-
based network phylogenies are computed using the Fitch algorithm (Fitch &
Margoliash, 1967) implemented in the phylip package (Felsenstein, 1996) as
well as using the splits-decomposition algorithm from the SplitsTree package
(Huson, 1998).

An example comprising a selection of bacterial and archaeal metabolic net-
works is shown in Fig. 1. The phylogeny inferred from the metabolic networks
conforms almost perfectly with the neighbor-joining tree computed from the
16S rRNA sequences of the same organisms. The rRNA sequences were aligned
using clustalx. The minor discrepancies are due to poorly resolved nodes as
can be seen in the split-decomposition network below.

The use of distance measures reduces the available information on the network
structure already in the first step. We therefore complement distance based
phylogenetic analysis with parsimony methods using reaction content: For a
given set of organisms, we calculated the union of all networks as maximal
network. For each organism we then constructed a reaction profile reflecting

2 http://www.sbml.org/
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Fig. 1. Unrooted phylogenies. (top) Neighbor-joining tree of 16S rRNA sequences.
(center) Phylogenetic tree calculated from metabolic network data using the
Fitch algorithm for distance matrices. (bottom) Phylogenetic tree calculated from
metabolic network data using Splits decomposition with the Fitch-Margoliash power
2 fit for distance matrices. Species abbreviations are collected in Table 1 in the Ap-
pendix.
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presence or absence of a particular reaction in the metabolic network of the
respective organism. This approach thus is reduced to reconstructing phylo-
genies from character-tables that represent the presence/absence of particular
reactions in the reaction network. It should be noted that this is similar, but
not quite the same, as using the presence or absence of orthologous enzymes
(see e.g. (Fitz-Gibbon & House, 1999; Ma & Zeng, 2004; Snel et al., 1999, 2002;
Wolf et al., 2001; Yang et al., 2005)). The main difference is that the network
based approach tolerates horizontal gene transfer and functional replacements
(Hong et al., 2004).

4 Metabolic Innovations

The algebraic approach to metabolic network evolution can also be used in
a straightforward way to trace the history of metabolic innovations. To this
end, consider a (trusted) unrooted phylogenetic tree T in which each leaf of
T is labeled with the metabolic network Mk of the corresponding taxon k.
Each edge e of T defines a split, i.e., a bipartition σe = {Ue, Ūe} of the set
of taxa. Here we regard splits as directed. Note that mathematically we can
define innovations at each split in both directions. One of the two subsets U

or Ū , however, contains the ancestral state, hence only one direction makes
biological sense: this is the one where the ancestral state (root of the tree) is
located in the sub-set Ū . This knowledge has to be provided externally.

Consider an (arbitrary) directed split σ = (U, Ū) on the given set of taxa, i.e.,
a pair of sets of taxa (U, Ū) such that U 6= ∅, Ū 6= ∅, and U ∩ Ū = ∅. We
define the differential metabolic network

D(σ) =





⋃

k∈U

Mk



 \





⋃

k∈Ū

Mk



 (8)

The network D(σ) describes the metabolic innovations in U relative to the
“background” Ū .

As discussed in the previous section, network phylogenies are rather sensitive
with respect to life-style and environmental constraints. The organisms whose
metabolic networks have been utilized to compute the 16s rRNA tree shown
in Fig. 1 are capable to freely live in the environment with a reasonably large
capacity for adaptation.

As a first example we analyzed the unique metabolic network from the Pyro-

coccus genus. Figure 2 shows the network phylogeny from Fig. 1 with the
Pyrococcus spp. clade highlighted. The resulting differential network indi-
cates reactions present in Pyrococcus spp. but absent in all other organisms
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Fig. 2. (top) The Pyrococcus spp. clade has been selected (dashed oval) for differ-
ential network analysis. (bottom) Differential metabolic network. Numbers in the
ovals refer to reaction ids in the KEGG database.

of the phylogeny (Figure 2). For example, reaction R01087 is catalyzed by
Maleate cis-trans-isomerase which is utilized in maleate assimilating and high-
temperature bacteria. A second sub-network involving both ADP-forming ac-
etate and propanoate CoA ligases is potentially used in the organisms to con-
vert between acetate and propanoate and their corresponding CoA forms.

As a second example we analyzed our set of reference organism (Figure 1)
with obligatory intracellular pathogens. Figure 3 shows the phylogeny with
the selected pathogens (dashed oval). Interestingly, Mollicutes, such as My-
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Fig. 3. Unrooted network phylogeny using PHYLIP with the Fitch-Margoliash al-
gorithm. A set of obligatory intracellular pathogens has been selected (dashed oval)
for differential network analysis (see text).

coplasmae and Spirochaetes, such as Treponema are grouped together. They all
possess a minimal gene-set, and thus a highly optimized and host-dependent
metabolic network. Surprisingly, this set of organisms has specific reactions
that are absent in the remaining organisms of the phylogeny. Figure 4 shows
the corresponding differential network which consist of five sub-network. The
two largest network involves sugar-conversions and parts of glycolysis. Smaller
networks correspond to formylation of tetrahydrofolate as well as cholin and
carnitine pathways.

5 Discussion

The Vienna Reaction Network Library introduced above treats chemical reac-
tion networks, and metabolic networks in particular, as directed hypergraphs.
A framework borrowed from set algebra provides natural definitions of unions,
intersections, and differences that can be used to compare the metabolic net-
works of difference organisms. We have demonstrated that metabolic networks
convey phylogenetic information and can indeed be used to infer phylogenetic
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relationships of free-living organisms in a way that is similar to gene-content
based approaches. In contrast to the latter, however, metabolic network based
phylogenies are less sensitive to the effects of horizontal gene transfer and
functional replacement.

Differences of metabolic networks among subtrees of a trusted phylogeny,
or more generally, along any split of interest in a set of organisms can be
computed directly, making it easy to study metabolic innovations in partic-
ular clades. A first application of our network phylogeny analysis involved
three members of the Pyrococcus spp. clade. The metabolic reactions resulting
from the split between the Pyrococci and the remaining organisms involve the
maleate cis-trans-isomerase reaction, ADP-forming acetate and propanoate
CoA ligase reactions as well as beta-D-Glucose:NAD(P)+ 1-oxoreductase.

Our second example considers a class of intra-cellular pathogens that in-
cludes Mycoplasmae, Ureaplasmae, and Spirochete. Their restricted repertoire
of metabolic reactions reflect the specialized life-style. Many metabolic path-
ways are not required in such a rich environment and have been lost in the
course of evolution. On the other hand, constructing a network phylogeny
including these microbes, we observe metabolic reactions assembling an un-
connected network that is present in this set of intracellular pathogens and
absent in remaining organism. Such reactions include phosphorilization and
conversions of sugars and derivates, deaminating lyase reactions, and reactions
involving carnitine, choline and tetrahydrofolate.

At present, metabolic network data are compiled by a multitude of methods,
and at least in part are constructed by genomic similarity with other organ-
isms. Strictly speaking, therefore, we cannot view metabolic network data
such as those complied in the KEGG database as independent from genomic
data. With the recent advances of experimental techniques in metabolomics
(see e.g. (Brown et al., 2005; Griffin, 2004; Sumner et al., 2003)), however, the
situation is rapidly improving.

Our comparative approach to metabolic network analysis, which focuses on
individual reactions rather than on aggregate feature such as pathways, sim-
plifies the identification of metabolic innovations and, in particular, facilitates
the recognition of organisms as potential biological threat agents based on
their metabolic repertoire. Furthermore, the ability to easily identify differ-
ences in metabolic capacity between pathogens should be useful towards a
refined classification of pathogenicity based on metabolic capabilities.

In this contribution we have restricted ourselves to unweighted networks. Dis-
tance measures between networks, however, could be refined by attaching
weights to both vertices and (hyper-)edges without requiring significant al-
gorithmic changes. These could reflect, e.g., how essential a reaction or a

11



metabolite is for each organism. With the increasing amount and accuracy
of available data it might also be feasible to devise a stochastic model of the
evolution of metabolic networks, which could then be turned into a scoring
scheme for a generalized version of (local) graph alignment along the lines of
Berg & Lässig (2004).
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Table 1. Metabolic networks used in this study.

Domain Species KEGG Id Genomic Sequence

Bacteria Proteobacteria Gamma Escherichia coli K-12 MG1655 eco U00096

Buchnera aphidicola buc BA 000003

Salmonella typhi CT18 sty NC 003198

Yersinia pestis CO92 ype NC 003143

Vibrio cholorae vch NC 002505

Pseudomonas aeruginosa pae NC 002516

Rickettsiales Rickettsia prowazekii rpr NC 000963

Wolbachia endosymbiont wol NC 002978

Firmicutes Mollicutes Mycoplasmae genitalium mge L43967

Mycoplasmae pneumoniae mpn NC 000912

Ureaplasmae urealyticum uur NC 002162

Spirochaetes Borrelia burgdorferi bbu AE000783

Treponema pallidum tpa NC 000919

Treponema denticola tde NC 002967

Actinobacteria Mycobacterium leprae mle NC 002677

Bifidobacterium longum blo NC 004307

Corynebacterium diphtheriae cdi NC 002935

Hyperthermophilic bacteria Aquifex aeolicus aae AE000657

Thermotoga maritima tma AE000512

Archaea Euryarchaeota Methanococcus jannaschii mja NC 000909

Methanobacterium thermoautotrophicum mth NC 000916

Archaeoglobus fulgidus afu NC 000917

Pyrococcus horikoshii pho BA000001

Pyrococcus abyssi pab NC 000865

Pyrococcus furiosus pfu NC 003413

Crenarchaeota Aeropyrum pernix ape BA000002

Pyrobaculum aerophilum pai NC 003364
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