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Abstract: A small class of RNA molecules, in particular the tiny genomes of viroids,
are circular. Yet most structure prediction algorithms handle only linear RNAs. The
most straightforward approach is to compute circular structures from “internal” and
“external” substructures separated by a base pair. This is incompatible, however, with
the memory-saving approach of theVienna RNA Package which builds a linear
RNA structure from shorter (internal) structures only. Here we describe how circular
secondary structures can be obtained without additional memory requirements as a
kind of “post-processing” of the linear structures.
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1 Introduction

Most RNA molecules are linear. Circular single stranded RNAs, on the other hand,
occur only in a few cases. The most prominent class are the “genomes” of viroids,
see [FDG+04, TT04] for recent reviews. A related example is the circular RNA genome
of Hepatitis Delta virus which contains a viroid-like domain, see e.g. [GCT04, WB02]
and the references therein. In addition, alternative splicing may lead to circular RNAs
from intronic sequences. This appears to be a general property of nuclear group I in-
trons [NFB+03] and was also observed during tRNA splicing inH. volcanii [SSGG03].
Circularized C/D box snoRNAs were recently reported inPyrococcus furiosus[SMJ+04].
Circular nucleic acids, furthermore, have been investigated in the context ofin vitro selec-
tion experiments [KZG+02].

While structure prediction of these fairly rare circular RNAs may appear as a rather es-
oteric topic, most of the examples above have functional secondary structures. Indeed,
viroids were among the first RNAs for which secondary structures have been studied sys-
tematically [SHF+84], see also [RWR+99] for more recent work. Since viroid RNAs are
short (approx. 200-400 nucleotides), we have to expect significant differences between the
folds of linear and circular sequences, see Fig. 2.

It is therefore worthwhile to develop circular variants of at least the most common RNA



folding tools; indeed algorithms for computing minimum energy folding and the computa-
tion of suboptimal structure of circular RNAs are implemented in Michael Zuker’smfold
package [Zuk89,Zuk03]. These algorithms, in fact, treat linear RNAs as exceptional vari-
ants of the circular ones. In contrast, theVienna RNA Package1 [HFS+94, Hof03],
optimizes the memory requirements for linear RNAs; this approach saves approximately
a factor of2 in memory as well as some CPU time. Circular RNAs, however, are non-
trivial to handle in this framework. In this contribution wedemonstrate how circular RNA
folding can be implemented efficiently as a kind of “post-processing” step of the forward
recursion and as a corresponding “pre-processing” step forthe the backtracking part of the
folding algorithms without requiring significant additional resources or a redesign of the
optimized recursion for the linear RNA case. Circular RNA folding can therefore be in-
cluded into theVienna RNA Package without duplicating the code or compromising
the efficiency of the current implementations.

This contribution is organized as follows: We briefly recallthe RNA folding algorithms
as implemented in theVienna RNA Package. We then discuss the extension of the
minimum free energy folding approach to circular RNAs and describe how the same ideas
apply to the computation of the partition function.

2 Folding Linear RNA Molecules

The energy model for RNA folding is based upon carefully measured energy parameters
[MSZT99,MDC+04] for the loops of the RNA secondary structure (i.e., the cycles of the
unique minimum cycle basis [LS98]). The energy of a loop depends on the sequence near
the base pairs that are part of the loop, the length of the loop, and on its type. From the
biophysical point of view one distinguishes hairpin loops,stacked base pairs, bulges, true
interior loops, and multi(branched) loops. From an algorithmic point of view one can treat
bulges, stacked pairs, and true interior loops as subtypes of interior loops.

We consider an RNA sequencex of lengthn. Hairpin loops are uniquely determined by
their closing pairk, l. The energy of a hairpin loop is

H(k, l) = H(xk, xk+1, ℓ, xl−1, xl)

whereℓ is the length of the loop (expressed as the number of its unpaired nucleotides).
Each interior loop is determined by the two base pairs enclosing it. Its energy is tabulated
as

I(k, l; p, q) = I(xk, xk+1; ℓ1; xp−1, xp; xq, xq+1; ℓ2; xl−1, xl)

whereℓ1 is the length of unpaired strand betweenk and p and ℓ2 is the length of the
unpaired strand betweenq andl. Symmetry of the energy model dictatesI(k, l; p, q) =
I(q, p; l, k). If ℓ1 = ℓ2 = 0 we have a (stabilizing) stacked pair, if only one ofℓ1 andℓ2

vanish we have a bulge. For multiloops, finally, we have an additive energy model with
three parametersa, b, c of the formM = a+b×β+c×ℓ whereℓ is the length of multiloop

1Available athttp://www.tbi.univie.ac.at/RNA/
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Figure 1: Decomposition of secondary structures underlying the folding algorithms as implemented
in theVienna RNA Package. Top: a structure on[i, j] starts either with an unpaired base or
with a paired 5’ base. 2nd row: A structure enclosed in a base pair is either a hairpin loop, delimited
by an interior loop, or branches in a multiloop. The multiloop itself is composed of two parts, one
with one or more components (M ) and another with exactly one component (M1). The last two rows
further depict the recursions for the two types of multiloopcomponents. Again, the decompositions
are into disjoint sets of cases.

(again expressed as the number of unpaired nucleotides),β is the number of branches, not
counting the branch in which the closing pair of the loop resides.

RNA folding algorithms are based on decomposing the set of possible structures into sets
of smaller structures. This decomposition can be chosen such that each possible struc-
ture appears in exactly one of the subcases. In the course of the “normal” RNA folding
algorithm for linear RNA molecules as implemented in theVienna RNA Package
[HFS+94, Hof03] the following arrays, which correspond to different structural compo-
nents in Fig. 1, are computed fori < j:

Fij free energy of the optimal substructure on the subsequencex[i, j].

Cij free energy of the optimal substructure on the subsequencex[i, j] subject to the
constraint thati andj form a basepair.

Mij free energy of the optimal substructure on the subsequencex[i, j] subject to the
constraint thatx[i, j] is part of a multiloop and has at least one component, i.e., a
sub-sequence that is enclosed by a base pair.

M1
ij free energy of the optimal substructure on the subsequencex[i, j] subject to the

constraint that thatx[i, j] is part of a multiloop and has exactly one component,
which has the closing pairi, h for someh satisfyingi ≤ h < j.

The “conventional” energy minimization algorithm for linear RNA molecules [ZS81,ZS84]
can be summarized in the following way, which corresponds tothe recursions implemented



in theVienna RNA Package [HFS+94,Hof03]:

Fij =min

{

Fi+1,j , min
i<k≤j

Cik + Fk+1,j

}

Cij =min

{

H(i, j), min
i<k<l<j

Ckl + I(i, j; k, l), min
i<u<j

Mi+1,u + M1
u+1,j−1 + a

}

Mij =min

{

min
i<u<j

(u − i − 1)c + Cu+1,j + b, min
i<u<j

Mi,u + Cu+1,j + b, Mi,j−1 + c

}

M1
ij =min

{
M1

i,j−1 + c, Cij + b
}

(1)

These recursions are directly derived from the structure decomposition shown in Fig. 1.
The corresponding recursions for the partition function are obtained by replacing mini-
mum operations with sums and additions with multiplications [McC90].

The computation of the minimum free energy structure requires to store only the arraysF ,
C, andM . In addition, the fullM1 array is required for the more elaborate backtracking
procedure of theRNAsubopt program [WFHS99] which produces all RNA secondary
structures within a given energy interval above the ground state. Similarly, uniqueness of
the decomposition is necessary for partition function algorithms, see Sect. 4.

3 Folding Algorithms for Circular RNAs

A straightforward way of dealing with circular RNA molecules is to computeCij andMij

also for the subsequences of the formx[j, n]x[1, i]. This is implemented in themfold
package [Zuk03] and described e.g. in [Zuk89]. The disadvantage of this approach is,
however, that it doubles the memory requirements (and also the CPU requirements, be-
cause more matrix entries need to be computed).

As an alternative, we propose here to extend the linear folding algorithms in such a way
that the circular molecules are handled as a kind of “post processing” of the arrays that are
computed in the linear case. This is not only memory efficientbut also allows us to assess
the structural differences between linear and circular sequences with just a single run of
the forward recursions. (Recall that the backtracking stepfor minimum energy folding is
fast:O(n) compared to theO(n3) steps for filling the arrays.)

The key observation is that the only difference between the linear and the circular case
is the energy of the loop that containsxn andx1. In the linear case, there is no energy
contribution associated with the “exterior” loop, while ithas to be scored like any other
loop in the circular case. Hence we have to distinguish the types of “exterior” loops.

Exterior Hairpin. If the exterior loop is a hairpin, then there is a base pairp, q, 1 ≤ p <
q ≤ n such that bothx[1, p − 1] andx[q + 1, n] are unpaired. The optimal energy of such
a structure is

F ◦
H = min

p<q
{Cpq + H(q, p)} (2)
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Figure 2: Differences between linear and circular folds of the Citrus Viroid IV (Acc. No. X14638)
[PRL+91] as a function of cut point in the sequence (relative to thedatabase entry). Structure
distance is measured as Hamming distance of the dot-parenthesis strings, differences in folding
energy in kcal/mol. Below, the correct circular is shown.

whereℓ = p − 1 + (n − q + 1) is length of the hairpin loop and1 ≤ p < q ≤ n.

Exterior Interior Loop. In this case, the “exterior loop” contains the closing pairsk, l and
p, q of exactly two components. Thus

F ◦
I = min

k<l<p<q
{Cpq + Ckl + I(q, p, l, k)}

whereℓ1 = n − q + k − 1 andℓ2 = p − l − 1. In practice, the sizeℓ = ℓ1 + ℓ2 of an
interior loop is limited toℓ ≤ m, typically m = 30. ThusF ◦

I can be computed inO(n3)
time without additional memory requirements.

Exterior Multi-Loop. Generalizing the approach for the interior loops, we can view an
exterior multiloop as a multi-loop with at least 3 branches on the sequence interval form1
to n. Starting fromM1

ij we compute the linear auxiliary arrayM2
kn containing the optimal

energy ofx[k, n] given that the sequence interval is contained in a multiloop, has exactly
two components, and starts with a base pairk, h. We obtain

M2
kn = min

k<u<n

(
M1

ku + M1
u+1,n

)
(3)

This array requires onlyO(n) memory and can be computed inO(n2) time. A multiloop
with at least 3 components can now be constructed from a piecewith at least one compo-
nent at the beginning of the sequence and a piece that contains exactly two components
(with first closing pairk + 1, v, for somek < v < n − 2):

F ◦
M = min

1<k<n

{
M1,kM2

k+1,n + a
}

(4)



The multiloop case thus can be dealt with in quadratic time with only linear memory
overhead.

The minimum free energy structure of the folded circular molecule is therefore

F ◦ = min{F ◦
H , F ◦

I , F ◦
M} (5)

Backtracking. Backtracking is straightforward with this approach: Firstwe determine
whether the optimal “exterior loop” is a hairpin (F ◦ = F ◦

H ), an interior loop (F ◦ = F ◦
I ),

or a multiloop (F ◦ = F ◦
M ). Depending on the result we determine either

(1) p, q such thatF ◦
H = Cpq + H(q, p), or

(2) k, l andp, q such that
F ◦

I = Cpq + Ckl + I(q, p; l, k), or

(3) (a)k such thatF ◦
M = M1,k + M2

k+1,n + a, and then
(b) u such thatM2

kn = M1
k,u + M1

u+1,n.

The next step already follows the normal backtracking procedure of the linear folding
problem.

Dangling Ends.TheVienna RNA Package implements three different models for handling the
so-called dangling-end contributions that arise when an unpaired nucleotide stacks with an adjacent
base pair. These contributions can be (a) ignored, (b) takeninto account for every combination
of adjacent bases and base pairs, or (c) a more complex model can be used in which the unpaired
base can stack with at most one base pair. The latter model strictly speaking violates the secondary
structure model in that an unpaired basesxi between two base pairs(xp, xi−1) and(xi+1, xq) has
three distinct states with different energies:xi does not stack to its neighbors,xi stacks toxi−1, or
xi+1. The algorithm then minimizes over these possibilities. Incases (a) and (b) one can absorb
the dangling end contributions in the loop energies. In case(c), however, they have to be treated
explicitly, which is done in the forward recursions alreadyfor all cases with the exception of the
dangling end contribution reaching across the “gap”1-n. The cases unpairedx1 stacks to pairedxn

and unpairedxn stacks to pairedx1 need to be treated separately, adding two additional sub-cases
to the multi-loop recursion above. Even more sub-classes are needed if one wants to allow also for
co-axial stacking of helices in the multi-loop.

An important observation about the recursions (2-4) is thateach possible secondary struc-
ture is counted exactly once, i.e., the recursions are non-redundant. This is important when
one is interested in enumerating structures as e.g. in theRNAsubopt program. This prop-
erty is also crucial for the partition function calculations discussed in the next section. For
the purpose of energy minimization, however, it is not necessary. One can therefore re-
place eq.(3) by

M2
kn = min

k<u<n
(Mku + Mu+1,n) (6)

and reinterpretM2 as the contribution of segments withat leasttwo branches in a mul-
tiloop. As a consequence, theM1 array does not need to be stored and the memory
requirements of the minimum free energy folding are the sameas in the linear case up to
a the auxiliary arrayM2 of sizen.



4 Partition Function

It is straightforward to translate the recursions (2-4) into recursions for the partition func-
tion because they already provide a partition of the set of all secondary structures that
can be formed by the sequencex. In the following we suppress the factor1/RT in the
Boltzmann factors of the energy parameters, i.e., we assumethat the energy parameters
are already scaled relative to the thermal energy. Eq.(2-4)then become

ZM2
kn =

∑

u

ZM1
ku ZM1

u+1,n

Z◦
H =

∑

p<q

ZB
pqe

−H(q,p)

Z◦
I =

∑

k<l<p<q

ZB
klZ

B
pqe

−I(k,l,p,q)

Z◦
M =

∑

k

ZM
1,kZM2

k+1,nea

Z◦ =Z◦
H + Z◦

I + Z◦
M

(7)

The probabilityPkl of a base pairkl can be represented, in the simplified version of the
Nussinov algorithm [NPGK78], as

Pkl = P ◦
kl +

∑

p<k;q>l

Ppq

Zp+1,k−1Z
B
k,lZk+1,q−1

ZB
pq

e−x (8)

see Fig. 3. HereP ◦
kl is the probability of thatkl is a closing pair contained in the exterior

loop. This is the only term that differs from the linear case.For the full energy model we
can use the same logic, but we need to consider the individualloop types separately. In
detail we obtain [McC90]:

Pkl = P ◦
kl +

∑

p<k;q>l

Ppq

ZB
k,l

ZB
p,q

{

e−I(p,q,k,l)

+




∑

p<u<k

ZM
p+1,uZM1

u+1,k−1)



 e−(a+(q−l−1)c)

+




∑

l<u<q

ZM
l+1,uZM1

v+1,q−1)



 e−(a+(k−p−1)c)

+ ZM
p+1,k−1Z

M
l+1,q−1

}

(9)

The first term covers the case wherep, q andk, l delimit an interior loop. The remaining
three terms cover the multi-loop case with the three sub-cases thatkl delimits the most 3’,
the most 5’, or an intermediate branch, respectively.
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Figure 3: Backward recursion. In order to computePkl we have to consider all configurations in
which the pairkl is immediately interior to a pairpq. This basepair in turn is formed with probability
Ppq.

The contributionP ◦
kl covers the cases in which the basepairkl is part of the “exterior”

loop. In the linear case we have simply

P lin
kl =

Z1,k−1Z
B
klZk+1,n

Z1n

(10)

In the circular case we have to consider the three possible loop types for the “exterior”
loop separately. This yields:

P ◦
kl =

ZB
kl

Zcirc

{

e−H(l,k)
︸ ︷︷ ︸

hairpin

+
∑

p,q:p<q<k<l

ZB
pqe

−I(q,p,l,k)

︸ ︷︷ ︸

Interior left

+
∑

p,q:k<l<p<q

ZB
pqe

−I(p,q,l,k)

︸ ︷︷ ︸

Interior right

+ ZM
1,k−1Z

M
l+1,ne−a

︸ ︷︷ ︸

Multi middle

+
∑

j<k

ZM
1j ZM1

j+1,k−1e
−(a+(n−q)c)

︸ ︷︷ ︸

Multi left

+
∑

j>l

ZM1
l+1,jZ

M
j+1,ne−(a+(k−1)c)

︸ ︷︷ ︸

Multi right

}

.

(11)

For givenk andl this expression can be evaluated in linear time without additional memory
requirements. It follows that the base pairing probabilitymatrix P ◦ for the case of circu-
lar RNAs can be computed with a constant additional factor inCPU time and negligible
additional memory requirements.

5 Concluding Remarks

Circular RNA folding is being added as an additional featureto theVienna RNA Package.
The energy minimization is already available viacvs, the implementation of the circular
version ofRNAalifold [HFS02] is in progress. This tool computes the consensus struc-
ture of a set of aligned RNA sequences. Algorithmically, it is very similar to the energy
minimization described above.



The main applications for these features are a more systematic analysis of viroid struc-
tures and circular snoRNAs. In conjunction with alignment algorithms for circular se-
quences [GT93, Mae90] one can use circularRNAalifold to obtain consensus struc-
tures. Thealidot tool [HFF+98, HS99] can be applied without changes to the prob-
lem of identifying evolutionarily conserved RNA secondarystructure motifs in otherwise
structurally variable RNA motifs. The circular version ofRNAsubopt [WFHS99] will be
of particular interest for a detailed understanding of the structural changes in viroid RNAs.
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