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Abstract

Starting with the discovery of microRNAs and the advent of genome-wide transcrip-
tomics, non-protein-coding transcripts have moved from a fringe topic to a central
field research in molecular biology. In this contribution we review the state of the
art of “computational RNomics”, i.e., the bioinformatics approaches to genome-
wide RNA annotation. Instead of rehashing results from recently published surveys
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in detail, we focus here on the open problem in the field, namely (functional) an-
notation of the plethora of putative RNAs. A series of exploratory studies are used
to provide non-trivial examples for the discussion of some of the difficulties.

Key words: Noncoding RNA, RNA Secondary Structure, Genome Annotation

1 Introduction

A series of recent studies of the mammalian transcriptome have dramatically
changed our perception of genome organization. Experimental studies using a
variety of different techniques, from tiling arrays (Bertone et al., 2004; Kampa
et al., 2004; Johnson et al., 2005; Cheng et al., 2005), to cDNA sequenc-
ing (Okazaki et al., 2002; Imanishi and et al., 2004; Carninci et al., 2005;
Ravasi et al., 2006), and unbiased mapping of transcription factor binding
sites (Cawley et al., 2004) agree that a substantial fraction of the genome
is transcribed and that non-protein-coding RNAs (ncRNAs), Tab. 1, are the
dominating component of the transcriptome. It remains unclear, however, to
what extent these ncRNAs are functional; alternatively they might be “tran-
scriptional noise” (Hiittenhofer et al., 2005) or they could be the by-product of
transcriptional activity that takes place in order to regulate the gene expres-
sion at adjacent loci. As shown in (Ravasi et al., 2006), however, many of the
non-coding cDNA clones are “derived from genuine transcripts of unknown
function whose expression appears to be regulated”.

Non-coding RNAs form a very heterogeneous group of transcripts: Besides
the well characterized “ancient” classes (such as the spliceosomal RNAs and
tRNAs), the function of several pol-IIT transcripts remains unknown. Vault
RNAs (Mossink et al., 2003; van Zon et al., 2003) seem to play a critical role
in multi drug resistance (Gopinath et al., 2005) and Y RNA (Maraia et al.,
1994; Farris et al., 1999; Stein et al., 2005) control activity of RNA chaperones
as Ro60 and La (Belisova et al., 2005; Stein et al., 2005)

Several ncRNAs exhibit more or less strong similarity to retro-elements. In
mammals, SINEs are derived from tRNAs and 7SL RNAs and LINEs from
tRNAs (Deininger and Batzer, 2002; Kramerov and Vassetzky, 2005). Both
are able to serve as source for new ncRNAs, as shown for a set of microR-
NAs (Smalheiser and Torvik, 2005; Tanzer et al., 2005) as well as 4.5SI RNA
(Gogolevskaya et al., 2005) and 4.5SH RNA (Gogolevskaya and Kramerov,
2002) in rodents. Interestingly, the ncRNAs are derived from the long ter-
minal repeats (LTRs) of LINEs, not from their protein coding regions. The
small RNA generating loci in Arabidopsis follow a similar principle: inverted
duplication of target genes leads to new miRNAs (Allen et al., 2004a).



Table 1
Functional RNAs in eukaryotes.

ancient RNAs rRNAs, tRNAs, SRP RNA, RNase P

repeat associated miRNAs, rasiRNAs, 4.55SH RNA, 4.5S5I RNA, LINEs, SINEs
mRNA-like H19, AncR-1, Ntab, USTHG, BIC, Evf-1

mRNA-like associated miRNAs, snoRNAs

Pol-III transcripts snRNA, vRNA, Y RNA, tRNAs, MRP, U6, H1, 7SK, 7SL
small RNAs miRNAs, siRNAs, rasiRNAs

Genes annotated as e.g. “Putative ORF” are good candidates for so-called
mRNA-like-ncRNAs (mlncRNAs). These transcripts are processed just as
normal mRNAs, but carry only very small ORFs or no ORFs at all. Tran-
scriptional control, (Berteaux et al., 2004, 2005; Carninci et al., 2005), tissue
specific differential expression (French et al., 2001), alternative splicing and
polyadenylation (Sawata et al., 2004) of mIncRNAs does not seem to differ
from those of protein coding polymerase II products. Some of them remain
in the nucleus (Sawata et al., 2004). If amino-acid sequences are predicted for
such transcripts they are usually not conserved within a genus (Inagaki et al.,
2005). Several miRNAs (Rodriguez et al., 2004; Baskerville and Bartel, 2005)
and snoRNAs (Pelczar and Filipowicz, 1998; Makarova and Kramerov, 2005)
reside in introns and even exons of mlncRNAs. A few examples of functional
ncRNAs that changed their host genes have been reported, see e.g. (Rodriguez
et al., 2004; Bompfiinewerer et al., 2005). Only a hand full of mIncRNAs are
annotated in databases as in Y2K (Erdmann et al., 1999, 2000) or RNAdb
(Pang et al., 2005), while most cDNAs that lack a CDS remain functionally
unassigned (Carninci et al., 2005).

Small ncRNAs of only about 20nt in length seem to serve as the exchangeable
RNA module in protein complexes allowing them to bind DNA and RNA in
a sequence specific way. MicroRNAs, one of the most prominent classes of
ncRNA, are found in plants (Jones-Rhoades et al., 2006), animals (Berezikov
and Plasterk, 2005) and play a fundamental role in virus infections (Sullivan
and Ganem, 2005). They differ slightly from siRNAs (Du and Zamore, 2005).
High expression of repeat associated small RNAs (rasiRNAs) was detected
during embryogenesis of D. melanogaster (Aravin et al., 2003) and later also
in Danio rerio (Chen et al., 2005b).

Recently, genome wide surveys for non-coding RNAs have provided evidence
for tens of thousands of previously undescribed evolutionary conserved RNAs
with distinctive secondary structures (Washietl et al., 2005a; Pedersen et al.,
2006). The conservation of structure indicates that the molecule functions
(also) as an RNA. Taken together, both the experimental and computational



data provide strong evidence that ncRNAs are an important, functional com-
ponent of the mammalian transcriptome. The elucidation of these functions,
however, remains elusive in almost all cases.

In this contribution we discuss the currently available techniques for finding
structured RNAs and we focus in particular on current approaches towards
their annotation. To this end we discuss here a series of pilot studies and
partial results.

2 Computational ncRNA Detection

Large, highly conserved ncRNAs, in particular ribosomal RNAs, can easily be
found using blast (Altschul et al., 1990). Similarly, blast can be used to find
orthologous ncRNAs in closely related species, e.g. (Tanzer and Stadler, 2004;
Weber, 2005). In most cases, however, this approach is limited by the relatively
fast evolution of most ncRNAs. Since RNA sequence often evolves much faster
than structure, the sensitivity of search tools can be greatly improved by using
both sequence and secondary structure information.

Specialized programs have been developed to detect members of particular
ncRNA families. Examples of this approach include miRseeker for microRNAs
(Lai et al., 2003), BRUCE for tmRNAs (Laslett et al., 2002), tRNAscan for
tRNAs (Lowe and Eddy, 1997), snoScan (Lowe and Eddy, 1999) and SNO.pl
(Fedorov et al., 2005) for box C/D snoRNAs, fisher (Edvardsson et al., 2003)
and snoGPS (Schattner et al., 2004) for box H/ACA snoRNAs, as well as a
heuristic for SRP RNAs (Regalia et al., 2002; Rosenblad et al., 2004).

MicroRNAs in plants can be found by extracting those hairpin structures
that contain sequence motifs complementary to a mRNA, which is then a
putative target (Jones-Roades and Bartel, 2004; Bonnet et al., 2004; Adai
et al., 2005). In animals, on the other hand, the situation is more complicated
since miRNAs do not bind with perfect complementarity to their target. A
large array of different approaches, summarized in Table 2, has recently been
developed to detect microRNAs, among them our own tool RNAmicro that
has been designed specifically to analyze large-scale comparative genomics
data (Hertel and Stadler, 2006).

A wide variety of different approaches to perform homology searches based
on both sequence and structure have been proposed in the last few years in
order to utilize the strong conservation of secondary structure in many ncRNA
families, see (Bompfiinewerer et al., 2005) for a recent more extensive summary
of this topic.



Table 2. Overview of published miRNA detection methods.
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miRseeker YIY Y Y n n | (Lai et al., 2003) drosophilids only
MiRscan Y|Y Y Y Y n | (Lim et al., 2003a,b) scores hairpins
ERPIN n|lY Y Y — Y Y | (Gautheret and Lambert, 2001; Legendre et al., 2005) | scores structure profiles
HARVESTER Y|IY Y Y n Y Y | (Dezulian et al., 2006) plants only
ProMiR Y|Y Y Y |HMM | n n | (Nam et al., 2005)
PalGrade Yin Y n n n n | (Bentwich et al., 2005) scores hairpins
mir-abela Y|Y Y n*| SVM |Y n | (Sewer et al., 2005) scores hairpins, clusters
Vmir Y|{n Y n — n 1 | (Grundhoff et al., 2006) scores hairpins, clusters
-—- YIY Y Y n n n | (Berezikov et al., 2005) Phylogenetic Shadowing
BayesMIRfinder | Y | Y Y Y | NBS |Y n | (Yousef et al., 2006) NBS first, then comparative
RNAz+RNAmicro | * |Y Y Y | SVM | n Y | (Washietl et al., 2005b; Hertel and Stadler, 2006) investigates alignments

HMM: Hidden Markov Model, SVM: Support Vector Machine, NBS: Naive Bayses Score



Stochastic context free grammars (SCFGs) can be used to construct covariance
models from a multiple alignment with structural annotation as in infernal
(Eddy, 2002). The consensus model can then be used to search for homologs.
Similar in spirit, ERPIN also uses multiple structure-annotated alignments as
input to construct a descriptor for homology search. Rsearch (Klein and Eddy,
2003) is a local alignment algorithm which considers structural and sequence
constraints. It uses both single nucleotide and base pair substitution matri-
ces to define alignment scores. FastR (Bafna and Zhang, 2004) combines a
pairwise alignment algorithm with a filtering step to improve performance. It
uses both single nucleotide and base pair substitution matrices to define align-
ment scores. Backofen and Will (2004) introduced an efficient local sequence-
structure alignment method based on predicted structures. Beside sequence-
local motifs (i.e., motifs that consist of a subsequence in each molecule), it
is able to find also structure-local motifs, i.e. motifs that are connected sub-
structures such as a helix without the connecting hairpin loop.

Simple description languages have been proposed to allow users to define com-
bined sequence/structure for genome-wide searches. Such approaches are im-
plemented e.g. in RNAmot (Gautheret et al., 1990) and Sean Eddy’s rnabob.
Hybrid languages, like HyPaL (Gréaf et al., 2001) or the language used in
RNAMotif (Macke et al., 2001), connect pattern languages with user defined
approximate rules, which rank the results according to their distance to the
motif.

A number of large-scale surveys have been performed using one or more of the
general purpose tools mentioned above, including a microRNA survey using
ERPIN (Legendre et al., 2005), a search for U5 snRNA and RNase P using
RNAmotif (Collins et al., 2004), and a survey of RNase P RNAs in bacterial
genomes (Li and Altman, 2004).

Attempts to predict novel functional RNAs are in general based on predicted
secondary structures. However, since most RNA sequences will form extensive
structures, the problem of distinguishing incidental from functional structures
is non-trivial. It was first suggested by Maizel and co-workers that functional
RNA elements should have a secondary structure that is energetically more
stable than expected by chance (Le et al., 1988). However, Rivas and Eddy
had to conclude in an in-depth study on the subject that thermodynamic sta-
bility alone is generally not statistically significant enough for reliable ncRNA
detection (Rivas and Eddy, 2000).

Therefore, all current approaches to de novo prediction of structured RNAs
work comparatively, requiring two or more related sequences as input, typically
in the form of a multiple sequence alignment. The first reasonably successful
attempt to predict structured RNAs from sequence alignments was gqrna (Ri-
vas and Eddy, 2001). This program compares the score of three distinct models
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Fig. 1. Summary of a comparative screen of vertebrate genomes, which evaluated
conserved genomic DNA sequences for signatures of structural conservation of base
pairing patterns and exceptional thermodynamic stability using the RNAz program.
(Adapted from (Washietl et al., 2005a)). About half of the structured RNA motifs
are found far away from known coding regions, the other half is located within
known protein-coding genes. Two thirds of the latter motifs are intronic, one sixth
each is located in the UTRs of the mRNAs.

of sequence evolution to decide which one describes best the given alignment:
a pair stochastic context free grammar (SCFG) is used to model the evolu-
tion of secondary structure, a pair hidden Markov model (HMM) describes
the evolution of protein coding sequence, and a different pair HMM imple-
ments the null model of a non-coding sequence. Qrna was successfully used
to predict ncRNAs candidates in E. coli and S. cerevisiae (Rivas et al., 2001;
McCutcheon and Eddy, 2003), some of which could be verified experimen-
tally. EvoFold (Pedersen et al., 2006) is essentially an extension of the qrna
approach to multiple sequence alignments. The program combines SCFGs for
RNA structure modeling with phylogenetic models that describe the substi-
tution process along the branches of a tree.

The RNAz algorithm, in contrast, is based on thermodynamic RNA folding
(Washiet] et al., 2005b). It uses two independent criteria for classification:
a z-score measuring thermodynamic stability of individual sequences, and a
structure conservation indexr obtained by comparing folding energies of the
individual sequences with the predicted consensus folding. The two criteria
are combined by a support vector machine that detects conserved and stable
RNA secondary structures with high sensitivity and specificity. Other recent
programs for detecting conserved RNA secondary structures include ddbRNA
(di Bernardo et al., 2003) and MSARi (Coventry et al., 2004).

Both RNAz and Evofold have been applied to surveying the human genome
providing evidence for tens of thousands of genomic loci with signatures of



evolutionarily conserved secondary structure (Washietl et al., 2005b; Peder-
sen et al., 2006). Further RNAz surveys have been conducted for urochordates
(Missal et al., 2005), nematodes (Missal et al., 2006), and yeasts (Steigele
et al., 2006). These investigations have produced extensive lists of candidates
for functional RNAs without using (or providing) information on membership
in a particular class of RNAs, see figure 1.

Approaches based on pairwise or multiple sequence alignments are of course
limited by the quality of the input alignment. In regions with sequence sim-
ilarity below some 50-60%, sequence alignments will in general not be struc-
turally correct, making accurate prediction of consensus structures impossible
(Washietl and Hofacker, 2004). This problem can in principle be overcome by
computing structural alignments, albeit at significantly higher computational
cost. Most recently, Uzilov et al. (2006) presented a classification method based
on an updated version of dynalign (Mathews and Turner, 2002), a restricted
variant of the Sankoff-algorithm for the simultaneous computation of align-
ment and consensus structure (Sankoff, 1985). Using a similar approach based
on their foldalign variant of the Sankoff algorithm, Torarinsson et al. (2006)
screened a significant fraction of the non-alignable DNA that could be iden-
tified as homologous between man and mouse by virtue of alignable flanking
sequences. These authors reported several thousands regions without signifi-
cant sequence conservation that show evidence for a conserved RNA secondary
structure.

A major limitation of these Sankoff based algorithms is their enormous com-
putational cost. The computations required to evaluate the ~100,000 genomic
regions as described in (Torarinsson et al., 2006) took 5 months on 70 CPUs
with 2 gigabytes of RAM. Also Uzilov et al. (2006) estimate that it would take
several months on a similar sized computing cluster to screen all human/mouse
regions with pairwise identity below 50% using dynalign. Although such ap-
proaches are feasible given sufficient computational resources, the CPU re-
quirements render them impracticable for extended analysis tasks. Moreover,
since both dynalign and foldalign perform pairwise alignments only, one
would have to screen many different pairwise combinations (e.g. human/mouse
and human/rat).

All other methods like qrna, RNAz and EvoFold that rely on a given input
alignment are of the same algorithmic time complexity (essentially cubic with
alignment length). Although effective run time of the different programs may
vary considerably, all three programs seem to be fast enough to allow routine
analysis of even large mammalian genomes.



3 Limitations of Sequence Alignments: An RNAz Screen of Stra-
menopiles

To-date, genomic screens for non-coding RNAs have been applied mostly to
fairly closely related organisms, e.g. vertebrates (with a focus on mammals),
rhabditid nematodes, or ascidians. In principle, however, the applicability of
RNAz is limited only by the quality of the input alignments, so that highly
conserved structures from distant organisms might still be detectable.

As an example of an RNAz screen of phylogenetically very distant organisms we
summarize a survey of the three currently available stramenopile sequences.
Heterokonts, or stramenopiles, form a major clade within the eukaryote king-
dom chromista, see e.g. (Yoon et al., 2002). Most are algae, ranging from
the giant multicellular kelp to the unicellular diatoms. However some are col-
orless and superficially resemble fungi. Three complete genomes have been
sequenced: data are available for two closely related oomycetes Phytophthora
sojae ', Phytophthora ramorum? (Gajendran et al., 2006), and the diatom
Thalassiosira pseudonana® (Armbrust et al., 2004). Our protocol closely fol-
lows the approach taken in (Missal et al., 2005, 2006).

In the first step an annotation track for P. sojae was constructed by mapping
the available mRNA and protein sequences back to the genome using blat.
Using blast with a £ < 1071°, all non-protein-coding loci were compared
to the entire P. ramorum genome. We combine blast alignments that are
separated not more than 30nt provided they pass several consistency checks
detailed in (Missal et al., 2005, 2006). This leaves 149375 conserved loci with
an average length of 195nt. Since the two phytophthora sequences are too sim-
ilar, we estimate an unacceptably high estimated false discovery rate for the
pairwise RNAz screen. We therefore compare these loci to the much more dis-
tant diatom 7. pseudonana and obtain 903 homologous non-coding loci with
an average length of about 80nt. We re-aligned the blast-hits using clustalw
(Thompson et al., 1994) and screened them using RNAz with window-length
120nt in steps of 50nt (for alignments longer than 120nt). For some loci more
than one alignment is found. These are combined if possible; otherwise only
the alignment with the largest RNAz p-score is retained so that each genomic
locus is covered by at most one RNA prediction. Details of this procedure are
given in (Missal et al., 2006). In order to estimate the false positive rate and
the false discovery rate, the RNAz screen was repeated with shuffled alignments
as described in (Washietl et al., 2005a; Missal et al., 2006). The results are
summarized in Tab. 3.

! http://genome.jgi-psf.org/sojael/sojael.home.html
2 http://genome. jgi-psf.org/ramorumi/ramorumi . home.html
3 http://genome.jgi-psf.org/thapsl/thapsi.home.html



Table 3
Summary statistics of the RNAz screen of stramenopiles.

Threshold p>050 p>090 p>098 p>0.99
Specificity per test 0.9861 0.9949 0.9985 0.9996
candidate alignments 115 60 42 35
randomized 37 14 4 1
False discovery rate 32 % 23 % 10 % 3%
Distinct loci (P. sojae) 44 17 12 11

The 115 RNAz slices that are classified with ppys, > 0.5 map to only 44 distinct
loci in the P. sojae genome. 20 of these can be identified as tRNA genes.
A comparison with the updated annotation at the JGI P. sojae site shows
that the remaining loci map to protein-coding regions. Given the data in
Tab. 3 we expect a substantial false discovery rate. Furthermore, there is
growing evidence for evolutionarily conserved secondary structure also within
the coding parts of mRNAs (Steigele et al., 2006; Meyer and Miklés, 2005),
so that some of these signals could well be real.

Due to the high degree of sequence divergence most of the known ncRNAs do
not lead to significant alignments of sufficient length between P. sojae and T.
pseudonana. This set includes about 60 loci in the P. sojae genome that can
be identified by comparison with the noncode database. Among them are 13
U2, 30 U4, 1 U5, 1 U6 snRNA, and 1 SRP RNA. In addition tRNAscanSE
predicts 235 tRNA loci.

The low sensitivity of the screen on this data set highlights the limitations
of approaches that are based on sequence alignments. With genome sizes of
33-87Mb, using a structure-based approach (e.g. dynalign or foldalign) re-
quire excessive computational resources. As more sequenced genomes become
available, however, the scope of sequence-alignment based methods expands
for two reasons: (1) The specificity of methods such as RNAz increases dra-
matically with the number of aligned sequences. (2) Additional genomes in a
suitable evolutionary distance from the currently available ones can give very
good results already from pairwise comparisons as demonstrated in the case
of Ascidians (Missal et al., 2005) and Nematodes (Missal et al., 2006).

4 The Importance of Being Local

A comprehensive understanding of structured RNAs requires the analysis not
only of ncRNAs with an often globally conserved structure, but also of local
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RNA motifs in larger molecules. Examples of the latter class are IRES (internal
ribosome entry sites), SECIS (selenocystein insertion elements), or the Rho-
independent termination signal in E.coli.

From a computational genomics point of view, there is actually little differ-
ence between these two classes of RNA structures. In a large-scale screen of
genomic sequence, the transcript structure is typically unknown. As a conse-
quence, both ncRNAs and structural mRNA motifs appear as local features in
the genomic input sequence. The ability to compute locally stable secondary
structures is thus a necessary prerequisite for any genome wide analysis of
structured RNA for both computational and biological reasons: (i) Long-range
base pairs in large transcripts are disfavored kinetically (Flamm et al., 2000)
and predicted poorly (Doshi et al., 2004) relative to short-range pairs. (ii)
Global approaches to RNA folding are limited to sequence length < 20000
on most hardware because of memory consumption. (iii) In general, the exact
boundaries of the transcript are unknown, so that global folds cannot add to
the accuracy of the structure prediction relative to folding individual sequence
windows.

Local folds can trivially be obtained by folding sub-sequences of length L
in a window sliding along the genomic sequence nucleotide by nucleotide. In
practice, however, the sequence windows have to be shifted by a substantial
fraction of L in order to keep the CPU requirements manageable. It is well
known, however, that the predicted structures depend strongly on the flanking
context, i.e., on the exact window position. In fact, a recent algorithm for mi-
croRNA detection is based upon the idea to consider the stability of secondary
structure against changes in the immediate environment (Sewer et al., 2005).
A large step size for the window implies poor sampling of the plausible local
structures, hence small step sizes are important for accuracy.

Combining a global folding algorithm with a sliding window is also problematic
in the context of ncRNA detection using tools such as RNAz: Large window
sizes are preferable in order to detect larger ncRNAs, but may actually be
detrimental for detecting small RNA structures, since the flanking regions
interfere with the signal from the small structured RNA.

Two modifications of the global RNA folding algorithm have been developed to
address this problem. RNALfold computes local minimum free energy struc-
tures with base pairs spanning no more than L bases in O(N x L?) time
(Hofacker et al., 2004b). This is equivalent to folding all windows of size L,
while saving a factor L in CPU time compared to the naive approach. A par-
tition function variant with the same time complexity, RNAplfold, computes
the probability of a base pair (7, j) occurring in the structural ensemble, av-
eraged over all sequence windows with a given size W (Bernhart et al., 2006).
To get robust statistics, the size of the averaging window W should be chosen

11



somewhat larger than the maximum span L, resulting in an algorithm with
complexity O(N x W?), see Fig. 2.

Both RNALfold and RNAplfold are true “scanning algorithms”; requiring only
O(N + L?) memory, and are therefore suitable for genome-wide surveys. To-
gether with a z-score for the energy of a sequence window, which could be
cheaply computed in the course of the algorithm (Washietl et al., 2005b),
RNAplfold may be used as a first crude indicator whether stable RNA sec-
ondary structures can be expected in a given part of the genome.

In principle, it is straight-forward to generalize the prediction of consensus
structures from aligned sequences from global structures to local structures.
RNAalifold (Hofacker et al., 2002) computes the most stable structure that is
common to a collection of aligned sequences. Algorithmically, only the energy
model changes: one simply has to add up the contributions of aligned sequence
intervals instead of evaluating a single sequence. This modification can eas-
ily be implemented also in the scanning programs described in the previous
paragraph. The resulting RNALalifold program will be available with the next
release of the Vienna RNA package. An example for the partition function case
is given in Fig. 2, where the conservation of the miRNA precursor structures,
as opposed to any other structural features present is shown.

Foldalign (Hull Havgaard et al., 2005; Torarinsson et al., 2006) implements a
scanning local alignment algorithm. More precisely, this version of the Sankoff
algorithm mutually scans two sequences of arbitrary length for common local
structures with a maximum motif length. While the restriction to local motifs
speeds up the algorithm, it is still computationally demanding.

In principle, also the SCFG based algorithms grna and EvoFold predict local
secondary structures. However, both are not implemented as true “scanning
algorithms”, and thus still require a sliding window approach.

5 Who is Who? — Approaches towards RNA Annotation

5.1 The Problem

With the exception of a small number of evolutionarily very well conserved
RNAs (in particular rRNAs, tRNAs (Lowe and Eddy, 1997), the U5 snRNA
(Collins et al., 2004), RNAse P and MRP (Piccinelli et al., 2005)), most ncR-
NAs are not only hard to discover de novo in large genomes, but they are
also surprisingly hard to recognize if presented without annotation. While
homologs of known sequences can often be reliably recognized already by
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Fig. 2. a) Local pair probabilities of a human miRNA cluster

b) homologs in dog (upper), opossum (middle) and mouse (lower) to the miRNA cluster in a). MiRNAs annotated in miRBase are
outlined in full lines, putative miRNAs not annotated in dashed lines. Note that every putative miRNA almost perfectly aligns to the
human counterpart (with one mutation at most).

Dog, opossum: W = L = 100, Mouse: W = 150, max. base pair span L = 100. The base pairs on the upper edge of the mouse plot (long
range base pairs) are less probable than in the other three because of the more robust statistics.

c) RNALalifold partition function of an alignment of the homologous miRNA clusters in a) and b). The noise is considerably reduced
as opposed to the single folds shown above.



blast or at least with the help of Rfam alignments and infernal or ERPIN,
determining class membership of novel examples is a much harder problem.

Given an alignment not more than a few hundred nucleotides in length that
is known to contain a conserved secondary structure, it should be very easy
to decide whether these sequences belong to a known class of ncRNAs or not.
Conceptually, this is a very simple classification task that should be solvable
efficiently by most machine learning techniques.

In the case of non-coding RNAs, however, machine learning approaches severely
suffer from the very limited amount of available positive training data and the
fact that negative training data are almost never known at all. Even for the
most benign case, microRNA precursors, there is only a few hundred inde-
pendent known examples, namely the miRNA families listed in the mir-base
(Griffiths-Jones, 2004; Griffiths-Jones et al., 2005; Hertel et al., 2006). Over-
training is thus a serious problem. As a consequence, it is necessary to restrict
oneself to a small set of descriptors. These constraints, however, make the
choice of the descriptors a crucial task.

5.2  Which Direction?

A relatively simple example for such a classification task is the problem of
strand prediction: Large parts of the RNA energy model, in particular the
stacking energies for Watson-Crick pairs, are symmetric when forming the re-
verse complement of a sequence and it’s structure. Asymmetry is introduced in
particular by GU pairs that map to a non-canonical AC in the reverse comple-
ment. Nevertheless, plus and minus strand of a sequence often exhibit similar
folding energies. In computational screens for ncRNAs one will usually look
at both the forward and reverse version of any given alignment, and often a
significant signal for a structural RNA is detected on both strands. RNAz so
far simply estimated the reading direction as the one that achieved a higher
classification probability for “structured RNA”. This method is quite inaccu-
rate, however, in particular when the differences in classification probability
are small.

An efficient strand detector to be used in conjunction with RNAz can be con-
structed from only six descriptors which moreover are already computed by
RNAz: The difference of the SCI value for plus and minus strand, the difference
of the RNAalifold consensus energy, the difference in mean folding energies,
and the difference in mean z-score. In addition, the average sequence con-
servation and the length of the alignment is used. A support vector machine
can then predict the correct strand with over 96% accuracy. This method is
implemented also as a stand-alone tool RNAstrand (Missal and Stadler, 2006)
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Fig. 3. The RNAz prediction Ce-512233 (Missal et al., 2006) coincides with
pre-mir-79. The RNAz prediction favours the minus strand (top). The correct reading
direction is on the plus-strand, however. RNAstrand computes a score of D = —0.82
for the RNAz hit, indicating the that the direction predicted by RNAz is incorrect.
The RNAstrand classification coincides here with the correct reading direction of
the microRNA precursor.

that can be used to re-evaluate earlier ncRNA screens. Fig. 3 shows one such
example.

5.3  Family Membership: H/ACA-Box snoRNAs

In order to assign predicted ncRNAs to a particular ncRNA family, it seems
natural to include structural descriptors in the classification procedure. RNA
structure prediction, however, is less than perfect even when co-variation in-
formation from an alignment can be used (Hofacker et al., 2002). This is true
in particular when the exact ends of structured sequences within the multiple
sequence alignment are not known. Furthermore, most ncRNAs can toler-
ate deviations from the “typical” structure without loss of function. The mi-
croRNA precursor structure may for example contain small branching helices,
instead of forming a single stem-loop. These limitations restrict the useful-
ness of structure description languages in particular when one is interested in
ncRNAs that are not members of one of the few well-known families.

Thus, structural descriptors have to be sufficiently fuzzy to allow for imper-
fect structure prediction and structural variation. The RNAmicro program for
example uses 12 descriptors, only two of which are derived from the struc-
ture, namely the length of the stem and hairpin loop region of the miRNA
stem-loop structure. Four descriptors measure sequence conservation in the
loop and stem regions (the loop tends to be very variable, while the mature
miRNA is highly conserved), another five descriptors measure the thermody-
namic stability, and one measures sequence composition. This approach was
quite successful, see e.g. figure 4 for an example.

It seems thus natural to extend this approach to other classes of ncRNAs.
During the work on RNAmicro we observed that H/ACA-box snoRNAs, which
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Fig. 4. RNAmicro annotation (Hertel and Stadler, 2006) of a RNAz survey of nematode
genomes (Missal et al., 2006). About half of the known C. elegans microRNAs are
not conserved in C. briggsae and are hence not detected by comparative genomics.
(Adapted from (Hertel and Stadler, 2006)).

also form hairpin-like structures, formed a particularly resilient group of false
positives. This suggests to use the same set of descriptors and simply train the
system with multiple sequence alignments of H/ACA-box snoRNAs as positive
training set, while a sample of randomized hairpins, microRNAs, as well as
known stem-loop structures from other ncRNA classes are used a negative
training set. This yields a sensitivity of only about 63% at a specificity of
about 75%. This suggests to include a small number of additional descriptors
that are geared towards specific structural properties of box H/ACA snoRNAs
discussed e.g. in (Henras et al., 2004).

The snowReport classificator uses 9 descriptors, among them the same quan-
tities for assessing folding thermodynamics as in RNAmicro: energy z-score,
structure conservation index, average folding energy of the individual aligned
sequences, ratio of folding energy and GC content. The stem-loop structures
of snoRNAs are significantly shorter than those of miRNAs. Thus we include
the number of stacked pairs and the length of the hairpin loop. Furthermore,
H/ACA box snoRNAs have a single large interior loop which is (nearly) sym-
metric. We hence add the average symmetry (absolute value of the length
difference between the 3’ and 5 unpaired stretches of all interior loops) as
well as the length of the longest interior loop as additional descriptors. We use
libsvm 2.8.2 with the same settings as RNAmicro, RNAz and RNAstrand.

In contrast to the microRNAs, a sufficiently large set of snoRNA alignments
is not available, albeit there are several examples in the Rfam (Griffiths-Jones
et al., 2005) and snoRNA-LBME-db (Lestrade and Weber, 2006) databases. We
thus searched all available vertebrate genomes for homologs on the known
human H/ACA-box snoRNAs following the protocol for microRNA homology
search used in (Hertel et al., 2006). This yields 395 alignments containing 2
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to 18 sequences per alignment.

Table 4

Application of snowReport on sea squirts, nematodes, and vertebrates. Numbers to
distinct loci in the genomes of C. intestinalis, C. elegans, and H. sapiens, resp. The
false positives in urochordates and nematodes are tRNAs and rRNAs, which were
excluded from the training data.

candidates urochordata | nematoda | vertebrata
snowReport 1553 1833 5519
true negatives 203 310 3
distance constraint 14 255 17
H-box 14 204 12
known HACA snoRNA 13 10 65
snowReport 9 9 24

Using half of this set as positive training set and half of the microRNA align-
ments reported by Hertel et al. (2006) as negative training set resulted in a
sensitivity of 81% and a specificity of 87%. Afterwards, the test data was used
for retraining the SVM and the training data for testing it. This resulted in a
sensitivity of 91% and a specificity of 81%. For application to previously re-
ported RNAz screens we used the full sets of positive and negative examples for
retraining. Unfortunately, snowReport misclassifies a large number of tRNAs
and 5S rRNAs as snoRNAs. Closer inspections shows that in these cases only
structures are recognized. Since the false positives appear to restricted almost
exclusively to these well known ncRNAs they do not present a serious problem
since they are reliably identified by sequence homology or tRNAscanSE.

Metazoan box H/ACA usually are composed of two stem-loop structures (Hen-
ras et al., 2004); we hence classify only those RNAz hits as putative box H/ACA
snoRNAs in which (1) two hairpins separated by not more than 20nt are classi-
fied positively by snowReport, and which (2) contain the H-box motif. Results
are summarized in Tab. 4. The most interesting observation of this preliminary
screen is the large number of plausible candidates in nematodes in contrast
to both the urochordate and mammalian data. It is interesting to note in this
context that the a recent experimental screen by Deng et al. (2006) identified
dozens of putative snoRNAs in C. elegans.

In contrast to snoGPS (Schattner et al., 2004), we do not rely on the existence
of a known or suspected target site in an rRNA or snRNA. Our approach
thus predicts a few plausible candidates of “orphan” snoRNAs, i.e., snoRNAs
within unknown modification target site.
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In contrast to RNAmicro, the SVM-based classification of box H/ACA snoR-
NAs was only moderately successful. The most significant problem appears
to be the generally low quality of the predicted consensus structures, which
seems to be at least in part a consequence of problems in the underlying se-
quence alignments. Reliable methods for structure-based or structure-assisted
multiple sequence alignments are thus a necessary pre-requisite for the suc-
cessful application of structural descriptors in automatic ncRNA annotation.
Although several approaches exist, reviewed e.g. in a comparison of techniques
for consensus structure prediction by (Gardner and Giegerich, 2004), their
suitability for the purpose of ncRNA annotation has not yet been studied
systematically.

5.4 snRNA-like Candidates

A recent experimental survey of C. elegans genome (Deng et al., 2006) iden-
tified a class of snRNA-like ncRNAs that are characterized by a recognizable
SMN-binding site. We have therefore re-analyzed the results of the RNAz screen
of urochordates (Missal et al., 2005) to identify potential SMN binding sites
in these structured RNA candidates.

We use RNAbob to search for the sequence motif AUUUYUS followed by a hairpin
of rather variable stem and loop length. This pattern is a common generaliza-
tion of the SMN binding sites in the known Ciona intestinalis snRNAs. In our
analysis we require that the pattern occurs in aligned positions of the Ciona
intestinalis and Ciona savignyt ncRNA candidates. This procedure recovers
many of the known snRNAs that we found by the RNAz screen and in additions
identifies 28 plausible candidates (as well as five copies of tRNA-Ile and one
probable protein coding transcript). One example is described in some detail
in Fig. 5.

6 New Kids on the Block

6.1 Sequence-based Clusters

The simplest approach to identifying multi-gene families is blastclust. A
re-investigation of the urochordate RNAz screen (Missal et al., 2005) shows
that about a third of the candidates have at least one related sequence in
the candidate set, Tab. 5. As one would expect, individual tRNA and snRNA
families are identified by this approach. In addition, however, we find three
very large families of candidates. They do not show significant homology out-

18



Chr.1q 5074 Mb 5.076 Mb 5.078 Mb 5.080 Mb 5.082 Mb 5.084 Mb 5.086 Mb

- - 11— —— +—1 1 ¥ ¥ & ——a
ENSCING00000012483
Ensembl novel trans --->
ci_555804 ci_555803 M
.
1g_508 > 1g_509 >
L -ci_555804 M -ci_555803 M m 1 u
ENSCING00000000576 ENSCING00000001015

<--- Ensembl novel trans <--- Ensembl novel trans

Fig. 5. Secondary structure (top) and genomic location (below) of a putative snR-
NA-like RNA in Ciona intestinalis. The RNAz predictions 555803 and 555804 are
located within two introns of a ENSEMBL gene, which match a single locus in
the Ciona savignyi genome It is the reverse complement of these two sequences,
however, which contain the putative SMN binding site, which is highlighted in the
secondary structure.

Trimming the alignment to the three distinct sequences, two from C. intestinalis
and a single one from C. savignyi so that only the well-conserved region is retained
and re-scoring with RNAz yields p4y = 0.709774 and p_ = 0.961678. RNAstrand re-
turns a decision value of p = —0.999999, i.e., an unambiguous vote for the negative
strand.

side the Ascidians and they are not associated with a known or predicted
family of protein coding genes. The cluster members are not uniformly dis-
tributed across the genome but appear concentrated at a few genomic loci.
This pattern is reminiscent of many groups of vertebrate ncRNAs, including
in particular tRNAs and snRNAs, which appear in multiple, often genomi-
cally clustered, copies. Lineage specific examples of functional repeat-derived
ncRNAs include e.g. the mouse B2-element (Allen et al., 2004b). Since the
RNAz classification values are very high for most members of these classes, we
speculate that these groups contain functional ncRNAs that are associated
with an ascidian-specific repeat family.

A similar pattern was observed in C. elegans (Missal et al., 2006). With slightly
different blastclust setting, 148 clusters containing a total of 916 RNAz sig-
nals as well as 2756 non-clustered sequences were found. In contrast to the
urochordate data, however, all large clusters could be annotated. It is not clear
at this point whether this difference is biologically meaningful, or whether se-
quences with high copy numbers have been excluded more effectively from the
nematode screen as a consequence of a more complete exclusions of repetitive
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Table 5

Sequence-based clustering of Ciona intestinalis ncRNA candidates.

Here we used blastclust requiring a sequence overlap of > 50%, 80% identity
in the overlap region, and word size of 20, i.e., much less stringent settings than
the defaults. Numbers in parentheses refer to sequence families for which consensus
sequences are provided in the electronic supplement.

size Annotation size  Annotation size  Annotation
197 (1) 13 tRNA Arg:CCT 8 tRNA Thr:AGT
160 (2) 13 (16) 8 tRNA Val:AAC
144 (3) 12 tRNA Gly:GCC 8

32 5S RNA 11 tRNA Gly:TCC 8

26 tRNA Ile:YAT 11 (19)

22 (6) 11 (20) size frequency

20 (7) 9 T 7

18 tRNA Pro:HGG 9 U5 6 1

17 (9) 9 5 10

17 (10) 9 4 13

14 tRNA Leu:WAG 9 3 22

13 U3 8 tRNA Ala:WGC/Ser:GCT 2 83

13 tRNA Arg:ACG 8 1 2065

13 tRNA Leuw:TAA 8 tRNA Asn:GTT

DNA. Not surprisingly, no large sequence-based clusters were found in the
mammalian screen (Washietl et al., 2005a) since in this case the input align-
ment were already devoid of multi-copy genes including tRNAs and snRNAs.

6.2 Structure-Based Clustering

A more general approach to assign ncRNAs to families is based purely on struc-
tural similarity. Given a set of predicted ncRNAs one may use a structural
alignment method to compute all pairwise alignments, and subsequently clus-
ter all ncRNAs by similarity. In principle this should allow not only to assign
predicted ncRNAs to known families, but even to define complete new ncRNA
families. For the pairwise alignment step one would ideally use a variant of
the Sankoff algorithm which simultaneously computes sequence alignment and
consensus structure, but is computationally expensive (Sankoff, 1985). Per-
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Fig. 6. Pipeline for clustering a set of ncRNAs A,B,C,D, and E. Starting from the
RNAs with pair probability matrices, compute all pairwise alignments, determine
clusters, and multiply align the RNAs of each cluster.

forming structural alignments for all pairs of ncRNA candidates in a set of
several ten thousand is therefore still problematic. Moreover, most existing im-
plementations can use only two sequences (no profile alignments) and compute
global instead of local similarity. A local variant is described in (Hull Havgaard
et al., 2005).

The goal of annotation tools that classify family membership in results of
other surveys is different from the direct search for RNA family members in
genomic data. In the latter case one is interested in a “short list” of candidates
that contains as few false positives as possible (e.g., for use in experimental
verification). In post-processing data such as those from RNAz we are interested
in a more balanced trade-off between sensitivity and specificity similar to that
of annotating protein motifs in known predicted protein coding genes.

For the purpose of a structural clustering of ncRNA candidates we suggest a
pipeline consisting of the following three major steps:

e generate all pairwise local sequence/structure alignments

e based on this information, hierarchically cluster the ncRNAs using WPGMA
(or any other suited hierarchical clustering method) into a tree,

e finally, extract relevant clusters and construct multiple alignments of the
ncRNA candidates in each cluster

Recent developments in pairwise sequence-structure alignment allow us to get
very close to the ideal of using Sankoff’s algorithm and in the same time in-
crease the efficiency dramatically. Hofacker et al. (2004a) proposed a (global)
scoring scheme that is based on all base pair probabilities (in the structure en-
semble) of the two RNAs. Such probabilities can be reasonably predicted using
McCaskill’s pair probability algorithm (McCaskill, 1990). Since probabilities
reflect thermodynamical properties of the RNAs, the new scoring scheme fac-
tors in thermodynamics without the need of computing a full energy model
during alignment. It turns out that this idea can be used to design an even
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Fig. 7. Structure-based clustering of the 3332 Ciona intestinalis ncRNAs candidates predicted by RNAz (Missal et al., 2005) yields (among
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more time and space efficient algorithm that can also be extended to local
alignment (Will et al., 2006). The resulting new algorithm LocARNA is ready to
manage the envisioned ten thousands of RNAs. As a test case we consider the
3332 Ciona intestinalis ncRNA candidates from (Missal et al., 2005). In con-
trast to the previous section, we used here a very stringent sequence-homology
based pre-processing set that identifies sequences with more than 90% iden-
tity. Pairwise structural alignments of the resulting 2804 distinct sequences
can be computed in about two days on 10 dual core CPUs.

An appropriate distance measure that is based on both sequence and struc-
ture information is necessary for applying the weighted pair group method
(WPGMA) or any comparable method for tree construction and cluster ex-
traction. Since the pairwise alignments are computed together with their simi-
larity scores, one might naively attempt to use these scores also for clustering.
This is not appropriate, however, since the local scores reflect the quality of
local structure prediction, not the similarity of the different alignments

We therefore used the following normalized sequence and structure similarity
measures of different alignments of RNAs. On the sequence level, we use the
average sequence identity between the RNA sequences of the alignment. For
the scoring of the structural similarity, we use the structure conservation index
(SCI), which is the ratio between the mean single minimum free energy (mfe)
and the consensus mfe. The similarities are then transformed into distances
and WPGMA is applied onto the resulting distance matrix to produce the final
tree. Fig. 7 shows a subtree that contains to about half of the known tRNA
precursors. With very few exceptions, the tRNAs are clustered according to
their amino acid and anticodon, demonstrating that the procedure indeed
yields plausible results.

The resulting tree is then cut at a specific threshold to generate the clusters,
from which we can then extract a common motif using an appropriate multiple
alignment method. Sequence identity in the identified clusters can be rather
low due to the structure influence in the clustering (often below 60%). The
approach is thus capable of identifying families of structured RNAs in a range
where global multiple sequence alignment already yield very poor results

6.3 Interactions with mRNAs

Regulatory RNAs more often than not function by means of direct RNA-RNA
binding via complementary base pairing. This mechanism underlies the post-
transcriptional gene silencing pathways of microRNAs and siRNAs (reviewed
e.g. in (Nelson et al., 2003)) as well as RNAi (Elbashir and Tuschl, 2001), it
is crucial for snoRNA-directed RNA editing (Gott and Emeson, 2000), and it
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is used in the gRNA directed mRNA editing in kinetoplastids (Stuart et al.,
1997). A wide range of ncRNA regulation in bacteria is based upon RNA
duplex formation (Gottesman, 2004). Synthetic “modifier RNAs” have been
used as experimental techniques for changing the gene expression patterns in-
dependent of the RNAi pathway, see e.g. (Childs et al., 2002; Meisner et al.,
2004; Nulf and Corey, 2004; Paulus et al., 2004). Recent studies of the tran-
scriptome of various organisms have uncovered ample evidence for wide-spread
anti-sense transcription (Shendure and Church, 2002; Yelin et al., 2003; Chen
et al., 2005a; Steigele and Nieselt, 2005; Katayama et al., 2005; David et al.,
2006). These transcripts might at least in part be involved in RNA-RNA in-
teractions.

In order to gather evidence for a possible function of the ncRNAs candidates
in ncRNA-mRNA interactions, we investigated whether the RNAz predictions
show an increased propensity of interacting with known mRNAs. In detail, we
used the following procedure:

True and shuffled RNAz hits from both genomic strands were aligned to hu-
man mRNA sequences from RefSeq (NCBI FTP server, March 7) using NCBI
blast (version 2.2.10 with standard parameters for blastn except an E-value
cutoff of £ < 0.1 and filtering set to false). The resulting alignment were
filtered by removing all blast alignment with a length of less than 20 nu-
cleotides or less than 75% sequence identity. Furthermore, query sequences
were retained only of the matched the antisense strand of the mRNA. Of
the 71970 RNAz hit this yields 11112 (15.4%) true and 1319 (1.8% ) shuffled
predicted antisense interactions. In the control consisting of 71968 conserved
non-coding DNA sequences that were part of the input set in the vertebrate
RNAz screen, we find 9055 (12.6%) predicted interactions. This corresponds to
an enrichment between true and random fractions of 1.22.

After blast search, 1396 of true, none of the shuffled, and 1108 of the control
hits were removed because they overlapped the mRNA sequence that they
matched. This step eliminates potential false positives, but might also ex-
clude true cis-antisense transcripts. Interestingly, this step does not affect the
enrichment factor of 1.22.

For each RNAz hit, the longest alignment was kept for further analysis. For
these interacting pairs of RNAz hits and mRNAs, a coarse grained estimate of
the interaction free energy was computed using RNAduplex. This component
of the Vienna RNA Package computes a simplified hybridization of two RNAs
which allowing only inter-molecular base pairs, see also (Rehmsmeier et al.,
2004; Dimitrov and Zuker, 2004).

Interaction free energy distributions of the true and shuffled RNAz hits were
tested against the null hypothesis of a common distribution using the Kolmo-
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Fig. 8. Densities of interaction free energy distributions. The density of the inter-
action free energy distribution of true RNAz hit — mRNA interactions is shown in
black, those of shufled RNAz hits — mRNA interactions in red. Dotted blue lines
indicate the energy thresholds used for classification, at —215.82, —174.28, —126.91
and —91.80 kcal/mol, corresponding to the 0.05, 0.10, 0.25, 0.50 quantiles of the
randomized distribution and defining classes I to IV respectively as interactions
with energy lower or equal the threshold.

gorov—Smirnov test from the statistical package R. The null hypothesis that
both IFE distributions of shufflied and true RNAz sequence originate from
a common distribution was rejected with p < 107!, The remaining RNAz
sequences were co-folded with their potential target mRNAs using RNAduplex
to determine approximate interaction free energies (IFE). Density plots of the
IFE distributions are shown in Figure 8.

Interactions were classified according to their interaction free energy (IFE).
Class I interactors have an IFE lower or equal than the empirical 0.05 quantile
of the shuffled IFE distribution, class II interactors lower or equal than the 0.1
empirical quantile, class I1I interactors lower or equal than the 0.25 empirical
quantile and class IV interactions lower or equal than the empirical median
IFE of the shuffled RNAz hits. Results of this classification are given in table
6

Only 13 of the 11112 RNAz sequences retained after Blast search are known
miRNAs, and 9 of these are classified as interacting based on IFE. Four of these
sequences have an entry in Tarbase (Sethupathy et al., 2006), listing exper-
imentally verified miRNA target-mRNAs and in all four cases our approach
would have predicted the correct target. Four of the predicted interactors are
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Table 6

Interaction with mRNAs — relative to total number of RN Az hits. Absolute numbers
of RNAz hit sequences matching a particular interaction class and the respective
fraction of total RNAz hit sequences (71970 true, 71968 random) are given. 2451
true and 3204 randomized RNAz hits have an interaction energy smaller than the
median of shufled RNAz hit — mRNA interaction energies and are not mentioned
in the table.

True Random
Interaction RNAz hits RNAz hits
Class Number Fraction | Number Fraction | Enr.
I 2036 0.028 883 0.012 | 2.3
IT 1193 0.017 651 0.009 | 1.9
III 1949 0.027 1348 0.019 1.4
v 2087 0.029 1861 0.026 1.1

snoRNAs, which is in line with other reports that snoRNAs may play a role
in mRNA modification (Kishore and Stamm, 2006).

Consistent with published data, we identify e.g. the interaction between mir-
196a and its target mRNA HOXBS. This miRNA has an exceptionally high
complementarity to its target mRNAs compared to other miRNAs (Yekta
et al., 2004) and one would therefore expect to find a particularly strong inter-
action. Nevertheless, we classify this interaction as not significantly more sta-
ble than random. This may indicate that microRNA function is not governed
by RNA-RNA interaction energy but is dominated by structural constraints
imposed by the RISC complex. This view is consistent with the observation
that most miR-mRNA interactions are far from exact complementarity (Du
and Zamore, 2005). At this point we cannot rule out, however, that the in-
teraction energy model used here is too crude to properly describe individual
binding patterns.

We have identified here a large number of evolutionary conserved structured
ncRNA candidate genes that interact with mRNAs significantly stronger than
random sequences. Almost none of them belong to one of the established
ncRNA families. This observation stimulates speculations on the functional
role of these transcripts. Given the stable interactions, one might consider
siRNA-like functions. Alternatively, it is conceivable that some of these genes
act as “modifier RNAs” by influencing mRNA secondary structure (Hack-
ermiiller et al., 2005). The fact that these ncRNAs are conserved in sequence
and structure may suggest that other co-factors, such as proteins which rec-
ognize specific structured binding motifs, are involved in their function. It re-
mains to be demonstrated whether these observed interactions are restricted
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to conserved structured RNAs or are also common among conserved non-
structured RNAs.

6.4 Structured RNAs are not enriched in predicted TFBS

A recent study by Drake et al. (2005) demonstrated that evolutionarily con-
served noncoding sequences are selectively constrained and thus can be ex-
pected to have discernible function(s). These sequences are most often in-
terpreted as cis-acting DNA motifs. This class of functional sequence motifs
consists in particular of binding sites for proteins involved in transcriptional
regulation (Tagle et al., 1988; Davidson, 2001; Butler and Kadonaga, 2002). In
order to corroborate the fact that the RNAz predictions are indeed functional
at the RNA level, we consider the distribution of known transcription factor
binding sites with in the RNAz candidates.

We consider a subset of 493 vertebrate transcription factor binding site (TFBS)
patterns from the transfac database (Heinemeyer et al., 1998). These are
mapped to the human sequence of every 10th alignment “slice” that scored as
“structured RNA” in the mammalian RNAz screen by (Washietl et al., 2005a).
For comparison, 10% of the negatively scored input alignments as well as shuf-
fled datasets of both the positive and negative sets were used. The mapping
was performed with pwmatch, a re-implementation of the scoring algorithm
published by Kel et al. (2003), using a cut-off of 0.9. For simplicity we will
refer to these hits TFBS in the following, irrespective of whether the detected
sequence motif is a functional binding site in vivo or not.

We find that TFBS are slightly enriched in true versus shuffled data sets. Fur-
thermore, there is small enrichment of predicted TFBS in conserved noncod-
ing DNA that is not classified as structured RNA (0.24TFBS/nt) compared
to the putative ncRNAs (0.20TFBS/nt). Since randomized sequences have
only a slightly smaller density of TFBS (0.18 — 0.19 TFBS/nt) we conclude
this (high) background level is spurious, i.e., that most of the computationally
predicted TFBS are not functional. The false discovery rate of the human RNAz
was estimated on the order of 10% (Washietl et al., 2005a). The data are thus
consistent with an increased frequency of TFBS in evolutionarily conserved
non-coding DNA, while structured RNAs approximately behave like random
background.

4 The pwmatch tool is available from www.bioinf.uni-leipzig.de/Software/pwmatch.
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Fig. 9. Chromosomal region of the Diz 5-6 bigene cluster. (UCSC genome browser,
hg17 assembly). None of the predicted RNA secondary motives (RNAz, EvoFold) in
this region is located in an exon of the non-coding Evf-1.

7 Concluding Remarks: Unstructured RNAs

In procaryotic genomes, the structure of genes, and in particular the promo-
tor and terminator elements are sufficiently well understood that they help
to detect non-coding genes independently of RNA structure or comparative
sequence information. In eukaryotes, on the other hand, computational ap-
proaches to de novo ncRNA prediction are at present limited to structured
RNAs.

A substantial number of mlncRNAs, including XIST and H19, appear to con-
tain one or more domains with conserved RNA secondary structures, which
can be detected (Washietl et al., 2005a). Without additional experimental in-
formation such as EST or cDNA data, however, it is not possible at present
to reliably predict the structure of such genes from genomic sequence data.

As the example of the non-coding gene Fuf-1 (Kohtz and Fishell, 2004; Faedo
et al., 2004) shows, not all well-defined non-coding RNAs are detectable evo-
lutionarily conserved secondary structures, see Fig. 9. This gene is one of the
few representative of mlncRNAs that has been studied in some detail. The ex-
pression of Evf-1 depends both on the “Sonic hedgehog” (shh) and Diz genes.
The molecule exhibits splice variants of similar patterns in human, mouse,
and rat. Despite its rather well-defined structure, however, currently available
bioinformatics methods are insufficient to detect such unstructured ncRNA
genes.

Recent tiling array (Cawley et al., 2004) and cDNA data (Carninci et al., 2005)
strongly suggest that ncRNAs genes of this type are the rule rather than the
exception. Even in the presence of cDNA and/or EST data it is not an easy
task to distinguish genes with short ORF's that code for short peptides from
bona fide ncRNAs.
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The distribution of TFBS discussed in the previous section might provide a
starting point. Further investigations with selected sets of TF binding motifs
will however be needed to determine whether TFBS frequencies can be used
to discern between cis-acting DNA elements and sequence elements that are
functional at transcript level.

In this contribution we have attempted to provide an overview of the state of
the art in ncRNA annotation. In summary, both the detection of functional
RNAs in genomic sequence data and the classification of the candidate se-
quences is a challenging problem, despite significant recent advances in RNA
bioinformatics. Reliably automatic annotation that would be applicable rou-
tinely on newly sequences genomes remains elusive beyond those cases that
can be handled by sequence homology with known ncRNA genes.
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