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ABSTRACT

The SBML ODE Solver Library (SOSlib) [1] is a C/C++
programming library for the symbolic and numerical anal-
ysis of ODE systems derived from biochemical reaction
networks encoded in the Systems Biology Markup Lan-
guage (SBML) [2]. It is written in ANSI/ISO C and dis-
tributed under the terms of the GNU Lesser General Pub-
lic License (LGPL).

Recent efforts in the development of SOSlib have been
focused on extensions that allow one to perform not only
the forward analysisbut also theinverse analysisof bio-
chemical models. In particular, SOSlib has been extended
with forward and adjoint capabilities to enable the iden-
tification of model parameters and initial conditions from
(noisy) experimental data, measured either continuously
or at discrete time points. Via on-the-fly compilation of
right-hand-side functions and Jacobian routines, a signifi-
cant speed-up in numerical integration has been achieved.

1. SIMULATION AND SENSITIVITY ANALYSES

We denote the underlying ODE system and initial condi-
tion as, respectively,

ẋ(t) = f(x, α),
x(0) = x0, (1)

wherex ∈ R
n is the state variable,α ∈ R

m the parame-
ters andf(x, α) : R

n+m → R
n the parameter-dependent

vector field. To allow for the sensitivity analysis of (1),
we assume the differentiability off(x, α) with respect to
bothx andα.

In studying many biological models, one would like to
not only obtain the solutionx(t) for a given set of nom-
inal parameter values but also to examine its parametric
dependence. This can be computationally studied by solv-
ing the forward sensitivty equations as discussed in Sec-
tion 1.1. For applications such as parameter identification
and optimization of biological systems, one is interested
in computing the parametric dependence not for the whole
time-series but only for certainfunctionalsthat map solu-
tions to real numbers. For these applications, the adjoint

approach to sensitivity analysis as discussed in Section 1.2
is the preferred method in terms of the computational ef-
ficiency.

1.1. Forward Sensitivity Analysis

The simulation of the ODE system (1) can be thought of
as applying an operatorF which takes as input the initial
condition and parameter values, mapping it to the ODE
solution. That is, we haveF : (x0, α) ∈ R

n+m →
x(t) ∈ C1([0, T ],Rn), whereC1 denotes the space of
continuously differentiable functions. One can then con-
sider differentiations of the operatorF either at an algo-
rithmic level, or at a mathematical level. For the former,
one would symbolically “differentiate” the steps taken in
the chosen numerical algorithm in going from the input
data,x0, α, to theN -point numerical approximation over
the requested time interval,{x(t0), · · · , x(tN )}. Such an
approach is known asautomatic differentiation(AD) [3].

In our work, we take the forward sensitivity equations
approach whereby one formally differentiates the operator
F with respect to the initial concentrations,x0, and the pa-
rameter values,α. In this case, the differential equations
are first derived and then arbitrary numerical methods can
be applied to solve the resulting system of equations. This
is the approach that we have implemented in SOSlib and
discussed in Sections 1.1.1 and 1.1.2. In Section 1.1.3,
we discuss an application of the forward sensitivity solver,
namely for computing the Fisher Information Matrix from
which a lower-bound for the standard deviation in the es-
timated parameters can be derived [4].

1.1.1. Initial condition sensitivity

First, we consider variations in the solution arising from
variations in the initial conditions. One supposes that the
parametersα are fixed, and differentiates the original ODE
system with respect to the initial conditions, which is then
reflected in the initialization for the sensitivity variables.
If we denotesi as the set of sensitivity variables (of di-
mensionn) corresponding to the perturbation of the sys-
tem (1) with respect to theith component ofx0, then one
obtains the following equations for then × n sensitivity
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system{s1(t), · · · , sn(t)}:

ṡi(t) = fx(x(t), α)si(t),
(si)j(0) = δij ,

where the notation(si)j denotes thej-th component ofsi,
fx is the Jacobian matrix andδij is the Kronecker delta
defined asδii = 1 andδij = 0 otherwise (for1 ≤ i, j ≤
n).

1.1.2. Parameter sensitivity

Next, we consider variations in the solution arising from
variation in the parameters. Since no perturbation in the
initial state is introduced, it is easy to see that the para-
metric sensitivity variables have the homogeneous initial
condition. One thus obtains the followingn × m linear
ODE system for{s1(t), · · · , sm(t)}:

ṡi(t) = fx(x(t), α)si(t) + fαi
(x(t), α),

si(0) = 0.

Using the symbolic differentiation capability of SOSlib,
the expressionsfx, fαi

are computed and passed to be
called from the CVODES solver.

1.1.3. Application: Fisher Information Matrix

Let us consider the problem of estimatingm parameters
from time-course data. For each data-pointti, let us de-
noteS(ti) as then×m matrix of sensitivity solutions:

S(ti) =







s11(ti) · · · sm
1 (ti)

...
. . .

...
s1n(ti) · · · sm

n (ti)






.

If we denote the covariance matrix of (discrete) measure-
ment errors asV , then the Fisher Information Matrix (F )
is given by the following formula:

F =
N

∑

ti=1

S(ti)
TV −1S(ti).

Thus, using the forward sensitivity solver,F can be com-
puted by simply summing matrix products over experi-
mental time points. For deriving parameter confidence in-
tervals fromF , refer to [4].

1.2. Adjoint Sensitivity Analysis

Given a functional of interest,J : C1([0, T ],Rn) → R,
we consider the following Lagrangian,

L(x, ψ) = J(x) + 〈ψ, ẋ− f(x, α)〉L2
,

whereψ(t) ∈ C∗([0, T ],Rn) is the associated adjoint
variable (of bounded variation) in the dual space of con-
tinuous functions, serving as Lagrange multiplier to the
ODE constrainṫx − f(x, α) = 0. Integration by parts of
the above gives

L(x, ψ) = J(x)+ 〈−ψ̇, x〉L2
− 〈ψ, f(x, α)〉L2

+ψ(T )x(T ) − ψ(0)x(0). (2)

The equations for the adjoint variable are obtained by con-
sidering the variational equationsδL(x, ψ; δx) = 0, for
all variations:δx ∈ C1([0, T ],Rn), δx(0) = 0. In Sec-
tions 1.2.1 and 1.2.2, we show the adjoint ODE systems
for cases where the objective corresponds to either contin-
uously or discretely measured experimental data respec-
tively. For a discussion on the adjoint equations and its
numerical solution in the general context of differential-
algebraic equations (DAEs), refer to [5].

After the adjoint system is solved, the objective gradi-
ents with respect to the parameters and initial conditions
are simply obtained as (refer to eqn. (2), noting the im-
plicit dependency ofx(t) onx0 andα):

dJ(x(α, x0))

dαj

=
∂L

∂αj

= −〈ψ, fαj
(x, α)〉L2

dJ(x(α, x0))

d(x0)j

=
∂L

∂(x0)j

= −ψ(0)j . (3)

We remark that the adjoint approach to computing the ob-
jective gradient is especially attractive for biological sys-
tems of high parameter dimensions. In particular, the di-
mension of the adjoint variable is the same as that of the
state, independent of the number of parameters. After
this adjoint system has been numerically integrated, equa-
tion (3) shows that gradients of the given objective can
then be computed by simply taking inner products over
the time domain, or evaluating the adjoint variable at time
t = 0. Thus, gradient calculations can be done essentially
at constant time, independent of the number of parameters
present in the model.

1.2.1. Continuous data

Without the loss of generality but for the simplicity of
presentation, in what follows we assume a specific form
of the objective function. Namely, we consider parameter
identification applications where one tries to minimize ob-
jectives measuring the data mis-match. That is, if no reg-
ularization is used, such an objective may take the form:

Jcont(x) =
1

2

∫ T

0

(x(t) − xdata(t))2dt. (4)

wherexdata(t) ∈ C1([0, T ],Rn) is some given experi-
mental time-series.
From the Lagrangian expression in (2), settingδL(x, ψ; δx) =
0 gives rise to the following terminal-value problem for
the adjoint variable,ψ(t):

ψ(T ) = 0,
ψ̇(t) = −fx(x(t), α)Tψ(t)

+(x(t) − xdata(t)). (5)

Once the expression for the objective has been provided
to SOSlib and the dataxdata(t) is read in, the system (5)
can again be numerically integrated (backwards in time)
using the adjoint solver provided by CVODES.



1.2.2. Discrete data

Here, we consider objectives of the following form:

Jdisc(x) =
1

2

N
∑

k=1

(x(tk) − xdata(tk))2, (6)

consisting of the sum of the data mis-match over the (dis-
crete) time points,{t1, · · · , tN}. The objective (6) may
be rewritten as:

Jdisc(x) =
1

2

N
∑

k=1

∫ T

0

δ(t− tk)(x(t) − xdata(t))2dt, (7)

whereδ(t − tk) is the delta distribution with the sifting
property that for all continuous functionsg(t),

∫

∞

−∞

g(t)δ(t− tk)dt = g(tk).

Now that the objective (1.2.2) is of the integral form, one
might attempt to write down the adjoint system analogous
to (5):

ψ(T ) = 0,
ψ̇(t) = −fx(x(t), α)Tψ(t)

+

N
∑

i=k

δ(t− tk)(x(t) − xdata(tk)).

The above ODE system only has meaning in the sense of
distributions and no ODE solver can be applied directly
without taking special care at the data time points,{ti}.
Instead, one can solve it by treating it as a concatenation
of piecewise continuous trajectories. More specifically,
with the terminal condition beingψ(T ) = 0, we integrate
over time intervals in between the set of data time points
and introduce jumps at the times when data is given:

FOR : k = N,N − 1, · · · , 1
ψ̇(t) = −fx(x(t), α)Tψ(t), t ∈ [tk, tk+1)
ψ(t−k ) = ψ(t+k ) − (x(t) − xdata(tk)).

Thus, the adjoint profile can be computed by providing
start- and stop-time points{ti} to the CVODES adjoint
solver to integrate it piecewise and adding to the adjoint
variable in between the integration calls.

2. COMPILATION

For parameter identification and optimal control applica-
tions, the ODE and sensitivity solvers typically need to be
called many times. In order to study systems with high
dimensional parameter space within reasonable compute
time, it is important to be able to evaluate the right-hand-
side functions and Jacobians of the ODE systems effi-
ciently.

Motivated by a need to speed up the solvers, we have
implemented two different versions of on-the-fly compi-
lation of these functions. First, we take use of libSBMLs
abstract-syntax-tree representation of model equations to
directly construct machine code for all equations of the
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Figure 1. Adjoint solution profile for parameter estima-
tion: using continuous data

model. As this approach is highly platform-specific (cur-
rently, we provide 32 and 64 bit architecture machine code
for both Windows and Unix systems), SOSlib also allows
for the conversion from the vector-field and associated
functions to C source code and makes use of a preinstalled
C/C++ compiler (e.g.gcc). Both approaches result in
around an order of magnitude decrease in the compute
time for some test cases; see Section 3.2.

3. NUMERICAL DEMONSTRATIONS

Here, we consider parameter idenfication examples for-
mulated as finding the minimizer of the data mis-match.
In Section 3.1, we illustrate the difference in the adjoint
solution profiles using continuous and discrete data. In
Section 3.2, we show the objective convergence using an
interior-point optimization solver and demonstrate the speed-
up gained by model compilation.

3.1. Adjoint profiles

Here we examine adjoint solutions at the first step of the
parameter identification procedure. Figures 1 and 2 il-
lustrate the adjoint solution profiles corresponding to us-
ing continuous and discrete data, for a simple oscillatory
model of a signaling cascade taken from the BioModels
database1. In both cases, we use artificial data obtained
by simulating the model at its nominal parameters. In Fig-
ure 2, one can easily spot the jumps in the adjoint profiles
at the 10 data points. Despite this, one can observe some
similarity in the general shapes of the profiles given in Fig-
ures 1 and 2. In fact, as the number of (discretely) sampled
data points increases, one would expect the adjoint solu-
tions to converge in theL1 norm.

3.2. Convergence and speed

Here we consider the identification of 36 parameters in the
3-gene model as used in [6]. In particular, we use noise-
less, artificial data corresponding to the original parame-
ters and start the parameter identification procedure from

1http://www.ebi.ac.uk/biomodels/

http://www.ebi.ac.uk/compneur-srv/biomodels-main/publ-model.do?mid=BIOMD0000000010
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Figure 2. Adjoint solution profile for parameter estima-
tion: using discrete data

parameter values being an order of magnitude smaller than
the true ones. To carry out the minimization of the above
objective we employ IpOpt [7], an interior-point (local)
optimization algorithm. The values for the objective and
gradient are provided by the forward and adjoint solvers
of SOSlib, respectively.

The convergence in the objective is shown in Figure 3.
We observe a 6 orders of magnitude decrease in the ob-
jective over 500 optimization iterations using IpOpt [7].
Table 1 gives the number of function evaluation calls to
SOSlib as well as the CPU time taken in the numerical
integrations. We see that around 1200 forward ODE and
500 adjoint integrations were carried out in the optimiza-
tion process. The observed difference in the number of
objective calls between the compiled and non-compiled
results is due to small numerical discrepancies. If the
right-hand side and Jacobian functions are not compiled,
the time taken for these calculations take 21.54 seconds;
when these functions are compiled withgcc only 2.64
seconds are needed, thereby achieving nearly an order of
magnitude decrease in the computing time.

Table 1: IpOpt calls to SOSlib

No compilation gcc compilation
# obj. eval. 1222 1251
# grad. eval 500 500
CPU: SOSlib 21.54 sec. 2.64 sec.

4. CONCLUSIONS

We have demonstrated extensions to SOSlib that allow
one to perform inverse analyses of biological models ef-
ficiently. In combination with regularization methods [8],
these tools enable one to tackleill-posedparameter iden-
tification problems that arise in systems biology.
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