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Abstract. Eigenvectors of the Laplacian of a graph G have received increasing at-
tention in the recent past. Here we investigate their so-called nodal domains, i.e., the
connected components of the maximal induced subgraphs of G on which an eigenvec-
tor ψ does not change sign. An analogue of Courant’s nodal domain theorem provides
upper bounds on the number of nodal domains depending on the location of ψ in the
spectrum. This bound, however, is not sharp in general. In this contribution we
consider the problem of computing minimal and maximal numbers of nodal domains
for a particular graph. The class of Boolean Hypercubes is discussed in detail. We
find that, despite the simplicity of this graph class, for which complete spectral infor-
mation is available, the computations are still non-trivial. Nevertheless, we obtained
some new results and a number of conjectures.
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1. Introduction

The foundations of spectral graph theory were laid in the fifties and sixties. Since
then, spectral methods have become standard techniques in (algebraic) graph theory.
The eigenvalues of graphs, most often defined as the eigenvalues of the adjacency
matrix, have received much attention over the last thirty years as a means of charac-
terizing classes of graphs and for obtaining bounds on properties such as the diameter,
girth, chromatic number, connectivity, etc. [4, 13, 14, 33, 35]. More recently, the inter-
est has shifted somewhat from the adjacency spectrum to the spectrum of the closely
related graph Laplacian, see e.g., [12, 37, 48, 49]. Again, the dominating part of the
theory is concerned with the eigenvalues.

The eigenvectors of graphs, however, have received only sporadic attention on their
own. Even the recent book on Eigenspaces of Graphs [15] contains only a few pages
on the geometric properties of the eigenvectors which are mostly used as a convenient
proof technique.

Eigenvectors of graphs have been used to design heuristics for some combinatorial
optimization problems such as graph partitioning [39, 51, 52] and graph coloring
[3]. Their application in graph drawing is discussed in [53, 36, 45, 50]. The cost
functions of a number of prominent combinatorial optimization problems, among
them the TSP, graph bi-partitioning, and certain spin glass models, are eigenfunctions
of graphs associated with search heuristics for these problems [38, 40, 56]. This
observation was one of the starting points of the algebraic theory of fitness landscapes
which is reviewed in [54]. In the latter context the Laplacian eigenvectors of the
Boolean Hypercubes (binary Hamming Graphs, iterated cartesian product of K2) are
of particular interest.

2. Nodal Domain Theorems

LetG(V,E) be a finite, connected, undirected graph, and denote its number of vertices
by N = |V |. For standard graph-theoretical terms not defined here we refer to [58].
The entries of the adjacency matrix A are Axy = 1 if the vertices x and y are adjacent
and 0 otherwise. The degree matrix D is diagonal with Dxx being the degree of vertex
x. The Laplacian of G is the matrix

−∆ = D − A (1)

The graph Laplacian is symmetric and non-negative definite. The constant vector
1 = (1, . . . , 1) is the unique eigenvector with eigenvalue 0, −∆1 = 0. The operator
∆ can be viewed as a proper discretization of the familiar Laplacian differential
operator.

The graph Laplacian is a member of a larger class of symmetric matrices associated
with G. Let H be a symmetric matrix with arbitrary diagonal elements, non-negative
off-diagonal elements, and Hxy = Hyx < 0 if and only if {x, y} is an edge in G. Such
a matrix is called a Schrödinger operator associated with G, see e.g. [18]. Colin de
Verdière’s famous graph invariant µ is closely related to this class of operators [17].
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Discrete Schrödinger operators and their eigenfuctions are of interest in simplified
quantum mechanical models of organic molecules, the so-called Hückel model [41].

Now consider a function f : V → R on G(V,E). Such a function is called a landscape
on G in [54]. A strong nodal domain of f is a maximal connected induced subgraph
G[W ] of G with vertex set W such that f(x)f(y) > 0 for all x, y ∈ W . A (weak) nodal
domain of f is a maximal connected induced subgraph G[W ] such that f(x)f(y) ≥ 0
for all x, y ∈ W . A (strong or weak) nodal domain G[W ] is call positive (negative)
if there is an x ∈ W with f(x) > 0 (f(x) < 0). We write WND(f) and SND(f) for
the number of weak and strong nodal domains, respectively. Obviously, WND(f) ≤
SND(f).

Theorem 1. Discrete Nodal Domain Theorem [16]
Let H be a Schrödinger operator of G with eigensystem Hφk = λkφk, 1 ≤ k ≤ N and
suppose the eigenvalues λk are arranged in non-decreasing order

0 = λ1 < λ2 ≤ · · · ≤ λN

and have multiplicities mk. Then φk has at most WND(φk) = k weak nodal domains
and at most SND(φk) = k +mk − 1 strong nodal domains.

This is the graph version of Courant’s celebrated Nodal Domain Theorem for Rie-
mannian manifolds, see e.g. [10, 11]. Various versions of the nodal domain theorem
and partial proofs were obtained independently by different authors [18, 24, 32, 52, 59],
beginning with the work of M. Fiedler who proved the following two results that are
corollaries of the nodal domain theorem:

Corollary 1. [27, 28] The eigenvector ψ2 to the smallest non-zero eigenvalue of any
connected graph G(V,E) has WND(ψ2) = 2 weak nodal domains.

Corollary 2. [29] The eigenvector ψk has at most k− 1 positive weak nodal domains
for k > 1.

The eigenvector ψ2 is often called a Fiedler vector of G. The associated eigenvalue
λ2 is the algebraic connectivity of G, which is closely related to the vertex and edge
connectivities of G:

λ2 ≤ v(G) ≤ e(G) (2)

A general method for obtaining asymptotic isoperimetric inequalities for families of
graphs based on λ2 is developed is described in [1]. A Cheeger like inequality has
been shown in, e.g., [19].

As for manifolds, the nodal domain theorem for graphs does not provide a sharp
inequality for all graphs. For manifolds equality for every eigenvalue holds only in
dimension one, i.e. for a string. For spheres with the standard metric a sharp lower
bound on the number of nodal domains exists [46] but so far no sharp upper bounds
are available, see e.g. [2, 43, 44, 47]. For graphs the situation is similar. There only
exist improved upper bounds for trees, see [6], and for cographs and threshold graphs,
see [5]. These results show that the “Courant bounds” are not sharp on non-trivial
graph classes.
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The number of nodal domains can be much smaller than the bound obtained from the
Nodal Domain Theorem. An example are the so-called Faria vectors [26]: A vector ξ
is called a Faria vector, if ξ has only two non-zero elements ξ(x) = −ξ(y) = 1.

Proposition 1. A Faria vector ξ is an eigenvector of the Laplacian of the graph G
if and only if x and y are twins, i.e., if every vertex v /∈ {x, y} is either adjacent to
both x and y or to neither one of them.

We refer to [8] for a more detailed discussion of twin vertices. Obviously, Faria vectors
exist for arbitrarily large graphs if there is a vertex that is adjacent to at least two
vertices of degree 1.

Lower bounds are unknown with the exception of the trivial bound SND(ψk) ≥ 2
for k > 1 and the following result on the largest eigenvalue of a bipartite graph.

Theorem 2. [55] Let G(V1 ∪ V2, E) be a connected bipartite graph with N = |V1 ∪
V2| vertices and let H be any Schrödinger operator on G. Then there is a unique
eigenvector ψN to the largest eigenvalue of H. The eigenvector ψN is positive on V1

and negative on V2 or vice versa and hence satisfies WND(ψN) = SND(ψN ) = N .

Theorem 2 generalizes an analogous result for the the smallest eigenvalue of the
adjacency matrix A [3].

In the case of degenerate eigenvalues the situation becomes even more difficult because
the number of nodal domains may vary considerably depending on which vector from
the mk-dimensional eigenspace of λk is chosen.

Hence, given a fixed graph G(V,E) and an eigenvalue λk three questions immediately
arise:
What is the “typical” number of nodal domains of a corresponding eigenvector ψk?
What is the minimal number of nodal domains of ψk?
What is the maximal number of nodal domains of ψk?

Given a fixed tree T and an eigenvalue λk, 2 < k < N , the problem of finding an
eigenvector ψk with the minimal number of nodal domains is NP-complete, i.e., really
hard to solve [6].

3. Nodal Domains and Hyperplane Arrangements

It is easy to compute the number of nodal domains for a given eigenvector. Thus it is
no problem to compute the possible number of nodal domains, when all eigenvalues
are simple. The situation changes completely in the case of degenerate eigenvalues
because the number of nodal domains may vary considerably depending on which
vector from the mk-dimensional eigenspace of λk is chosen. To handle this situation
we choose an orthonormal basis u1, . . . , umk

for the eigenspace of λk (∼= R
mk). Every

eigenvector ψ to the eigenvalue λk is then given by

ψ(x) =

mk∑

j=1

aj uj(x) = 〈a, u(x)〉 (3)
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where a = (a1, . . . , amk
), and u(x) = (u1(x), . . . , umk

(x)) is the vector that contains
the values of the basis at the vertex x. Notice that if U is the matrix containing the
basis vectors uj as its columns then u(x) forms the x-th row of U.

The convex hull of the vectors u(x), for x ∈ V , forms a polytope in R
mk , which is

called the eigenpolytope of the graph, see e.g. [9, 34].

It is obvious that the number of nodal domains only depends on the signs of the
eigenvector on each vertex. There is a one-to-one relation between the eigenvector ψ
and its “coordinate vector” a. The sign at vertex x is given by the sign of 〈a, u(x)〉.
The set of eigenvectors that vanish on vertex x corresponds to the set

Hx = {a ∈ R
mk : 〈a, u(x)〉 = 0} (4)

which is either a hyperplane through the origin in R
mk or, if u(x) = 0, Hx = R

mk .
The set of all proper hyperplanes forms a hyperplane arrangement

H = {Hx|x ∈ V } (5)

in R
mk , see e.g. [25, 61]. The union of all these hyperplanes creates a cellular complex

in R
mk or (if we look at normalized eigenvectors) in the sphere Smk−1. A cellular

complex consists of disjoint cells, where each cell is either homeomorphic to an open
disc Dd = {a ∈ R

d : ||a||2 < 1} or a single point. In the former case we say that the
cell has dimension d and the cell is called a d-cell. In the latter case we have a 0-cell.
Additionally, a cellular complex satisfies the following properties: (i) The union of all
cells is the entire space R

mk (or Smk−1); (ii) The boundary of a d-cell consists of the
union of cells of dimension less than d.

Each of the hyperplanes Hx splits the R
mk into three pieces: the hyperplane Hx itself

and the two open half-spaces {a ∈ R
mk |〈a, u(x)〉 > 0} and {a ∈ R

mk |〈a, u(x)〉 < 0}.
Hence, for each vector a ∈ R

mk we may introduce the covector or position vector ca

with coordinates
ca(x) = sgn〈a, u(x)〉 (6)

The covector ca is constant in each cell of the cellular complex and it uniquely de-
termines each cell. Moreover it corresponds to the sign pattern of the associated
eigenvector. The co-vectors represent an oriented matroid [7]. Finding all possi-
ble values for the number of nodal domains is equivalent to finding all cells of this
complex. However the number of cells explodes with the number of vertices and
the multiplicity mk of the eigenvalue. Using a general upper bound for hyperplane
arrangements [25] we have the asymptotic behavior

number of d-cells ∼ Nmk (7)

An exact and sharp upper bound is given, e.g., in [25].

The following observations will simplify our task. Assume that we go along a path
within a cell towards its boundary. As long as we stay inside the cell nothing happens
and the number of nodal domains remains unchanged. But if we reach the boundary
the eigenvector vanishes on some (but at least one) of the non-zero vertices whereas
all other remain unchanged. This has two consequences.

If we look at weak nodal domains, then their number is either decreasing or remains
constant, since zero vertices do not separate weak nodal domains. So we have to look
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Figure 1. Hyperplane arrangement (l.h.s.) and the correponding cells on the sphere (r.h.s.)
of eigenvalue 4 for the cube K3

2 . We have mk = 3 and N = 8. The vectors u(x) are given
by the eight vectors (±1,±1,±1). Due to symmetry we only have the following cells

dim shape SND WND

2 rectangle 4 4
2 triangle 3 3
1 edge 4 3
0 point 3 2

on the sphere S2. This is easily checked using Mathematica.

at 0-cells if we want to minimize WND(ψk) and to cells of highest dimension if we
want to maximize WND(ψk).

If we look at strong nodal domains the situation is much more complicated. Because
then zeros separate nodal domains, and SND(ψk) may increase. However, if the
eigenvector vanishes on too many vertices when we reach the boundary, it might
happen that nodal domains disappear which decreases SND(ψk). This happens for
example with some eigenvectors to the second eigenvalue of stars (connected graphs
where all but one vertex have degree 1), or more generally with some eigenvectors to
eigenvalues where Faria vectors exist. Figure 1 illustrates the situation.

Because of equ.(7) it is in practice impossible to calculate all cells of a hyperplane
arrangement for any reasonably sized graph. We have therefore devised a hillclimb-
ing algorithm to search for the minimum (or maximum) number of (strong) nodal
domains. This algorithm is based on the above observations, moving from a cell to
neighboring cells in search of an improved number of nodal domains.

Briefly, the algorithm works as follows. Starting from some random point a in the
hyperplane arrangement with corresponding eigenvector ψ(x) = 〈a, u(x)〉. Pick a
second random point a′ and move into the direction of this second point until a
boundary in the cellular complex is crossed (i.e., at least one of the coordinates of the
position vector has changed sign and a neighboring cell is entered). To this end we

define δ(x) = 〈a,u(x)〉
〈a′,u(x)〉

, and find the vertices x1 and x2 such that δ(x1) is smallest with

δ(x) > 0 and δ(x2) is smallest with δ(x) > δ(x1). Then set δ = (δ(x1) + δ(x2))/2 and
move from a to a∗ = a − δ a′, with corresponding eigenvector ψ′(x) = 〈a′, u(x)〉. If



T. Bıyıkoğlu et al.: Nodal Domains 7

the number of (strong) nodal domains of this new cell is less than or equal to that of
the cell that was moved from, accept this move (i.e., make the new point the current
one). Otherwise, return to the original point (i.e., do not update the current point).
Now repeat this sequence of picking a random second point, moving towards it from
the current point until a cellular boundary is crossed, and determining whether the
move is accepted or not, until some stopping criterion is reached.

Notice that the algorithm also accepts neutral moves, i.e., moves to neighboring cells
that have an equal number of nodal domains. This way, getting stuck in the middle of
some plateau is avoided. Since it is not obvious with this “random move” algorithm
when a local optimum is reached, we terminate the search when the number M of
moves without improvement exceeds a user-defined upper bound.

In practice, one wants to avoid moving back to the cell out of which a move was
just made. This can be easily achieved by either explicitly excluding this cell from
consideration when calculating δ for the next step, or by multiplying the randomly
picked a′ with −1 if it turns out that it causes a move back into the previously visited
cell. We use the latter solution in our implementation of the algorithm.

Obviously this algorithm can be used for maximizing the number of nodal domains
as well. The maximum number M of unproductive moves and the probability distri-
bution from which the random vectors a and a′ are sampled are parameters of the
algorithm.

It must be noted here that this algorithm only deals with coordinate vectors in cells
of highest dimension correctly, i.e., the corresponding eigenvectors have no vanishing
vertices (except those vertices where all eigenvectors to the given eigenvalue vanish).
It can be adopted such that it also including searching on cells of lower dimension.
However, there are some difficult numerical problems that require sophisticated meth-
ods from computational geometry for their solution.

4. Boolean Hypercubes

The hypercube Kn
2 is the graph with vertex set V = {(x1, x2, . . . , xn)|xi = ±1} and

edges connecting two vertices that differ in a single coordinate, i.e., {x, y} ∈ E iff
xi = yi for all but one index j for which we then have xj = −yj. The number n of
coordinates is usually called the dimension of Kn

2 . The graph has N = 2n vertices
and |E| = n2n−1 edges.

Given two non-empty graphs G = (VG, EG) and H = (VH , EH) the Cartesian product
G�H has vertex set VG ×VH and (x1, x2)(y1, y2) is an edge in EG

�
H iff either x2 = y2

and x1y1 ∈ EG or if x1 = y1 and x2y2 ∈ EH , see e.g. [42]. It is not hard to verify that
the hypercube is equivalently defined as n-fold Cartesian product of K2, the graph
consisting of a single edge and its two end vertices.

The Walsh functions [30, 60]

ϕI(x) =
∏

k∈I

xk (8)
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Table 1. Upper bounds on the number of strong and weak nodal domains as function of n
and p = |I | as given in equ.(13).

p = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n sn,p

2 1 3 4
3 1 4 7 8
4 1 5 11 15 16
5 1 6 16 26 31 32
6 1 7 22 42 57 63 64
7 1 8 29 64 99 120 127 128
8 1 9 37 93 163 219 247 255 256
9 1 10 46 130 256 382 466 502 511 512

10 1 11 56 176 386 638 848 968 1013 1023 1024
11 1 12 67 232 562 1024 1486 1816 1981 2036 2047 2048
12 1 13 79 299 794 1586 2510 3302 3797 4017 4083 4095 4096
13 1 14 92 378 1093 2380 4096 5812 7099 7814 8100 8178 8191 8192
14 1 15 106 470 1471 3473 6476 9908 12911 14913 15914 16278 16369 16383 16384

n wn,p

2 1 2 4
3 1 2 5 8
4 1 2 6 12 16
5 1 2 7 17 27 32
6 1 2 8 23 43 58 64
7 1 2 9 30 65 100 121 128
8 1 2 10 38 94 164 220 248 256
9 1 2 11 47 131 257 383 467 503 512

10 1 2 12 57 177 387 639 849 969 1014 1024
11 1 2 13 68 233 563 1025 1487 1817 1982 2037 2048
12 1 2 14 80 300 795 1587 2511 3303 3798 4018 4084 4096
13 1 2 15 93 379 1094 2381 4097 5813 7100 7815 8101 8179 8192
14 1 2 16 107 471 1472 3474 6477 9909 12912 14914 15915 16279 16370 16384

where I ⊆ {1, 2, . . . , n} are a complete set of eigenvectors of the Laplacian of the
hypercube. These functions satisfy the eigenvalue equation

−∆ϕI = 2|I|ϕI (9)

and the orthogonality relation

〈ϕI , ϕJ〉 =
∑

x∈V

ϕI(x)ϕJ(x) = δI,J |V | (10)

Thus there are m =
(

n

|I|

)
eigenvectors with eigenvalue 2|I|. It is customary to call

p = |I| the order of the Walsh function ϕI .

The Walsh functions satisfy the following important recursion w.r.t. the number n of
coordinates:

ϕ′
I(x; xn+1) = ϕI(x) and ϕ′

I∪{xn}(x; xn+1) = xn+1 ϕI(x) (11)

It is sometime more convenient to write equ.(11) as a tensor product:

ϕ′
I =

(
1

1

)
⊗ ϕI and ϕ′

I∪{n+1} =

(
1

−1

)
⊗ ϕI (12)

Clearly, ϕ′
I∪{n+1} is an eigenvector of Kn+1

2 with eigenvalues 2(|I|+1). It follows that
all Walsh functions can be obtained recursively in this way. For more details and
further applications of this construction see e.g. [14, 23].
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Equ.(11) of course holds for any eigenvector φ of Kn
2 with eigenvalue 2p: The vector

φ+ =
(
1
1

)
⊗ φ is an eigenvector of Kn+1

2 with eigenvalue 2p, while φ− =
(

1
−1

)
⊗ φ is an

eigenvector of Kn+1
2 with eigenvalue 2(p+ 1).

It follows immediately from Theorem 1 that an eigenvector ξ with eigenvalue 2p has
at most

SND(ξ) ≤ sn,p =

p∑

k=0

(
n

k

)
and WND(ξ) ≤ wn,p = 1 +

p−1∑

k=0

(
n

k

)
(13)

strong and weak nodal domains, respectively. Numerical values are listed in Table 1.

We can use the recursive construction of the Walsh functions in equ.(11) to obtain
bounds on the number of nodal domains. The following technical result will be used
repeatedly:

Lemma 1. Let f be any vector on Kn
2 and let f+ =

(
1
1

)
⊗ f and f− =

(
1
−1

)
⊗ f be

vectors on Kn+1
2 . Then WND(f+) = WND(f), SND(f+) = SND(f), WND(f−) ≤

2 WND(f), and SND(f−) = 2 SND(f).

Proof. Let W be a connected vertex subset of Kn
2 and denote its boundary by

∂W =
{
y ∈ V \W | ∃x ∈ W : {x, y} ∈ E

}

We write (W,xn+1) = {x′ ∈ Kn+1
2 | x′ = (x, xn+1), x ∈ W} and W ′ = (W,+1) ∪

(W,−1). Clearly, W ′ is connected and its boundary is ∂W ′ = (∂W,+1) ∪ (∂W,−1).
Furthermore (∂W,+1) ∩ (∂W,−1) = ∅ and ∂(W,xn+1) = (∂W, xn+1) ∪ (W,−xn+1).
Now let P be a positive strong nodal domain of f . Then f+ is positive on both
(P,+1) and (P,−1) and hence on P ′, while f+ is non-positive on ∂P ′, i.e., P ′ is
a positive strong nodal domain of f+, and consequently SND(f+) = SND(f). The
same argument works analogously for weak nodal domains.
If P is a strong positive nodal domain of f then f−((P,+1)) > 0, f−((P,−1)) <
0, f−((∂P,+1)) ≤ 0, f−((∂P,−1)) ≥ 0. It follows immediately that (P,+1) is a
strong positive nodal domain while (P,−1) is a strong negative nodal domain. Hence
SND(f−) = 2 SND(f).
Finally, suppose P is a weak positive nodal domain. Then analogously to the case
of strong nodal domains we find WND(f−) ≤ 2 WND(f). However it might happen
that P contains a vertex x with f(x) = 0. Then there exists a weak negative nodal
domain Q that also contains x. Then (P,+1) and (Q,−1) are weak positive nodal
domains that are connected by the vertices (x,+1) ∈ (P,+1) and (x,−1) ∈ (Q,−1),
since f−((P,+1)) = f−((Q,−1)) = 0. Thus WND(f−) < 2 WND(f). �

Remark. The same results also holds for the cartesian product of an arbitrary graph
with K2.

5. The Typical Number of Nodal Domains

In order to define more what we mean by the “typical number of nodal domains” we
must be precise about which vectors in the eigenspace {ψ|−∆ξ = λkξ} we want to
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Figure 2. Distribution of SND(ψ) with Walsh coefficients aI , |I | = p drawn independently
from a Gaussian distribution.

consider. Since we have

ξ(x) =
∑

I:|I|=p

aIϕI(x) (14)

for hypercubes this amounts to specifying a distribution of the coefficients aI .

From a physics point of view it is most natural to assume that aI are independent
identically distributed Gaussian random variables. In this case equ.(14) defines Der-
rida’s p-spin models [20, 21] which form an important and well-studied class of spin
glasses which also play an important role in the theory of fitness landscapes [57].

If we use the hyperplane arrangement described above we might be interested in the
volume of the cells that correspond to a given number of nodal domains. Computing
this volume is very hard to compute, but it can be done approximately using Monte
Carlo integration (see e.g. [31]). For this purpose the coefficent vectors are sampled
from a uniform distribution on the corresponding sphere.

Fortunately these two pictures are equivalent. Normalizing random vectors that follow
a multivariate Gaussian law (as in the first approach) gives uniformly distributed
points on the sphere (see e.g. [22]).
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Figure 3. Average number of nodal domains for the eigenvectors of the hypercubes with
n = 2 to 15 as a function of p. The l.h.s. panel gives an overview of the numerical survey.
Black squares denote (n, p)-pairs for which all of the 1000 randomly generated instances had
exactly 2 nodal domains, � denotes the 2n nodal domains for p = n and the gray boxes
scale denote average numbers of strong nodal domains in the ranges 2−3, 3−10, and larger
10.
The r.h.s. panel displays the k-th largest eigenvectors as a function of n. Note that the
largest eigenvalue is unique and has the maximally possible number of |V | = 2n strong
nodal domains.

6. The Minimal Number of Nodal Domains

In the case of weak nodal domains the situation is remarkably simple as the following
result shows:

Theorem 3. For all 1 ≤ p ≤ n−1 there is an eigenvector φ of the Boolean Hypercube
with eigenvalue λ = 2p such that WND(φ) = 2.

Proof. We will proceed by induction. The hypercube K2
2 is a cycle with four vertices.

It is straightforward to check that φ
(2)
1 = (0, 1, 0,−1) is an eigenvector with eigenvalue

λ = 2 and WND(φ
(2)
1 ) = 2.

We construct eigenvectors of Kn
2 recursively, for n ≥ 3:

φ(n+1)
p =

(
1

1

)
⊗ φ(n)

p =
(
φ(n)

p

)+
for p ≤ n− 1

φ(n+1)
n =

(
1

−1

)
⊗ φ

(n)
n−1 =

(
φ

(n)
n−1

)−
(15)

where we use the notation of Lemma 1. Recall from the discussion in section 4 that
φ

(n+1)
p is an eigenvector of Kn+1

2 with eigenvalue 2p. By Lemma 1 we find for p ≤ n,

WND(φ
(n+1)
p ) = WND(φ

(n)
p ) = 2, where the second equality holds by assumption of

induction.
Now consider φ

(n)
n−1. Assume by induction that WND(φ

(n)
n−1) = 2. For an arbitrary

vector f we write V0(f), V+(f) and V−(f) for the sets of vertices x where f(x) = 0,

f(x) > 0, and f(x) < 0, respectively. Let V +
0 be a copy of V0(φ

(n)
n−1) in Kn+1

2 with
coordinate xn+1 = +1 while V −

0 is the copy with xn+1 = −1. The sets V +
+ , V −

+ ,
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+

+

+

+

+

+

+

+

Figure 4. The sign pattern of the eigenvector θ4.

V +
− , and V −

− are defined analogously. We have V0(φ
(n+1)
n ) = V +

0 ∪ V −
0 , V+(φ

(n+1)
n ) =

V +
+ ∪ V −

− and V−(φ
(n+1)
n ) = V +

− ∪ V −
+ .

By induction hypothesis V+(φ
(n)
n−1)∪V0(φ

(n)
n−1) and V−(φ

(n)
n−1)∪V0(φ

(n)
n−1) are connected,

thus the sets V +
+ ∪ V +

0 , V +
− ∪ V +

0 , V −
+ ∪ V −

0 , and V −
− ∪ V −

0 are also connected. For
each vertex in V +

0 there is a neighboring vertex in V −
0 and vice versa, hence

V+(φ(n+1)
n ) ∪ V0(φ

(n+1)
n ) = V +

+ ∪ V +
0 ∪ V −

0 ∪ V −
−

V−(φ(n+1)
n ) ∪ V0(φ

(n+1)
n ) = V +

− ∪ V +
0 ∪ V −

0 ∪ V −
+

(16)

are connected sets, i.e., WND(φ
(n+1)
n ) = 2. �

The eigenvector to the highest eigenvalue (which is simple) always has N nodal do-
mains (see Thm. 2).

For strong nodal domain theorems the situtation is much more complicated (see
Tab. 2). We can obtain at least a partial result.

Theorem 4. For all 1 ≤ p ≤ n/2 there is an eigenvector φ of the Boolean Hypercube
with eigenvalue λ = 2p such that SND(φ) = 2.

Proof. We will recursively construct eigenvectors θn for even n with eigenvalue n and
SND(θn) = 2.

Suppose ξ(x) ∈ {−1, 1} for all x ∈ V and
∑

x∈V ξ(x) = 0, i.e., half of the vertices
have value +1, the others −1. Such a vector ξ is an eigenvector of the Laplacian with
eigenvalue n if and only if for each vertex x ∈ V half of its neighbors y ∈ ∂{x} have
ξ(y) = +1 and the other half satisfies ξ(y) = +1. Figure 4 shows that such a vector
θ4 exists on K4

2 .

The following notation will be convenient. A sign pattern X is a map V → {+,−}
that assign a sign to each vertex of the hypercube. Given two sign-patterns X and Y
on Kn

2 we obtain the sign pattern X |Y on Kn+1
2 = Kn

2 �K2 by labeling the vertices
(x,+1) according to X and the vertices (x,+1) according to Y, see Fig. 4. We write
−X for the pattern with reversed signs.
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H5

1H

H6

H2 H3 H4

H8H7

Figure 5. The sign pattern on Kn+2

2 is built up from the sign sign patterns X and Y on

two copies Kn−1

2 that together form a Kn
2 . The negative patterns −X and −Y are shown

with black and white exchanged.

Let us call a sign pattern Z on Kn
2 admissible if:

(i) There is a product decomposition Kn
2 = Kn−1

2 �K2 with sign patterns X and
Y on each of the two copies of Kn−1

2 that have half of their vertices labeled
+;

(ii) The subgraph Γn
+ of Kn

2 induced by +labeled vertices of X |Y is n/2-regular.
Of course the same holds for the subgraph Γn

− induced by +labeled vertices.

Fig. 4 shows that the sign pattern of θ4 is admissible.

From (X |Y) we construct the sign pattern

X ∗|Y∗ =
(
(X |Y)

∣∣(Y|X )
) ∣∣∣∣

(
(−Y| − X )

∣∣(−X| − Y)
)

(17)

on Kn+2
2 , which is composed of eight copies of Kn−1

2 labelled H1 through H8 as
in Fig. 5. Each of the four copies Kn

2 labeled H1H2, H3H4, H5H6, and H7H8 has
either the sign pattern X |Y or the sign pattern −X| − Y and hence is admissible.
Furthermore both (X |Y)|(Y|X ) and (−Y|−X )|(−X|−Y) have half of their vertices
labeled +.

Now fix an arbitrary vertex v of H1 and consider its neighbors v′ and v′′ in H3 and
H5, respectively. These neighbors are of course uniquely defined. Since H3 has sign
pattern Y while H5 has sign pattern −Y we conclude that v′ and v′′ must have the
opposite sign, and hence v has n/2 + 1 = (n + 2)/2 positive neighbors. The same
argument can be made for any vertex in each of the n− 1 dimensional cubes. Thus
the subgraph Γn+2

+ of Kn+2
2 induced by the +labeled vertices is (n + 2)/2-regular.

Therefore X ∗|Y∗ is an admissible sign pattern on Kn+2
2 and the corresponding vector

θn+2 is a Laplacian eigenvector with eigenvalue n + 2.

Next we show that Γn+2
+ and Γn+2

− are connected. Again we proceed by induction. The
sign pattern of θ4 in Fig. 4 is such that there are edges with all four sign combinations
++, +−, −+, and −− between the two copies of K3

2 with the sign patterns X and
Y, i.e., Γ4

+ and Γ4
− are connected.

Now assume that edges with all sign combinations between X and Y on Kn
2 . Then

edges with all sign combinations exist also between X and −Y on, say, the cube
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Table 2. Upper and Lower Bounds on the number of nodal domains as functions of n and
p found by numerical experiments.

p = 1 2 3 4 5 6 7 8 9 10 11 12 13 14
n Upper Bounds on Minimal Number of Strong Nodal Domain
2 2 4
3 2 3 8
4 2 2 4 16
5 2 2 2 8 32
6 2 2 2 2 14 64
7 2 2 2 2 2 24 128
8 2 2 2 2 2 2 44 256
9 2 2 2 2 2 2 2 84 512

10 2 2 2 2 2 2 2 2 160 1024
11 2 2 2 2 2 2 2 2 2 314 2048
12 2 2 2 2 2 2 2 2 2 2 620 4096
13 2 1280 8192
14 2 2446 16384

n Lower Bounds on Maximal Number of Weak Nodal Domain†

2 2 4
3 2 4 8
4 2 4 8 16
5 2 4 10 16 32
6 2 4 8 18 32 64
7 2 4 4 15 34 64 128
8 2 2 12 57 128 256
9 2 72 261 512

† Numbers in bold are bounds that are better then Corollary 3. Entries in italics

are numerical value that are known to be underestimates because of Lemma 1.

(H1, H3) and between −X and Y on (H5, H7). It follows that Γn+2
+ and Γn+2

− are
connected, and we see that SND(θn+2) = 2.

Finally we construct for each p ≤ n/2 the vector

φ(n)
p =

{
θn if p = n/2(
1
1

)
⊗ φ

(n−1)
p if p < n/2

(18)

We know that φ
(n)
p is an eigenvector with eigenvalue p by construction. Furthermore,

Lemma 1 implies that SND(φ
(n)
p ) = SND(φ

(n−1)
p ) = · · · = SND(φ

(2p)
p ) = SND(θ2p) =

2. �

Remark. In general, if we find a partition (A,B) of Kn
2 = (A,B) with |A| = |B|

such that the induced subgraphs G[A] and G[B] are connected and k-regular, then
the eigenvalue λ = 2(n − k) has an eigenvector ψ with SND(ψ) = 2. This can be
constructed by setting ψ(x) = 1 for x ∈ A and ψ(x) = −1 for x ∈ B. In the proof
of Theorem 4 we have found such a partition for k = n/2. Whether such a partition
exists for 3 ≤ k < n/2 is an open problem.
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From an extensive numerical survey we conclude that probably a much stronger result
than Theorem 4 holds:

Conjecture 1. For all 1 ≤ p ≤ n − 2 there is an eigenvector ψ of the Boolean
Hypercube with eigenvalue λ = 2p such that SND(ψ) = 2.

For the second largest eigenvalue we can find a lower bound:

Theorem 5. For every eigenvector ψ of the Hypercube Kn
2 , n ≥ 3, with eigenvalue

λ = 2(n− 1) we have SND(ψ) ≥ n.

Proof. In order to prove this theorem we first need the following technical result:

Lemma 2. Let ϑ be a Laplacian eigenvector to the eigenvalue 2(n− 1) that satisfies
ϑ(x) 6= 0 for all x ∈ V and that has positive coefficients aI ≥ 0 for all I with |I| = n−1

in its Walsh expansion equ.(14) and define ϑ̂(x) = ϑ(x)ϕ{1,...,n}(x) = ϑ(x)
n∏

i=1

xi.

Then:

(1) ϑ̂(x) =
∑

I,|I|=n−1 xiIaI , where iI is the unique coordinate not contained in I.

(2) ϑ̂ is monotonically decreasing on every path of length n from 1 = (1, . . . , 1) to
−1 = (−1, . . . ,−1).

(3) For every path of length n from 1 to −1 there is exactly one edge where ϑ does
not change sign.

Remark. ϑ̂(x) is an eigenvector to eigenvalue 2.

Proof of the Lemma. (1) From the definition we obtain

ϑ̂(x) = ϑ(x)
n∏

j=1

xj =
∑

I,|I|=n−1

aI ϕI(x)
n∏

j=1

xj =
∑

I,|I|=n−1

aI

∏

k∈I

xk

n∏

j=1

xj

=
∑

I,|I|=n−1

aI xiI

n∏

k=1

xk

n∏

j=1

xj =
∑

I,|I|=n−1

xiI aI .

(2) On any path from 1 to −1 the number of negative coordinates of x is strictly
increasing. The result follows since ak ≥ 0 by assumption.

(3) By (2) there is exactly one edge e in every such path where ϑ̂ changes sign. Since∏n

j=1 xj has alternating signs on every path, the sign of ϑ(x) = ϑ̂(x)
∏n

j=1 xj changes
except along the edge e. �

First assume that ψ does not vanish on any vertex. Then using Lemma 2 it is easy to
show that for every path of length n from the absolute maximum of ψ to its antipodal
point, ψ changes sign exactly (n − 1) times. Since every such path is isometric in
Kn

2 , vertices of the same sign that are not adjacent in this path cannot belong to the
same nodal domain. Thus such a path intersects exactly n (different) nodal domains
and the proposition follows.
If ψ(x) = 0 for some vertex x ∈ V then we can use the same idea as in the proof of
Lemma 2. However we find on this path (at most) one vertex x where ψ vanishes.
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Now on each edge of this path ψ either changes sign or joins x with a vertex of positive
of negative sign. Again the result follows. �

Our experiments show that this bound is not sharp, see Table 2.

7. The Maximal Number of Nodal Domains

Much less can be said on the maximal number of nodal domains a function of p. It
follows from Lemma 1 that the maximum number of strong nodal domains (listed
in the lower part of Table 2) must be non-decreasing with n for fixed p. As trivial
consequence of Theorem 2 we have therefore

Corollary 3. The eigenvalue 2p has an associated eigenvector ξ with at least
SND(ξ) ≥ WND(ξ) ≥ 2p nodal domains for all n ≥ p.

For reasons that we do not fully understand maximizing the number of nodal domains
on a given eigenspace seems to be much harder than minimizing.

8. Open Questions

We suspect that the bounds in Tab. 2 for the minimum number of strong nodal
domains for the 2nd largest eigenvalue are sharp at least for n ≤ 10. However, the
sequence 2, 3, 4, 8, 14, 24, 44, 84, 160, . . . does not appear to be a known integer
sequence.

A direct computational approach for the maximum number of strong nodal domains
fails because we would have to compute all cells of dimension 0; this is not only
numerically difficult but the number of 0-cells is also too large. A completely different
approach is therefore required.

The difference in difficulty between minimizing and maximizing the number of nodal
domains deserves an explanation.

It would be interesting to know whether the lower bound WND(ψ) = 2 for almost all
eigenvectors is sharp for e.g. for all expander graphs.
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[6] T. Bıyıkoğlu. Discrete nodal domain theorems for trees. Lin. Alg. Appl., 2002. in press.
[7] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler. Oriented Matroids.

Cambridge Univ. Press, Cambridge, UK, 1993.
[8] S. Brandt and T. Pisanski. Another infinite sequence of dense triangle-free graphs. Electron. J.

Comb., 5:633–637 [R43, 5 p.], 1998.
[9] A. Chan and C. D. Godsil. Symmetry and eigenvectors. In G. Hahn and G. Sabidussi, edi-

tors, Graph Symmetry, volume 497 of NATO ASI Series, Serie C: Mathematical and Physical

Sciences, pages 75–106. Kluwer Academic Publishers, 1997.
[10] I. Chavel. Eigenvalues in Riemannian Geometry. Academic Press, Orlando Fl., 1984.
[11] S.-Y. Cheng. Eigenfunctions and nodal sets. Comment. Math. Helvetici, 51:43–55, 1976.
[12] F. R. K. Chung. Spectral Graph Theory, volume 92 of CBMS. American Mathematical Society,

1997.
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