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Abstract

RNA folding gives rise to the simplest known genotype-phenotype mapping.
Based on this mapping the simulation of evolutionary processes in flow reactors
provides insights into the mechanisms of replication, mutation, and selection
in the huge space of possible RNA sequences. Evolution in the flow reactor is
relatively easy to implement in silico. Based on an algorithm due to Daniel
Gillespie a computational flow reactor class library and analysis package was
conceived, developed, and implemented during this thesis. Using these pro-
grams the evolutionary consequences of replication-mutation dynamics based
on RNA sequences have been studied.

In silico evolution in the flow reactor shows pronounced punctuation. Rel-
atively short adaptive phases are interrupted by long epochs of phenotypic
stasis. Similar to experimental data the speed of spreading in shape space
and sequence space during evolutionary optimization is opposite: Genotypic
evolution is faster during quasi-stationary epochs, whereas it slows down in
the adaptive phases. The graphical representation using principal components
analysis shows the formation of distinct clusters. According to a cluster anal-
ysis (subgraph clustering) they have no sequence exchange with other clusters.

Relay series are a form of backtracking of the relevant shapes from the
target structure to a structure of the initial population. With a low mutation
rate of p = 0.001, rare events of major structural changes (discontinuous tran-
sitions) can be observed as well as many continuous transitions in the neigh-
bourhood of the dominating neutral networks. The number of discontinuous
transitions in such a relay series stays astonishingly constant with different
population sizes while the number of continuous transitions varies. Modeled
by means of a linear birth-and-death process larger populations allow an un-
interrupted existence of relevant shapes. In small populations, however, they
die out and have to be recreated again.

The performance of serial transfer experiments in comparison to continuous
flow reactors was examined as well: Especially with a high reduction step

and a high maximal population size the serial transfer experiments perform



significantly worse than flow reactors.

At high mutation rates up to the error threshold the share of sequences with
maximal fitness is independent of the population size, whereas the number of
replications to reach the target shape is higher on average in larger flow reactor
populations.

An exact way to explore the succession of RNA sequences in an evolutionary
simulation is the lineage series. Comparing relay and lineage series on the level
of shapes reveals a remarkable difference between the two successions: Both
series coincide during discontinuous transitions whereas they follow different

paths in the continuous case.



Zusammenfassung

RNA Faltung ermdoglicht die einfachste relevante Genotyp-Phénotyp Abbil-
dung die wir kennen. Basierend auf dieser Abbildung erméglicht die Simulation
von evolutionéren Prozessen Einsichten in die Mechanismen von Replikation,
Mutation und Selektion im riesigen Raum von moglichen RNA-Sequenzen.
Evolution in Fluflreaktoren ist relativ leicht in silico zu implementieren.

Mit Hilfe eines Algorithmus von Daniel Gillespie wurde wéhrend dieser Ar-
beit eine Flufireaktor-Klassen-Bibliothek und ein Analysepaket entwickelt und
implementiert. Mit Hilfe dieser Programme wurden die evolutionidren Konse-
quenzen von Replication-Mutations-Dynamik basierend auf RNA-Sequenzen
studiert.

In silico Evolution im Flufireaktor hat auffillige Merkmale: Relativ kurze
adaptive Phasen werden von langen Abschnitten von phanotypischer Stasis
unterbrochen. Ahnlich zu experimentellen Daten ist die Geschwindigkeit der
Ausbreitung im Sequenz- bzw. Strukturraum wéhrend dieser evolutionéren
Simulation unterschiedlich: Wihrend phénotypischer Stasis ist die Bewegung
von Genotypen erhéht, hingegen sind grofle Strukturéinderungen von relativ
kleinen RNA-Sequenzveranderungen begleitet. Die grafische Darstellung mit
Hilfe der Prinzipal-Komponenten-Analyse zeigt die Bildung von getrennten
Clustern. Eine Cluster-Anaylse (Subgraph Clusterung) zeigt, daf§ kein Se-
quenzaustausch mit anderen Clustern passiert.

Die relay series sind eine Art Riickwanderung der relevanten Struktu-
ren von der Zielstruktur zu einer Struktur der Anfangspopulation. Bei einer
niedrigen Mutationsrate von p = 0.001 kénnen sowohl seltene, grofie Struk-
turinderungen (diskontinuierliche Uberginge) als auch hiufige, kontinuierli-
che Ubergiinge in der Nachbarschaft der dominierenden neutralen Netze be-
obachtet werden. Die Anzahl der diskontinuierlichen Uberginge in einer sol-
chen relay series bleibt bei unterschiedlicher Populationsgrofie erstaunlich kon-
stant, wihrend die Anzahl an kontinuierlichen Uberginge stark variiert. Mit-
hilfe eines linearen Geburts-und-Todes-Prozesses wurde gezeigt, dafl groflere

Populationen die ununterbrochene Existenz von relevanten Strukturen erlau-



ben, wihrend in kleinen Populationen diese immer wieder neu gebildet werden
miissen.

Des weiteren wurde die Leistung von Seriell-Transfer Experimenten im Ver-
gleich zu kontinuierlichen Flufireaktoren ermittelt: Die Seriell-Transfer Expe-
rimente mit grofem Reduktionsschritt und mit grofler maximaler Populations-
grofle leisten signifikant weniger als Flufireaktoren.

Mit einer hohen Mutationsrate bis zur sog. Fehlerschwelle ist der Anteil
an Sequenzen mit maximaler Fitnel unabhingig von der Populationsgréfie,
hingegen ist die Anzahl an Replikationen um die Zielstruktur zu finden in
groflen Reaktoren im Durchschnitt héher.

Eine exakte Methode um die Vererbungsabfolge von RNA-Sequenzen in
einer Evolutionssimulation zu ermitteln ist die sog. Abstammungsserie (/-
neage series). Wenn man relay series und Abstammungsserie auf der Ebene
der Strukturen vergleicht gibt es bemerkenswerte Unterschiede: Beide stim-
men withrend diskontinuierlicher Ubergiinge iiberein, hingegen folgen sie im

kontinuierlichen Fall unterschiedlichen Pfaden.



Contents

1 Introduction

1.1
1.2
1.3
14
1.5
1.6
1.7

Serial Transfer Experiments and Flow Reactors . . . .. .. ..

Molecular Evolution . . . . . . . . . . . ... .. ...

The Flow Reactor in silico . . . . . . . . . . . . . .. .. ....

Genetic Algorithms . . . . . . .. .. ... oL
RNA and Secondary Structure Prediction . .. ... ... ...

Shape Space . . . . . . . . . ..o
Organisation of This Work . . . . . . .. ... .. ... ... ..

Flow Reactor Class Library and Application

2.1 Main Components . . . . . . .. ... ... ...
2.2 AnalysisT . .. ... ... ...
23 AnalysisII. . . ... ... ..

3.1
3.2
3.3
3.4

3.5

Numerical Results

In Silico Flow Reactors . . . . . . . . . . . . . . . .. .. ....

Statistics on Evolutionary Trajectories . . . . . . .. ... ...

Replications and Replication Time Distribution Statistics . . . .

Stochastic Dynamic of Neutral Evolution . . . . . . . ... ...

3.4.1
3.4.2
3.4.3
3.4.4

Transition Probability . . . . ... ... ... .. ...
A Birth-and-Death Model . . . . . . . .. ... ... ..
Continuous Transitions . . . . . . . . . . . . . ... ...

Discontinuous Transitions . . . . . . . . . . . . . . ...

Survival Probabilities of New Structures . . . . . . . . . . . ..

11
13
15
16
17
21

23
23
26
27



CONTENTS

3.6 Serial Transfer Experiment vs. Flow Reactor . . . . . . ... ..
3.7 'The Phenotypic Error Threshold . . . .. ... ... ... ...
3.8 A Lineage Sample Run . . . . .. .. ... ... ... ... ..
3.9 Comparison of Relay Series and Lineage . . .. .. ... .. ..
3.10 Movement and Spreading in Sequence Space and Shape Space

3.11 Principal Components Analysis . . . .. ... ... ... .. ..
3.12 Cluster Analysis . . . . . . . . .. . ...

4 A Comprehensive Model of Evolution

5 Conclusions and Outlook

o4
60
62
66
68
72
73

80

83



Nomenclature

dh

%

ds

v

Nset

in silico
in vitro
mfe
RNA
sequence

TSP

sequence lenght
Hamming distance between RNA sequence strings ¢ and j

Hamming distance between RNA secondary structure ¢ and

j in parenthesis notation

given average population size of a flow reactor run
computer memory for a simulation of a natural process
an artificial environment for natural processes
minimum free energy

ribonucleic acid

RNA sequence type with a distinct order of nucleotids

traveling salesman problem



1 Introduction

In this chapter we describe first in section 1.1 the principles of serial transfer
experiments and flow reactors. Then two important experiments of in vitro
evolution are presented and analyzed. The next section 1.2 deals with a two
stage assignment of fitness to genotypes. The evolution of populations, based
on chemical kinetics is the topic of the following section. After a short sum-
mary about prediction of RNA secondary structure the generic properties of
folding are described. We continue by discussing the relay series which is the
succession of secondary structures generating each other and eventually end

by a definition of nearness in shape space.

1.1 Serial Transfer Experiments and Flow Reactors

If microbial in vitro experiments are carried out in a batch reactor, the incu-
bated cells consume the available nutrients after some time. Due to lack of
energy (or production of toxins) the reactor population decelerates metabolism
and eventually dies out. The culture may be kept in a growth phase by applica-
tion of two different strategies. (i) In serial transfer experiments, a subsample
of the culture is repeatedly transferred to fresh stock solution. (ii) In a flow
reactor fresh stock solution is added continuously and allow an equal volume
of culture to drain from the vessel to achieve chemostatic or turbidostatic
conditions.

Q0 is a bacteriophage, whose 4 200 nucleotides code for 4 different proteins.
One of these proteins is a subunit of a highly specific replicase with an error
rate of 3 x 107, In the late 1960s Sol Spiegelman and coworkers purified this
replicase to accomplish an epoch making experiment, simulating molecular
evolution in a serial transfer experiment.

In a stock solution containing RNA replicase and activated nucleotide mo-
nomers (ATP, UTP, GTP and CTP) Spiegelman and coworkers incubated
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Figure 1.1: Evolution during a serial transfer experiment.

RNA from @3, as a template, which is optimized to fulfil its function as an
RNA virus genome. Since this reproduction system, in comparison to others, is
not very accurate, in the following RNA replication many mutants are created.
After the nucleotide monomers are consumed, a small sample of the reaction
mixture is transferred to fresh stock solution (dilution 1:12.5). This procedure
is repeated some fifty to hundred times. During every serial transfer step the
RNA molecules with highest replication rates use up the nucleotides first, while
the slower ones in average get little chance to reproduce itself. Therefore the
fastest replicators are amplified preferentially in the test tube, become selected
with high probability by the next transfer step and inherit their properties to
the forthcoming generations. The mutants of the original RNA are inferior
replicators and therefore lower the overall replication rate first. This is due to
the large scale deletions that occur during the initial phase. But after some
time, faster replicators are found increasing RNA synthesis rate by more than
one order of magnitude [49]. These RNAs are not infective anymore but they
are optimized for fast replication.

Another serial transfer experiment was carried out by Richard Lenski and
coworkers [11,31,36]. Bacteria populations of 5 x 10® cells where diluted 1:100
by fresh medium every day for about three years. An average generation

time of 2.6 hours results in about 10000 generations. During the initial 2 000
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Figure 1.2: Increasing replication rate of evolving RNA molecules in a serial trans-
fer experiment. Radioactive GTP is incorporated into newly synthesized RNA to

measure the production [33].

generations the growth rate increased by about 50%. This fitness increase
occurs in steps and not continuously. After this adaptive period the curve
settles on a plateau at about 1.5 times of the initial fitness. The phenotypic
evolution in terms of cell size or fitness was compared to genotypic changes
[36]. Unlike phenotypic evolution, which is fast during the initial period, the
genotypic evolution speeds up in the later saturation phase. Selection reduces
diversity, neutral evolution increases it. These two counteracting tendencies

are explored in section 3.10

1.2 Molecular Evolution

Molecular evolution in silico is built to follow Darwin’s principles of varia-
tion and selection. Variation is a result of erroneous replication. Molecules
are reproduced through copying of the ancestral molecules and inherit their

sequence. Because of selection, fitter variants have a higher probability to
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survive and to spread their genotypes to their descendants. Fitness values are
assigned to genotypes in two steps. The first step is the mapping of genotypes
to phenotypes. The genotype space Z has a natural metric with the Hamming
distance difj‘- between the sequences ¢ and j [22]. It specifies the number of
positions at which this two sequences differ. The phenotype space S can also
be assumed as a metric space by defining a distance measure d;, the Ham-
ming distance of shapes in parenthesis notation. We use it even though such
a simple measure is far less natural, because this annotation of distance does
not reflect the accessibility through Darwinian evolution, which is based on
mutations on sequence level.

v AT di} = {S;d]

g g

This mapping can not be expressed in analytical terms. At best there exists
an algorithm, that assigns a phenotype Sy to every genotype I;. This can also
be modelled by random graphs.

The second mapping evaluates phenotypes and returns a fitness value out
of the non negative real numbers. This can be a function of a distance measure
to a given target shape or any other property of the structure like the minimum

free energy, the deviation of suboptimal shapes or the kinetic folding properties.

f:{S;d3} = R

ij
The optimization process of molecular evolution is successful even without
full knowledge of the target’s properties. A fitness value assigned to every
sequence leads the path to the target structure if a fitness increase is possible
with usual mutations.
In summary a fitness value of a genotype can be calculated by the phenotype-

genotype mapping and the fitness function, the assignment of a function of a
distance value to the phenotype: fr = f(Sk) = f(¥(Ik))
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1.3 The Flow Reactor in silico

A computer simulation of molecular evolution has several advantages: (i) It
gives us the ability to follow every single molecule from the beginning to the
end of its existence and (ii) to record all interactions with other items. (iii) All
parameters can be easily controlled and (iv) what usually happens in decades
can be shortened to hours or days. On the other hand most evolutionary
simulations are far from reality: It is not yet possible (i) to model all crucial
three-dimensional interactions on molecular level, (ii) to supply with enough
(random access) memory to hold a realistic population size, and (iii) to provide
the necessary computer power. But simplifications to the essential factors can
lead to valuable results. RNA folding gives rise to the simplest currently
known genotype-phenotype mapping. Since it is possible to predict the RNA
secondary structure, it is an ideal model for simulating molecular evolution.

An application of chemical reaction kinetics to molecular evolution is the
quasispecies theory conceived by Manfred Eigen [5], which has been extended
and further developed [7-10,47]. His approach was to derive the mechanism
by which biological information is created. Populations of RNA or DNA se-
quences migrate through sequence space and gain information by variation
and selection. These populations are metastable but have a structured distri-
bution around a master sequence. They optimize mean fitness by exploring
new environments and create biological information laid down in genotypes. A
stochastic process can have (i) a predefined target, which forms an absorbing
barrier and sets an end point or (ii) an open end without a given target or
time limit.

The replication-mutation system consists of n x n different processes of
RNA synthesis and n degradation reactions. In the mutation matrix Q) =
{Qij;4,7 = 1,...,n} identical indices denote error free replication, while dif-
ferent indices stand for mutations. The uniform error rate model, which is
assumed in this work, implies that the probability of a mutation is indepen-
dent of the nature of the base exchange. Further only point mutations are

possible, while inserts, deletions, inversions, translocations, or crossing-overs
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are restricted. Nevertheless any sequence, which is part of the sequence space
can in principle be created from any RNA molecule in the reactor. The repli-
cation accuracy per base ¢ and the derived mutation rate p = 1 — ¢ defines
the frequency Qy; of a (erroneous) replication of a polynucleotide chain with

length ¢ with a Hamming distance dgj between the template and the produced

au= (29" c0-p ()"
k=949 \ —— =Ll=Dp Pa—
! q 1—p

Every sequence I, of the population with a frequency z; has a fitness value

sequence:

f; which is tantamount to its production rate constant.
The excess production rate of a reactor population ®(¢) = f(t) = > iy fiz(t)
is the average fitness of the reactor population. This leads us to the replication-

mutation differential equation:

dzy
dt

=

= T (Qkkfk(t) — @(t)) + zn: Qk]’fj(t) Zj, k= 1,. ..

=1,k
The production of copies and mutants from the actual population is equal

to the excess production leading to constant population size 2?21 dz;/dt = 0.

€A+Ik — QI]C
oAy PARE g
)/ R0

The inflow and outflow of monomers A is regulated by the current flowrate
r(t) = ®(t), which buffers the support of the reactor with low molecular weight

building material.
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From the template I, and ¢ monomers an error free copy is reproduced
dependent on the frequency @i; and the fitness values f,. From another
template I; also a copy of Ij is produced. This is dependent of the template’s
fitness value f; and the (usually much smaller) frequency Qy;.

Excess templates I, are removed from the reactor with the current flow
rate 7(t).

A detailed description of the Gillespie algorithm [18,19] used in this work

can be found in section 3.1

1.4 Genetic Algorithms

A genetic algorithm (GA) is an optimization procedure based on the Darwinian
principle of survival of the fittest. A set of possible solutions for a given problem
is encoded in memory units and processed in a computer program. FEach
solution needs a computed fitness value or another measurement for fitness.
Based on its fitness, the items are stochastically selected and replicated. This
can be a recombination of 2 items, an insertion, deletion, or a point-mutation
of the encoded memory chunks [30]. The possible changes of the items are
called the moveset and are important for the success of a GA. Within this
moveset the concept of neighbourhood is generated. Crucial properties of the
solutions have to be preserved but increase of fitness must be possible between
neighbours.

The traveling salesman problem (TSP) for example, where a man has to
visit n cities exactly once and then return to the starting point. His goal is to
find the shortest route through all n cities. The computer memory representa-
tion for one solution can be an vector of integers, where every city is encoded
with a number. The fitness evaluation sums the distances between consecutive
cities in the vector. One easy moveset might be the exchange of two randomly
chosen cities. Under a few hundred vectors, each representing a path through
the cities, one solution of the TSP is selected for replication, based on the rela-
tive fitness, iterately. A few of them will be templates for fitter items bringing

the best solution in the population closer to the global optimum. To keep the
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size of the population constant, a randomly chosen solution is removed after
every replication.

Genetic algorithms are used for problems with a huge space of possible
solutions, that can never be fully calculated. It is based on the assumption,
that better solutions can be found in the neighbourhood of good ones.

In the mid-1970 John Holland first presented the concept of genetic algo-
rithms in his pioneering book [26]. Because of the probabilistic selection, the
best individual is not necessarily selected for replication and the worst one can
still remain in the population. But nevertheless better solutions are favoured
in general. This gives GAs an advantage against pure hill climbing methods
which often fail with nontrivial problems, because a found, local maximum
causes the algorithm to terminate [39].

The procedure of finding fitter items in a genetic algorithm can be very
different. All selected items can be replicated to form the next generation,
while the rejected solutions are discarded. Another way is to take a portion of
a population for several steps of replication until a certain number of items are
created followed by another reduction step (serial transfer). The population
size can also be controlled dependent on the given average population size by
increasing or reducing the probability of replication or outflow, respectively.
In tournament selection groups of two or more individuals are formed. The
best item out of each of these groups is taken for replication while the others

are removed.

1.5 RNA and Secondary Structure Prediction

In difference to DNA, the major portion of RNA is single stranded. Intramolec-
ular back-folding forms nucleotide pairs between adenine-uracil, guanine-cyto-
sine (Watson-Crick pairs), or guanine-uracil (wobble base pairs). The sec-
ondary structure of RNA molecules is a simplification of its three dimensional
shape. With the restriction not to form pseudo knots, only base pairs are
indicated, while other intra-molecular interactions are overlooked. It can be

displayed as a series of parenthesis and dots, where the corresponding parenthe-
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sis show the position of base pairs in the sequence. The secondary structure
of an RNA sequence covers the major share of the free energy of the ter-
tiary structure formation and can be predicted using folding algorithms based
on thermodynamic data [25,28,57]. Beside the minimum free energy (mfe)
structure, which is formed after sufficiently long time and adequate low tem-
perature, the Boltzmann weighted suboptimal confirmations in the sense of a
partition function can be calculated [55]. Another approach is kinetic folding,
which considers available folding time and the RNA transcription from 5’ to
3’-end [12].

1.6 Shape Space

There are four generic properties of folding, the prediction of the minimum
free energy (mfe) secondary structure of an RNA sequence [46].

(i) There are by far more sequences than structures. While the number
of sequences with chain length ¢ and a four letter alphabet (A, U, G, C) is
given by 4¢, the number of possible structures is limited. If you consider the
parenthesis-dot notation (see section 3.1) only a three letter alphabet is used.
More restrictive is the limitation not to consider pseudoknots. If the set P of
paired positions contains two base pairs (i,j) and (k,1) then 7 < k < j implies
1 < | < j. Into the bargain comes a minimal stack and loopsize which gives an

approximation for larger chains length:

Ns(f) =~ s(f) = 1.4848 x £ 3/%(1.84892)"

(ii) Some secondary structures are more frequent than others. In
the limit of long chains the fraction of such structures tend to zero, while in
the fraction of sequences folding into them tends to one [21]. A structure
is frequent or common, if it is formed by more sequences than average [43].
Although the number of frequent structures grows exponentially with increase
of chain length, it is getting a smaller share of all possible structures.

(iii) Neutral Networks are formed by sequences with the same mfe-

structure being connected by a single point mutation. Groups of these nearest
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neighbours, can form extended networks in sequence space. This allows struc-
ture neutral mutations, that can replace the whole primary sequence step by
step without changing the structure. This property can be found with frequent
structures only.

(iv) All common structures can be found in a small radius of any randomly
choosen sequence (shape space covering). For example for chain length 100
only 15 mutations are necessary to find every frequent structure [42,44].

For RNA sequence with equal chain length a natural metric is given by
the Hamming distance [22]. For structures the situation is far less clear. For
three dimensional shapes the root mean square deviation is used. For RNA
secondary structure the tree edit distance can be applied. But from an evolu-
tionary point of view this measures are artificial because there is no physical
process which modifies structure at this level of representation, but through
mutation of its underlying sequence. The underlying sequences of two highly
dissimilar structures can be almost identical or, on the other hand, similar
or equal structures can be based on very different sequences. On the set of
phenotypes we are concerned with a topology rather than a metric.

Consider the set S, of all sequences folding into a given structure .. The
sequences with Hamming distance 1 to S, are defined as B,, the 1-boundary
of a. The minimum free energy (mfe) structures X, of the sequences B, are
the 1-accessible structures of a. The notation for accessibility of a structure g
from a is f « o and X, = {B|f < a} can be defined.

Through inverse folding one can find a representative sample of S, [25].
A ranking of the commonness of structures of ¥, can be made based on two
principles. The neighbourhood frequency v(f, ) counts the share of sequences
of S,, in which boundary at least one copy of a structure 5 can be found, while
the frequency of occurrence 9(3, a)) counts also the share of occurrences in its

boundary. For both frequency measurement we define the set

V(o) = {8 € Xa | p(B, ) > €},

where p(8, ) can be v(5,a) or 9(3, ).

A given limit € defines the top ranking structures as the characteristic set
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Figure 1.3: A log/log plot of the rank ordered structures in the boundary of
tRNAPP®, 28% of the neighbours of 2199 sequences folding into the clover-leaf struc-
ture formed the same shape than their reference sequence and thus belong to the
neutral network. Curve a (right ordinate) shows the rank ordered frequency of occur-
rence ¥(f, ), while the neighbourhood frequency v(f, a) is plotted in curve b (left
ordinate). The dotted vertical line seperates the frequent structures in the boundary
of tRNAPh® (right) from the hardly reachable shapes on the left. This is typical for a
scaling according to Zipf’s law, which implies that the log(frequency)/log(rank)-plot
is a straight line [56].
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Figure 1.4: Continuous and discontinuous RNA transitions. Black and blue arrows
show continuous and discontinuous transitions, respectively. On top the loss and
formation of a base pair are both continuous transitions. The middle part sketches
a one-way continuous transformation. The loss of a constrained stack is continuous,
while the closing is discontinuous. On the bottom four different types of discontin-

uous transformation are shown, which are summarized as generalized shifts.
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of a. A shape [ is defined as near to « if 8 is an element of W (). Continuous
transitions are transitions to the characteristic set of a structure. This are
minor changes like opening or closing a base pair at one end of a stack, while
discontinuous transitions are major structural changes like a shift of a whole
base pair stack and affect structures which are not in the set ¥.(c).

The nearness of a to 8 needs not to be symetric. E.g. to open the closing
stem of a multiloop shape « is mostly possible with a single mutation and is a
continuous transition. But closing such a stem requires the unlikely coincidence
of matching base pairs between the participating bases and is a discontinuous
transition.

The relay series are a kind of relay-race on the level of structures. Starting
from the found target shape a backtracking to the inital structure is made.
First the shape v which gives rise to the target shape is explored. The former
step in the relay series is the shape which gives rise to . This procedure is
repeated until a shape of the inital population at the beginning of the flow
reactor run is reached.

In flow reactor simulations the evolution of the mfe-structure of an arbitrar-
ily chosen sequence to the given target shape occurs in fitness jumps. Longer
periods of almost constant fitness are interrupted by phases of fast fitness
gain. The quick fitness increase is called a major transition. The comparision
of the fitness plot and the relay series show that major transitions are usually

discontinuous.

1.7 Organisation of This Work

This work starts with a description of the programming class libraries for
flow reactor simulation and analysis, which was developed during this thesis
(chapter 2). In section 3.1 a description of the algorithm of the flow reactor
simulations used in this work can be found. Section 3.2 is a statistical summary
on evolutionary trajectories. In section 3.3 the distribution of the number of
replications and replication times in relation to population sizes are described.

Section 3.4 deals with the stochastic dynamics of neutral evolution. The sur-
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vival probability of a single sequence in a flow reactor is examined numerically
in section 3.5. A comparison of the performance of a flow reactor of this type to
serial transfer experiment is the topic in section 3.6. The error threshold and
its influence on population size is explained in section 3.7. With the flow reac-
tor simulation the lineage of the evolution in a flow reactor can also be traced,
which is described in section 3.8. A comparison of the lineage on the level of
structures with the relay series can be found in section 3.9. The movement
and the spreading of the reactor population in sequence space in comparison to
shape space during this evolutionary process show some similarities to recently
published in vitro experiments [36] (section 3.10). A graphical interpretation
of the movement in sequence space is the topic of section 3.11. The formation
and development of clusters during this evolutionary optimization process is
described in section 3.12. A comprehensive model of evolution is presented in

chapter 4. Finally in chapter 5 the results and future aspects are discussed.



2 Flow Reactor Class Library and
Application

2.1 Main Components

The Flow Reactor Class Library is a programming library for evolutionary
computation in simulated flow reactors. It is written in the programming
language C++ and is based on the Standard Template Library (STL), which
is part of the the ISO/ANSI 14882:1998(E) approved standardization of this
language [38,41].

The core part is the reactor class. It manages the sequence objects defined
in the sequence class, selects them for replication or outflow, advances the
internal clock and writes the log-files in order to analyse the reactor runs
in retrospect. Two different flow reactor algorithms are provided: (i) The
Gillespie algorithm [18,19] for continuous flow reactors is explained in section
3.1 while (ii) the serial transfer algorithm, which simulates a batch reactor is
described in section 3.6.

From the reactor class several classes are derived, which

reactor

rel ay reactor

batch reactor

insertdel etion reactor

protein reactor

crossover reactor

structure life reactor

start reactor

Figure 2.1: The hierarchy of the reactor class and its descendants.
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Sequence Phenot ype
— BonusSeq t RNASt ruct ur e
—— Struct Seq Pr ot Seq
I—‘ Eval Seq
L— nmRNASeq

Figure 2.2: The hierarchy of the sequence class as well as the phenotype class and

its descendants.

e log the production and extinction of phenotypes (relay reactor)

e contain simulated mRNA, which is translated into proteins and calculate
its fitness by similarity to another protein in terms of primary structure
or shape similarity (protein reactor)

e mutate its sequences by insertions and deletions (insert-deletion reactor)

e mutate its sequences by crossovers (crossover reactor)

e terminate after certain events (structure life reactor, start reactor)

e use the serial transfer algorithm (batch reactor)

The sequence class and its descendants, which are managed by the reactor
classes handle RNA sequences and calculate their fitness values, which can be
based on very different criteria: (i) As described in section 1.2 this can be a
function based on the mfe-structure, or (ii) the minimum free energy, (iii) the
free energy of the sequence, folded into a given shape, (iv) the similarity to
other proteins, after translation of the RNA into a protein sequence or any
other appropriate function. In many cases the library functions of the Vienna
RNA Package [25,52] are used.

In some cases the sequences, which represent the genotype are linked to
the phenotype class and its descendants. They represent phenotypic properties
like the translated protein sequence or the secondary structure of RNA. Their
properties are inquired by the sequence class for its fitness calculation. These
classes are also important for the creation of relay series and lineages of a

flow reactor run. They keep all structures in memory appearing during the



Chapter 2. Flow Reactor Class Library and Application 25
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Figure 2.3: The hierarchy of the mutate class and its descendants. Point muta-
tions, base pair aware point mutations, insertions, deletions, and recombinations are

possible with these classes.

RandonNG

m Random

PMVWLCG

Figure 2.4: The hierarchy of the random number generator class and its descen-
dants. The base class RandomNG is an abstract class, from which the Mersenne
Twister Random Number Generator (mtrandom) [32] and the Prime Modulus M
Multiplicative Linear Congruential Generator (PMMMLCG) [37] are derived.

flow reactor run to allow efficient searches for former appearances and to keep
consistent numbering of phenotypes.

The mutation classes (mutation, insdelmut, insdelpointmut, pointmut, point-
mutbpmatch) provide all kinds of mutation, like point mutations, insertions,
deletions, and special changes like base pair aware mutations. With a special
class written by Jorg Hackermiiller also recombinations are possible.

Finally the randomwell class is an envelope for the request to the pseudo
random number generator classes (randomNG, mtRandom and PMMMLCG),
which provide the application of two pseudo random number generator algo-

rithms, the Mersenne Twister Random Number Generator [32] and the Prime
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Modulus M Multiplicative Linear Congruential Generator [37].

The Flow Reactor Class Library allows users to execute evolutionary sim-
ulations and to easily reproduce the essential results presented here. Since
these programs are written in C++ it is easy to extend functionality without
changing or copying the current code. The main components, (i) the reactor
classes, the (ii) sequence and (iii) phenotype classes as well as the (iv) muta-
tion classes, cover the main functionality modules which are separated from
each other. If one day the computer capacity and algorithms are available to
calculate tertiary interactions of sequences within one second of time, classes
from sequence class and phenotype class can be derived without touching the
reactor or mutation functionality. For all results in this thesis only standard
1386 hardware and the linux operating system was used (the programs compile

on other commercially oriented operating systems also).

2.2 Analysis I
The logging of a flow reactor run is written in at least four file types:

e The columns of the monitor file (tst.mon) denote (i) the current time, (ii)
the number of sequence innovations, (iii) the number of replications, (iv)
the current capacity, (v) the id of the dominating sequence and (vi) its
current population size, (vii) the quotient of different sequences and the
population size (=sequence diversity), (viii) the average rate constant,
(ix) the average distance to the target shape and (x) an indicator if the

target shape is already present in the population (1..true, 0..false).

e The history file (tst.history) contains the creation time of every structure,
its parent shape number as well as the extinction time, Hamming distance

to the parent sequence and the parent shape frequency at the given time.

e The dumps of all sequences (tst0, tstl, ..., tstn) and its ID, fitness and

population size is usually written every 5 time units.
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e At the end of every run a file of all structures (phenotypes) and its IDs

is created.

For the analysis several Perl scripts [51] were created, which give scientists
the ability to explore details of the flow reactor runs:

A script for the creation of the relay series [15,16,45] is provided (relay.pl),
which reads (i) the history file and (ii) the file of all structures (phenotypes).
Its output is a summary file (traj.dat), which shows among other things (i) the
transition time ¢;,4,,5 of structures in the relay series, (ii) the Hamming distance
of the sequences whose shapes made the transition, (iii) the population size of
the ancestor shape at ty.4,s and (iv) the shape itself in parenthesis notation.
Further a list of life spans of all structures involved in the relay series (life.dat),
and a file giving the relay step number and the transition time #;.,,;. These
data are sufficient to create images like figure 3.2.

Other scripts show the length of the start phase (fitjump.pl) and differ
between continuous and discontinuous transitions (discont.pl).

The births, deaths and parentships of every structure can be examined with

achievement.pl.

2.3 Analysis II

For further analysis of flow reactor runs the Flow Reactor Analysis Class Li-
brary written in C++ is provided. The core components are the sequence class,
which denote an RNA sequence or an RNA structure in parenthesis notation,
and the position class, which enable us to analyse RNA sequence positions,
like the frequency of occurrence of a nucleotide.

The data of a bunch of sequences, like a dump of a flow reactor at a certain
time, can be analyzed on the level of sequences or on the level of positions: The
class group of sequences is provided to make comparisons of several sequences,
like the average Hamming distance between two dumps (see equation 3.29).
The derived distance cluster class calculates the subgraph clustering discussed

in section 3.12 using the struct edge. The group of positions class keeps the
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struct edge

| GroupOfPopulations |

|GroupOfPositions |
| GroupOfSequences |—| DistCluster |

NodeMaster

Position
|RNAPOpuIati0n |—| RNANode |

Sequence

Figure 2.5: The hierarchy of the classes of the Flow Reactor Analysis Class Library

for the analysis of flow reactor runs.

number of different bases on every position after reading a sequence dump.
With this data the distance between mean nucleotide sequences (see equation
3.30) or the consensus sequences can be easily calculated.

In many cases both, the sequence data and the position data are needed.
This is provided with the RNA Population class, which is utilized for the cal-
culation of the variance/covariance matrix (see section 3.11) or the standard
deviation. Derived are the RNA Node class for the creation of Ward’s mini-
mum variance method clusters [53] explained in section 3.12. These clusters

objects are collected in an object of class NodeMaster.



3 Numerical Results

3.1 In Silico Flow Reactors

The flow reactor simulations in this work are based on the algorithm developed
by Daniel Gillespie [18,19]. At the beginning the reactor contains the inital
population of RNA sequences with equal chain length. The goal of the reactor
run is to find a sequence, whose minimum free energy (mfe) structure is a
given target shape. Only two types of reactions, (i) the replication of an RNA
molecule and (ii) its outflow from the reactor, are possible.

The rate constant, which is proportional to the selection probability of a
reaction, must be calclulated for every sequence and reaction type. The term
sequence is used as a shorthand for a RNA sequence type with a distinct order
of nucleotides. For every sequence, which is present in the reactor, the actual
number of copies n; can be determined.

RNA secondary structures can be represented by strings written in a short-
hand notation using parenthesis and dots. Parenthesis correspond to bases
combined to base pairs, dots represent single bases. For example, the string of

a typical hairpin loop reads:

(L.
abcdefghijklmno

The bases ¢ and n, d and m, e and 1 as well as £ and k form a base pair,
respectively. All other bases are unbound.

The fitness value f; of a sequence with ¢ nucleotides is based on its mfe
structure [25]. A structure distance to the given target shape can be the
Hamming distance dj [22], the tree edit distance dj; or the string edit distance
disjt [13]. Unless otherwise stated the Hamming distance is used in this work

(See also section 1.2).
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Figure 3.1: The start and stop structure of the flow reactor runs. The initial
population was chosen to be homogeneous, and thus all molecules have the
sequence shown above. Below the sequence start and stop structure are shown
in parenthesis notation. The distance between the two structures expressed as

Hamming distance between the two strings is dg, = 48.
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1
0.01+dj /¢

The rate constant for a replication reaction 7, of sequence i is based on

fi = (3.1)

its fitness f; and its number of copies n; in the reactor.

T;"ep = f, - Ny (32)

While the probability of a replication is dependent on the fitness value of
the RNA sequence ¢ and its number of copies n;, the probability for the outflow
reaction is only proportional to its population size n;. The rate constant for
the outflow reaction r¢*" of a sequence i is based on a given average population
size N and the sum R(t) over the replication rate constants of all k£ sequences

at time ¢.

k
R(t) =Y i (3.3)
j=1
out __ . 1
i = R(t) N (3.4)

N(t) = an (3.5)

If at time ¢ the population size N(t) = N, the probability for replication
and outflow reaction is equal. If N(%) is larger or smaller than N, an outflow or
a replication reaction is favoured, respectively. In this way the population size

is kept nearly constant and fluctuates around Ny, with a standard deviation

of V Nset-

A(t) = R(t) + Zr;’“t = R(t) - (1 + %(t)> (3.6)

The current reactivity A(t) gives the interval ]0..A(¢)] for the pseudo ran-
dom number, which selects a replication or outflow reaction for the next step.
If an outflow channel is selected a copy of the corresponding sequence is re-

moved from the reactor population. By using a replication channel, a sequence
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is copied base per base with a given accuracy (usually 0.999), which sometimes

leads to point mutations but guarantees equal chain length.

log (1/mpm)
=40

The internal clock is advanced by At using another pseudo random number

(3.7)

Myrn from the interval ]0..1] and the current reactivity A(¢). During the inital
phase, when the fitness values and consequently the current reactivity are rela-
tively small, time moves faster, while in a flow reactor with a higher population
size or in a state almost before the target is reached it elapses much slower.
During a flow reactor run every creation and extinction of a shape or even
of a sequence is recorded and kept in a log file, which enables us to track back

the life of every structure or sequence.

3.2 Statistics on Evolutionary Trajectories

The relay series [15] is a way to reconstruct the succession of structures in
an evolutionary process, simulated in the flow reactor. It is a list of structures
beginning with the target shape and ending with a structure of the initial
population.

Usually every structure in the reactor has multiple intervals of existence
delimited by the shape’s entrance and exit times. The relay series can be
reconstructed easily only in retrospect, searching the log file for the shape
o, —1, which gave rise to the target shape «, when in finally appeared. Next
the shape «,,_s, which started the live interval of «,,_1, during which «,, was
produced, has to be found. These steps are repeated until a shape «q is
reached, that came into existence at the start of the reactor run as part of the
initial population.

In every flow reactor run there are two distinct phases. At first there is
(1) the initial period, where fast increase of mean fitness and many structural
changes can be observed. Since the structure of the start population is usually

very different from the target, many mutations with structural changes, lead
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Figure 3.2: Evolution in a flow reactor with an average population size Nse; = 3000
and a mutation rate per base and replication of p = 0.001. The start population
and stop structure is show in figure 3.1. The black line shows the average Hamming
distance of all sequence copies in the reactor to the target shape (left ordinate),
which decreases stepwise. The red bars show the life spans of all structures involved
in the relay series. The steps of the relay series are indicated by a blue line. The

numbering of these steps is denoted on the right ordinate.



Table 3.1: The relay series of a flow reactor run with a average population size Nge; = 30000. From the target structure (No.

1) a backtrack was made until the start structure (No. 21) was found (see text for details). The given Hamming distance

denotes the distance between the sequences of shapes no. i+1 and i at which the relay transitions happened. Pop. size is

the population number of shape no. i+1 at the time it produced i. Since shape no. 21 denotes the start population both of

these values are undefined. c/d asterisks continuous and discontinuous transitions. The column “number of parents” counts

the different shapes, that produced shape No. i. Except for the first production of every shape this is mainly back flow.

Production = Hamming Pop. No of
0- time  distance size  parents shape c/d
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to higher fitness values. These new sequences supplant the actual population,
before being supplanted itself. In contrast to the phenotypic! changes, the
genotypic changes are small in this phase (see also section 3.10). The start of
(ii) the second period is defined as the beginning of At > 10 time units without
the creation of a structure, that causes a fitness innovation and remains in the
reactor population to steady this new fitness level. In this second phase, usually
the major fraction of the population has the highest currently assigned fitness
value (between 80% and 95% at an error rate of 0.001 per base and replication).
Long epochs of statis are interrupted by short but strong improvements in this
period, which are called major transitions. With every major transition and
the concurrent fitness increase the number of possible shapes with higher fitness
values decreases. In many cases they can not be found in the neighbourhood
of the dominating shapes.

The relay series consists of (i) continuous and (ii) discontinuous transitions.
Diagnostics of discontinuous transitions are based on three criteria: (i) The
newly created structure has never been present in the reactor, (ii) they involve
major structural changes (see also section 1.6), and (iii) they are infrequent in
the sense that they have globally a small probability to occur.

To distinguish minor and major structural changes three distance mea-
surements between structures are used. (i) The base pair distance di’;?’ counts

the minimal number of openings and closings of base pairs to transform one
bpp
ij

counts the number of base pairs, that can not be found in the other structure.

structure into the other. (ii) The asymmetric base pair preserve distance d

If di’;?’ P = ( and di’?’ > 0, new base pairs have been formed. The formation
of a single base pair is always an extension of an existing stack, which occurs
frequently. (iii) The Hamming distance dj; [22] , which is also needed for the
detection, defines a lower limit for the base pair distance: 2 - di';?’ > di. It
2- dibf > d;;, bases involved in base pairs are bound to other bases after the
transition, which is always a major structural change and is summarized as

generalized shiftin [16]. If one of the following criteria is true, we are concerned

!The RNA base pair structure with minimum free energy, calculated with the Vienna
RNA Package, is tantamount with the RNA phenotype in this work.
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Table 3.2: Statistics of evolutionary trajectories. Different trajectories of in sil-
ico evolution towards a tRNA target, S; = S pyarhe, Were recorded for different

population sizes N.;. Standard deviations refer to best fits of normal distributions.

No. of | Population Major Min. distance at | Relay steps | Total no. of
runs size Ny | transitions | start of phase 2 phase 1 relay steps

20 1000 9.0+2.2 24.1+4.0 41+2.1 | 114.1+88.5
20 2000 9.6 +2.3 224 +4.2 51+25 62.8 + 25.6
20 3000 84+1.9 21.0+2.1 53+ 1.9 49.1 + 23.5
20 10000 10.6 = 2.2 18.6 = 2.1 7.0+ 2.3 37.1£11.0
20 20000 9.24+22 17.7+23 6.1+2.1 29.2 +5.0
20 30000 89+21 16.9+1.9 6.8 +2.0 30.5 £6.7
4 100000 8.8+1.6 16.8 £0.8 6.8+ 1.1 24.3 +4.7

with a major structural change:

(1) 2-d > d (3.8)
(i) 2-d;f =d>4andd =0 (3.9)

Note that the type of transition between structures is also not symmetric.
While the closing of a stem (d%:" P = 0) is a very rare event, the opening (d;}p P>
0) happens frequently and can never be a discontinuous transition.

The number of relay steps shows vast scatter but decreases considerably
with increasing population size N,;. Although a strong decrease in relay
steps with increasing population size Ny, can be observed, the number of
discontinuous transitions stays almost constant.

Smaller flow reactors provide too small space to hold many different shapes,
that could connect two discontinuous transitions in a relay series. These shapes
have to be recreated again which leads to some extra continuous relay steps.
But a minimal number of continuous relay steps will sustain even in reactors
with population sizes much larger than in our experiments. After a discon-

tinuous transition, which is associated with a fitness increase in many cases,
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Figure 3.3: The relay series and average Hamming distance to the target shape
(black line) of two flow reactor runs with a population size of 1000 (above) and
10000 (below), respectively. The relay series (blue line) of the run with Ny.; = 1000
consists of 80 steps (9 of them are discontinuous) and 66 different shapes. On
average each of these shapes has 128 life spans (red lines, delimited by small red
vertical lines). The flow reactor run with Ny = 10000 needs only 34 relay steps
(11 are discontinuous). All of these 35 structures are unique and have 47 life spans

on average.



Chapter 3. Numerical Results 38

a single structure § with fitness fz becomes the ancestor of all future struc-
tures. New shapes on the same fitness level are created through continuous
transitions and established in the population. The example in figure 3.4 shows,
that a few relay steps are sufficient, if many different structures are present
without interruption. In smaller reactors the population size N,.; seems to be
too small, to make survival likely for many new created shapes on fitness level
fs. Whereas with increasing population size, the probability rises, that many
or all crucial shapes stay present in the reactor until the next fitness gain takes
place.

On a fitness plateau the major part of the reactor population has maximal
fitness. The continuous creation of a shape through accurate replications,
mutations on the same net, and inflow through mutations of sequences with
other shapes has to compensate the outflow reaction to ensure the survival
of that structure. To increase the number of mutated sequences, which are
on the same neutral net, a drift into more connected regions seems to be a
solution [34]. With the current setting this phenomenon can not be observed.

If a higher mutation rate is used flat regions in sequence space are preferred [54].

3.3 Replications and Replication Time Distribution Sta-

tistics

Most frequency distributions in life are skewed and fit the log-normal distri-
bution. Very well known is the distribution of income, which evidently is not
symmetric around the mean, but much extending to the right [17]. The distri-
bution of replications of RNA sequences to reach a given target shape in a flow
reactor is also no symmetric distribution. The normal distribution doesn’t ap-
ply, because the probability density function is right skewed and the standard
deviation is so high, that the confidence interval includes values below zero.
Although we have to few results to perform a test of deviation, the log-normal

deviation (with basis e) is presumed.
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Figure 3.4: A simplified representation of the different number of relay steps during
continuous transitions in large (A) and small (B) flow reactors, respectively. The
circles denote shapes, transitions are represented by arrows. Shape 1 as well as shape
9 were created through discontinuous transitions (red arrows), which are the entrance
and exit points in this examples. All other transitions are continuous. In the lower
part of the figure the relay series (green line) and the life spans of shapes (red bars)
are shown. A shows a scenario in a reactor with a large population size. The newly
created structures (1-8) stay present until the final discontinuous transition produce
a fitter structure, that supplants them. Only few relay steps are necessary between
the two discontinuous transitions (1 - 3 — 7 — 9). Whereas in a small reactor in
part B new, but fit shapes die out and have to be recreated frequently. 7 relay steps

are needed to link shapel and 9 (1 -4 -3 —+2—-6—>3—>7—9).
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Table 3.3: The population size and the log. of the average number of replications
Urep to reach the target shape. A significant increase with increasing population size

can be determined.

No. of | Population 7
runs m | size Nget e
20 1000 17.8 £0.79
20 2000 17.9 £ 1.02
20 3000 18.0 £ 1.39
20 10000 18.6 £ 0.70
20 20000 18.8 £ 0.62
20 30000 19.2+0.85
4 100 000 19.6 +0.39
l/fep = loge(nfep) (3.10)
_ 1 &
VTC]J = R ) Zyrep (3'11)

k=1

For convenience the numbers of replication n,., are logarithmically trans-
formed and treated as normal distributed. The results for population size
100 000 were eliminated, because there are too few values available to obtain
expressive statements. With the 120 results from population size 1 000 to
30 000 the analysis of variance (ANOVA) results in a significant difference
(p-value = 8.04 x 107°), which shows that the number of replications to reach

the target is not independent on the population size of the reactor.

Reason of Scattering SS | DF MS F P-Value | crit. F
Diff. between Groups | 32.475 516.495 | 7.109 | 8.043-107% | 2.294
Diff. within Groups 104.155 | 114 | 0.914
Total 136.630 | 119

SS..sum of squares, DF..degrees of freedom, MS..mean square, F..F-value
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One of the reasons for the worse performance of big reactors might be the
fact, that the replacement of the whole population after a fitness innovation,
takes much more replications, than in a small reactor. If in a discontinuous
transition a fitter, but hardly reachable structure is found and it survives, it
will be the single ancestor for the whole future population. But first inferior
sequences, which still exist in the reactor, amount to the major fraction of
replication rate constants and are therefore still replicated, before they get
supplanted by the fitter sequences. In more separated fitness landscapes, this
“waste” of replications increase the chance, to reach other fitness islands in
sequence space, but in a highly connected neutral network of a frequent struc-
ture, it might be one of the reasons for a higher average replication number to
reach the target.

The replications to reach the target shape scatters vastly. Finding a fitter
structure is a rare event at in phase 2. The Hamming distance between shifted
structures is relatively small and leads to small fitness differences between
shifted structures (see figure 1.4). If a structure is found, which is only a
shift away from the target, it is usually very time consuming to reach the
target shape. Most of the bases of a sequence involved in that shift have to
match both structures before a mutation results into the fitter shape. Since
this nearly matching sequences don’t compete better than any other structure
on that fitness level, it is unlikely that they become present and reach a high
population size. To wait for this unlikely event leads to a vast scatter in the

number of replications to reach the target structure.

3.4 Stochastic Dynamic of Neutral Evolution

3.4.1 Transition Probability

Since we assume asexual replication without deletions or insertions only in-
dependent point mutations are possible. The changes of genotypes follow the
uniform error rates model which implies that error rates do neither depend

on the nature of the nucleotide exchange nor on the position in the sequence.
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Then, the probability of £ point mutations in a single replication event are
expressed by Prob{k mutations} = (%) - p* - (1 — p)*~*, where p is the error
rate per site and replication and £ the chain length of the molecule. The term
(1 — p)*=* represents the probability that the remaining (¢ — k) nucleotides of
the molecule are replicated correctly [6]. We derive the probability of a specific

single point mutation I; — I;,

Ni k. 1— l—k

with N; being the number of genotypes I; in a population of size N =
Yo Ni, & being its relative frequency, and « the size of the nucleotide al-
phabet. The transition matrix, P = {P,;;4,7 = 1,...,n}, is symmetric as
a consequence of the uniform error rate assumption. Because of the small
mutation rate (p = 0.001) in the examples discussed here, it is a good ap-
proximation to restrict to single point mutations (k = 1). 99.73% of all repli-
cations of a tRNA molecule with ¢ = 76 bases have a single or no mutation
(1=p)®+p-(1—p)™=0.9973).

The relations between the genotypes I. and the associated phenotypes is
modelled by the mapping S; = v¥(1.). Two classes of neutrality are considered:
(i) Several genotypes are assumed to form the same phenotype, S; = ¥(1;)
Vi=n;1+1,---,n;

{1,...,1%, {nlﬂ,...,lna, {nzﬂ,...,lng, A T P AT

- -
v~ n'g v~ ~

S So Ss S

and (ii) several phenotypes may have indistinguishable fitness values, f; =

f(S.).

StyeesSmy s Snrttse s Sns s SnyttsevsSng s +oes Sy yatseeesSny s oo
N - N - N -

- i
-~ -~ -~

F B F; F;

The number of phenotypes S; is denoted by M;. Summation over all geno-
types yields M; = > N; and Z;n:1 M; = Y7 N, = N. In order

z:nj,1—|—1
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Figure 3.6: Mapping genotypes onto phenotypes and into fitness values.

to consider dynamics in phenotype space [40] the variables of all genotypes
forming the same phenotype are lumped together. The relative frequency of
phenotype S; is then expressed by 7, = 377, e,

The general relation of genotypes, phenotypes and fitness value is a two
step mapping explained in section 1.2 and illustrated in figure 3.6. We consider
the set of sequences folding into a given mfe structure Sy: Gy = ¥~ (Sg) =
{I;|¥(I;) = Sk} in order to characterize the phenotypes by means of their
preimages in sequence space. The set Gy is transformed into a graph Gy,
which is called the neutral network of Si. The edges connect all pairs of nodes
with Hamming distance df, = 1. The Hamming distance [22] is a natural
metric between sequences, while evolutionary relevant neighbourhood relations
between phenotypes are much more difficult to derive [15,16]. Topological
details of phenotype space are described elsewhere [2,3,50], while we shall use

only the frequency of occurrence of S; in the one-error neighbourhood of Sy,
0(S;; Sk), as defined in [16]:

o555 = Tt e (3.13)
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with 7, being the number of Hamming distance one contacts between the
two neutral networks G and G;. The frequency of occurrence is not symmetric,
because although the number of contacts is symmetric v, = 7, the size of the
networks is different. Transitions matrices between phenotypes Q = {€;;;¢,j =
1,...,n} are not symmetric in general {25 # Q;. Curve a of figure 1.3 in the
introduction show a rank ordered distribution of frequencies of occurrence. It
may be separated into two regimes with different scaling properties: (i) A high
frequency region which contains the frequent neighbours forming the statistical
neighbourhood of the reference structure [16] and (ii) a low-frequency tail
which fulfil a power-law that is analogous to “Zipf’s law” [56].

With the frequency of occurrence closely related families of phenotypes can
be defined:

T.(Sy) = {S; € £(Sk)|o(S;: Sk) > e} . (3.14)

0 < ¢ < 1 denotes a minimum frequency of occurrence which define e-
neighbourhoods Y of phenotypes Sx. Within these families of phenotypes
SO ={s9 .., Sk(j), ..., S} transitions occur with a high probability and
belong to the class of continuous transitions.

In order to investigate transition dynamics between phenotypes we compute

first the probability of a mutation from phenotype S; to phenotype Si:

M.
Prob{$; —» Si} = <& - £-p-(1=p)" " 0(Sk:S)) = m Qe (315)

There is also a non-zero probability to obtain the phenotype Sy by muta-
tion of genotypes belonging to the neutral network G, which is added to the

probability of correct replication:

My

Pl"Ob{Sk — S]c} = N

: ((1—p)"+€-p-(1—p)e‘1-ik) = % Qe

The restriction of low mutation rates allows us to simplify the expressions

by approximating (1 —p)*~1—/¢-pand £-p- (1 —p)* L L-p.



Chapter 3. Numerical Results 46

Next we extend replication-mutation dynamics to the level of families of
phenotypes and focus on the phenotype Sk(j ) at an instant when it is not (yet)
present in the population. Then it is exclusively formed through single point

mutations from all other members of the family S¢) and thus we find:

m m
Prob{S%, = 5 = Y mQu =1p-5 Y m, (3.16)
i=1,i#k i=1,ik
where we made use of the fact that the distribution of frequencies of oc-
currence suggests that the probabilities of continuous transitions between the
members of family depend only on the relative frequencies n;. In other words,

replacement of individual g-values by their mean,

7= 3 oS80/ (mim ~ 1), .17)

1=1 j=1,j7#1

is assumed to be a sufficiently good approximation.

3.4.2 A Birth-and-Death Model

A birth-and-death model has to be kept as simple as possible to derive an-
alytical expressions for population side effects [48]. SU) denotes a family of
phenotypes with equal fitness, whose members are accessible through continu-
ous transitions. We shall focus on the single phenotype Sk(j ), which is connected
to other phenotypes Si(j ) of his family according to figure 3.7

The number of copies of phenotype S k(j ) is counted by the stochastic vari-
able X with the probability distribution Prob{X = X} = Px(t). All pheno-
types of family S except Sk(j) are lumped together and their total number
is described by a stochastic variable J = Z;’i“ 2k Mi(j ). Since the main frac-
tion of phenotypes belong to the family S¥) we neglect all others and set
X +)Y = Ng = N for convenience, where N, is an effective population
size. The time dependence is then modeled by the master equation of a linear

birth-and-death process
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Figure 3.7: Transition probabilities between phenotypes Sz-(j )

and a particular phe-
notype Sk(j ) which altogether belong to a family of phenotypes SU) with equal

fitness.

dPy (t)
dt

where the stochastic events of replication and mutation as measured by the

= Ax_1Px_1(t) — (Ax + px) Px(t) + px41 Pxsa(2)
transition probabilities A and 7, respectively, are combined to yield

Ax =A-X+v=X-X+9(N-X) with A=X—pandv=Np.

The outflow of copies of Sk(j ) from the reactor is described by ux = pu-X
with p = fi. From replication, mutation, and outflow probabilities discussed

in the last subsection we obtain:

1—¢-p-(1—X—0p 1
p]if Q), B= and v = {-p-p. (3.18)

The parameters for birth ()\) and death () show inverse dependence on

A =

population size, whereas the immigration parameter (v) is independent.

3.4.3 Continuous Transitions

A qualitative description of this stochastic process is easy to derive: Since p >

A is true, X(t) is predominantly decreasing without immigration. In reactors



Chapter 3. Numerical Results 48

o - <

:C Ve

1

N

>

-
-_-—— <

>

>

>

>

>

>
--(T<

&

10 N-1 N

X >

A=AX+VNX) = A-9)X+IN=AX+v uX) = px

Particle number X (t)

Time t

Figure 3.8: Birth-and-death process and first passage times.

with small population sizes v is small compared to A and p. Whenever Sk(j ) is
formed by mutation from one of the other phenotypes Sz-(j ), 1 # k it will be soon
eliminated and therefore the number of continuous transitions is expected to be
large in a relay series. On the other hand in large populations immigration is
more dominant. A non-vanishing fraction of S,c(j ) phenotypes will be sustained
by sufficiently large mutation terms and much fewer continuous transitions can
be observed in a relay series.

The process is described quantitatively with the assumption that the state
X = N is a reflecting barrier. Since pu(N) > 0 and A(N) > 0 we need an
approximation and set A(N) = 0 and Px(¢) = 0 for X > N + 1. At the
state X = 0 we are concerned with a reflecting barrier because p(0) = 0 and
A(0) < 0. Since we are only interested in transitions between X = 0and X =1
the mentioned approximation will not strongly influence the results.

[20]? describes stationary solutions as well as moments for first passage

2We remark that tables 2.3 and 2.4 contain serious errors: (i) A factor ‘j’ is missing in the
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times for restricted birth-and-death processes between two reflecting barriers.
The expectation value for the first passage time to extinction < Tp; > is

readily calculated from the birth-and-death parameters [20]:

where we used i = u/\, v = v/, and

Ai i1t A
L S R

i =

An expression for the variance of the first passage time, var [Tp ], is also avail-
able,

N
var [TO,I] =< TO,l >2 +22 < Tk—l,k >2 , (320)
k=2

and we note larger scatter than expected for a Poisson process.

3.4.4 Discontinuous Transitions

On a plateau of constant mean fitness it happens regularly, that a fitter mutant
is found, which can not establish the new fitness level and dies out soon after
its creation. In order to derive a quantitative expression for the probability
of survival for an advantageous sequence, we make use of essentially the same
model as the one applied to the survival of mutants produced by continuous
transitions.

The different situation requires an adjustment of the rate parameters refer-
ring to birth and death, which correspond to replication and mutation in the
computer simulations: (i) We assume that the majority of sequences in the
reactor are on the same fitness level and are therefore selectively neutral. In

order to sustain constant population size these sequences replicate with a birth

expressions of higher moments M IS,JZH and (ii) the minus sign in Vi ,, in table 2.4, second
column should read ‘+’. pp.24-27
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rate which is adjusted to the death rate. (ii) Since we consider only rare mu-
tants of higher fitness the stochastic event of mutation will not be considered
with sufficiently large probability within the time span considered.

The number of mutant molecules is like in the previous sections denoted by
the stochastic variable X. Compared to the dominant type, the new variant
has an increased replication rate of

1+

AX) = T(1 -z-p(1—X))X.

The term containing p in equation 3.18 does not contribute here, because
mutations are singular events. Unter assumption of balanced birth and death
rate we find for the death rate

1

uX) = = (N—X+(1+19)X)X -1 <X+19X—2) .

N N

Although we are dealing with a hart to solve non-linear birth and death
process, analytical expressions are readily obtained for the two limiting cases
with 4 =1/N and p = (1+9)/N.

If a single copy of a mutant is present in the population at time ¢ = 0 its

probability to suvive until at least time ¢ is given by

iR,l(t) - 1 - P()yl(t) .

From the solution of the unrestricted process (N = oo) it is possible to
exactly compute the transition probability until the time when the maximal
possible value of X’ reaches N (¢ > N):

(3.21)

3.5 Survival Probabilities of New Structures

Through discontinuous transitions new structures are created, that are rarely

reachable for the current population. They give an evolutionary optimization
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No Structure c/d dist.
1 CCCCC. . (et D)Mo CCCCCCa . CCCCCennnn DN DINN ... c 15
2 CCCCCe e CCCCeeeeeee NI .eenenn. CCCCCCa . (G CCeneeens )00 N.... d 15
3 CCCCCCe e CCCCeeeeees DDDDDDDDDD PN CCCCCCa o (G CCennees ). N.... c 15
4 CCCCCCe - CCCCanae et DDDDDDDDDD NN CCCCCCa - CCCCCnnnnas ININN.... c 13

Figure 3.9: A detail of the continuous (c) and discontinuous (d) transitions in a
relay series. The fitness neutral, discontinuous transition 1 — 2 opens 5 base pairs,
while 4 of them are formed again, shifted by one base. (dist. shows the Hamming
distance to the target structure.) After a continuous closing (2 — 3) of a single base
pair, the fitness innovation is made (3 — 4). What is the survival probability of

structure 2 7

process the ability to establish new structural domains, which are itself or
have the potential to reach fitter items. Usually discontinuous transitions are
tantamount with fitness innovations, but also equal or lower fitness values,
than the actual fittest sequences are possible. Especially if two consecutive
discontinuous transitions can be observed, structures with equal or lower fitness
than their ancestors can be found in the relay series. E.g. a shift, a roll
over or a flip can be performed in two steps: The first step is a mutation
to open a stack. Some of the released bases find other bases to pair before
another mutation closes the shifted stack again. Both of these steps can be
discontinuous transitions.

To examine the survival probability of such a new structure with equal
fitness numerically a series of flow reactor runs with a average population size
Nse; = 1000,2000,3000,10000 was started. The start population contains
two different sequences, whose mfe-structures have Hamming distance dg, = 2
to the target shape. The population sizes are 1 and N,.; — 1, respectively. Both
structures require a major structural change to reach the target, which is very
unlikely to occur within the limited number of replications of this experiment.
(For illustration the structures of the start population and the target shape of

runs with N, = 1000 are shown.)
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Figure 3.10: The die out probability of shape 1 represented by a single sequence
in the start population vs. the number of replications. The different lines show the
population sizes 1000, 2000, 3000 and 10000, respectively. This figure is based on
10 000 flow reactor runs for every population size and a mutation rate of 0.001 per

sequence and base.

shape 1 (((CCC..(CCCoanannnn IDDD NN G ({ (G DDDDD I (€€ G, NN DN ... 1
shape 2 ((((((...(CCCoannnnnn 20 (et DDDDD I et 232))-000))) ... 999
target ((CCCC. .. CCCC...annn. I))) (et NN ... O NN ...

The mutation rate per base was 0 and 0.001, respectively. The flow reactor
run was terminating after shape 1 died out. Even in the reactor runs with mu-
tations, a transition to shape 1 never occurred, as well as the target structure
was never found.

The probability p to die out of a structure represented by a single sequence
in a flow reactor with a low mutation rate (m < 0.001) is dependent on the
number of replications n,., and the population size Ny is almost perfectly

described by the following function:

P(Nrep) = (1 + &) (3.22)

Nyrep

In the limit of maximal mutation rate, every replication leads to a random
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Figure 3.11: The die out probability of shape 1 at population size Nzet = 1000
(black line) can be separated into two parts. If only outflow is possible (red line)
the shape 1 dies out faster. Inflow though replication of the sequences of shape 1

diminish the die out probability (green line).

sequence and thereby also to a random shape. Under this conditions no am-
plification of shape 1 can be determined. According to our flow reactor model

on every replication n,., one outflow reaction n,,; occurs on average.

Nevents = 2 Npep = Nyep + Nout (323)

The die out probability pyyt(nrep) for shape 1 if only outflow is possible is
given by:

Nout
Nt — 1
Pout(Mout) =1 — | —— 3.24
et ( — ) (3.24
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pin(nrep) = p(nrep) _pout(nout) (325)

-1 Nrep
Nset -]\[set_1
in(Mrey) = |1 Zeet o -1 3.26
pione) = (14252 4 (B=2) (320

The difference p;,(nrep) < 0 is the decrease of the die out probability in

reactors with low mutation rate and denotes the amplification of the shape 1,

which is due to replication and inflow from other structures.

3.6 Serial Transfer Experiment vs. Flow Reactor

In an n wvitro serial transfer experiment a portion of the population is trans-
ferred to fresh stock solution, when a certain limit is reached. This can be
a time limit, a certain population size, or other chemical or metabolic pa-
rameters (e.g. oxygen concentration, etc.). In our simulated flow reactors no
stock solution or raw material is needed. Therefore the population can be
simply diminished, when a given population size is reached, without loosing
the relevant effects. The performance in terms of replications to find a target
structure of serial transfer experiments in comparison to flow reactors in an in
silico experiment was always unclear.

To achieve statistical significant results, a high number of runs under differ-
ent conditions has to be compared. Because of the limited computer capacity
and long folding times for longer RNA molecules, a rather short sequence is
required for this experiment. Our target shape in all cases is a hairpin with
30 positions, a very common structure for this sequence length. The start
sequence’s mfe structure contains a bulge and requires a flip and some base

pair closings to reach the target.

start sequence: CAAGACUUUCCUCCACAGUUCGGAAUUUUG
mfe-shape of start sequence: ((CC((C..(CCCo... .. ... )))))))))
target structure: (CCCCCCCCCCCC...2)))))))))))))

The relevant criteria for the description of a serial transfer experiment are

the number of sequences before and after the serial transfer, which will be
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called the reduction step. The labels give these values in 1000 sequence units.
E.g. the setting 0.1/5 diminish the population to 100 sequences and let it grow
up to 5000 sequences before the next reduction. For comparison to the serial
transfer experiments we take a flow reactor with average population size 1 000.
The start population contains N copies of the given start sequence, where N
is the population size immediately after a reduction step. The mutation rate is
set to p = 0.001 per replication and base position. In 15 different experiments
1000 runs each were performed.

The range of variation of such series of single runs is very high. The number
of replications to reach the target in experiments using the same settings can
vary by more than 2 orders of magnitude. The distribution is skewed and
therefore the log-normal distribution was chosen. For convenience the values
where log_ transformed and treated as normal distributed. These results are
shown in table 3.12.

To test for a significant difference between the performance of all settings an
ANalysis Of VAriance (ANOVA) was made. The probability, that the number
of replications to reach the target shape in different serial transfer reactors
varies by chance is almost zero. Among the n = 15 different settings also all
(n? — n)/2 = 105 pairwise comparisons were made. These results are shown
in table 3.5. A more insightful sketch, which shows a connection between not
distinguishable settings can be found in figure 3.13.

The runs show significantly better results for continuous reactors (label
cont.) and reactors with a small reduction step (label 0.9/1.1). A high maximal
population size leads also to significantly more replications to find the target
shape. The reactor with 100 fold reduction and a maximal population size of
10000 performs worse than any other settings in this experiment.

In contrast to flow reactors there is no development of distinct clusters
because during expansion phase there is no fitness pressure which removes
the sequences without neighbours. During the reduction phase sequences are
removed by chance, which dilute the population density in the surrounding
region of the start population. After some reduction steps without fitness

increase the population is more and more equally distributed in sequence space
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Figure 3.12: The arithmetic mean of loge transformed replications to reach the
target shape of 1000 runs each of a flow reactor (label: cont) and 14 serial transfer
experiments. The continuous reactor and the very similar 0.9/1.1 serial transfer
experiment show the best performance. A small reduction during the serial transfer
and a low maximal population size performs significantly better. Among the others
experiments with a smaller maximal population size are mostly rated better than

their counterpart with 5000 to 10000 sequences at maximal load.
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Table 3.4: Serial transfer experiment performance. The table shows the arithmetic
mean and variance of the log, transformed number of replications. The reduction
is the quotient of maximal and minimal population size. A high reduction and high

maximal population size leads to more replications to reach the target shape.

Experiments Type | Reduction | Mean of log.(n,.,) | Variance
0.9/1.1 1.2 11,61 1,80
cont. - 11,66 1,87
0.5/2.5 5.0 11,82 1,74
1.0/2.5 2.5 11,87 1,44
0.75/3.5 47 11,89 1,38
0.1/2.5 95.0 11,97 2,35
0.3/3.5 11.7 12,00 1,72
1.0/5 5.0 12,09 1,29
0.5/5 10.0 12,11 1,62
0.75/7.5 10.0 12,21 1,40
0.3/7.5 25.0 12,32 1,67
1.0/10 10.0 12,37 1,24
0.5/10 20.0 12,38 1,52
0.1/5 50.0 12,41 2,55
0.1/10 100.0 12,77 2,34
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Figure 3.13: The performance in terms of replications to reach the target shape
of the connected serial transfer reactor settings (vertices) can not be distinguished
from chance. The labels give the population size in thousands sequences immediately
after and before the serial transfer, respectively. The colors denote the reduction
step (blue = 0...2, yellow = 2.5, orange = 4...12, red = 20...50, green = 100). The
continuous (label cont.) and the nearly continuous reactor (label 0.9/1.1) performs
better, the reactor with the highest reduction step (label 0.1/10) needs the most

replications on average.
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Table 3.5: The detection of significant performance differences between the serial
transfer reactors and the flow reactor with an error rate of 0.05 are marked. A low

maximal population size and a low reduction step performs better.

9 9
= S ~ | R o | o | o
= e la | S jla o |w|w ||~ |2 | = |5
D = I N N T N N B B B I N N I I
||l |n|d |l |lr |8 |||
S |38|ls |~ ||| || |3 || ~=|3|c
cont. x | x | x| x| x| x|x|x|x|x|x]|x
0.5/2.5 | x x | x | x| x| x| x| x| x| X
1.0/2.5 X x | x| x| x| x| x| x| X
0.75/3.5 | x | x X X X X x x x x
0.1/2.5 x | x| x x x x x x x
0.3/3.5 x | x| x | x X x | x| x| x| x
1.0/5 x | x| x | x| x x | x| x| x| x
0.5/5 x | x| x| x x | x x | x| x| x
0.75/7.5 | x | x | x X X X X X x x x
03/75 | x | x| x | x| x| x| x| x| X
1.0/10 x | x| x| x x | x| x| x| x| x
0.5/10 x | x| x| x x | x| x| x| x
0.1/5 x | x| x x x x x x x x
0.1/10 X x | x X X be be be X X X X X X

and it takes longer to find the possibility for a major transition. We can
only speculate about the reasons for the lower performance: (i) The share
of sequences, which have the highest currently assigned fitness seems to be
lower, because unfit items are not removed immediately due to lack of fitness
pressure. It is more likely to find a fitter item in the neighbourhood of a fit
one than through the random-like migration in a serial transfer experiment.
(ii) Due to the wider distribution in sequence space the formation of clusters
is diminished or impossible. If no such neighbourhoods of neutral nets exists,
which increase each other’s population size by continuous transitions, fit shapes
die out quicker and the chance to reach fitter structures is diminished. On the
other hand there seem to be an advantage for serial transfer experiments: The
problem of shifted structures described above (in section 3.3) can be bypassed
by a two or more step transition without the fitness pressure of a flow reactor
which rapidly removes unfit sequences. Irrespective of these assumptions there

should be no difference between serial transfer experiments and flow reactors
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if sequence space is homogeneous in terms of equal distribution of frequent
structures. It is unlikely but possible, that the picture changes with different

start and target structures.

3.7 The Phenotypic Error Threshold

The phenotypic error threshold [40] is the error rate in a flow reactor simu-
lation, where an established fitness-superior shape is eliminated. Above this
error rate almost any replication of a sequence leads to mutations as well as
to a different mfe structure than their parent shape. Since one of the generic
properties of folding is the shape space covering (in a radius of less than 15
mutations on a sequence with 100 nucleotides any frequent structure can be
found. See also section 1.6) many mutations lead to a random shape. Below
the error threshold a certain share of sequences fold into one of the shapes
with maximal fitness at that time. In this section it is examined numerically,
if the share of a master shape 7,,, which is dependent on the error rate p, is

also dependent on the average population size Ng;.

nm = f(p7 Nset) (327)

The start population of the test runs consists of Ny, copies of a sequence,
whose mfe-structure is the target shape. In such a population no fitness in-
crease is possible through a major transition, which would shift the ratios of
fit and unfit shapes and bias the results.

start sequence ACGCGUAUCGGGCAUAGCGUCGCCCAGGCGAAAAUUACUCGCCCAGAACUUACCGACAUCGUAGGGGCGCGUCUAC
target ((CCCC...CCCC..nn.n. ). (et PDDDD S CCCCCannnnn )PDDDEDPDDDD I

Computations of all combinations of the error rate p between 0.003 and
0.036 in 0.003 steps and the population sizes Ng; = 1 000, 2 000, 3 000, and
10 000 were performed. The fitness for every sequence was computed using
equation 3.1, after calculating its mfe-structure and its Hamming distance to

the target shape.
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Table 3.6: The share of the master shape 7, at different error rates p, which is

independent on the population size Nge;.

Population size Nt

D 1000 | 2000 | 3000 | 10000
0.003 | 0.857 | 0.861 | 0.859 | 0.860
0.006 | 0.735 | 0.737 | 0.737 | 0.736
0.009 | 0.633 | 0.632 | 0.632 | 0.633
0.012 | 0.537 | 0.542 | 0.541 | 0.540
0.015 | 0.461 | 0.461 | 0.466 | 0.465
0.018 | 0.398 | 0.394 | 0.399 | 0.397
0.021 | 0.336 | 0.340 | 0.338 | 0.338
0.024 | 0.280 | 0.285 | 0.288 | 0.288
0.027 | 0.240 | 0.243 | 0.242 | 0.243
0.030 | 0.205 | 0.206 | 0.206 | 0.207
0.033 | 0.168 | 0.176 | 0.174 | 0.173
0.036 | 0.145 | 0.145 | 0.146 | 0.148

o
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Figure 3.14: The linear/log plot of the error rate p vs. share of master shapes in
the total population 7,,, shows the independence on the population size stated in

the legend.
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Until the termination of the flow reactor runs at time unit 10, every 0.1
time units, the share of sequence copies with target shape H,fv“t was examined.

The results 7, are the arithmetic mean of all 6] .

1 n
™t = D O (3.28)
k=1
nNset show no significant difference for the different population sizes. There-

fore it can be stated, that the share of master-sequences is only dependent on
the mutation rate but it is independent on the population size.

If shapes in the population have a minimal Hamming distance d;; > 0 the
share of fittest sequences is smaller because due to our fitness function also the

fitness difference between fittest and unfitter structures is smaller.

3.8 A Lineage Sample Run

One the main research targets of the study of in silico evolution are the di-
rectly involved sequences and structures. Like in the preceding chapters the
term sequence is used as a shorthand for a RNA sequence type with a defined
primary structure of consecutive nucleotids, for which a certain number of se-
quence copies is present in the reactor. It is important to state that in the
current simulation the fitness of a sequence is based on its mfe-structure and
its distance to the target structure (see also equation 3.1).

The inheritance relation in a flow reactor simulation can be evaluated at
different levels of accuracy:

(i) The relay series, which are described in detail in chapter 3.2, are based
on structures and is the simplest form of a inheritance relation series. The
creation and extinction time as well as the shape of origin (the mfe-structure
of the replication’s template-sequences) of every structure is recorded. (ii)
The genealogy logs the lifespans of sequences, and tracks back the creation of
sequences analogous to the relay series. (iii) The lineage records the production
and outflow of every sequence copy. It is the most precise way to reflect the

evolutionary process.
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Figure 3.15: The lineage of a flow reactor run. The circles denote sequence types,
while the arrows indicate the ancestor and descendant of a mutational replication.
The colors show the Hamming distance of their mfe-structure to the target shape.
See the legend in the left upper corner. Most sequences without influence are re-
moved from the sketch in the following way: In 3 iterating step all sequences without
(drawn in) descendant or with only its ancestor as a descendant are removed from
the plot, whereas the yellow target sequence No. 5933 is preserved. Cycle 0 is the
experimentor, who puts in sequence 1 as a start population. The lineage tracks the

following path of sequences: 1 — 7 — 251 — 606 — 251 — 692 — 2203 — 3613 —
4198 — 5933
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Table 3.7: The creation of more precise types of inheritance relation series require

increasing computational effort.

Inheritance Computer Memory
Relation Series Based on Accuracy Requirements
Relay Series Structures low low
Genealogy Sequences middle high
Lineage Sequence copies high high

To explain the relation of sequences and their role in the evolutionary

optimization process, we monitor a short sample run.

ruler

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890123456

start sequence
start shape
sequence 251
shape of 251
sequence 3613
sequence 4198
3613 and 4198
sequence 5933
target shape

UCGGAUGAAUGCAUGUCGGAGCGUAACUAGAACGAGAAUAUGGUGGAAUAAGGGACUGUACCUUAAAUCCGAUCUU

COCCCC . CCCCeennne et D)D) I (€ CI DDDD PN € { ( GIPP NN DNN ...
UCGGAUGAAUGCAUGUCGGAGUGUAACUAUAACGAGAAUAUGGUGGAAUAAGGGACUGUACCUUAAAUCCGAUCUU
CCCCCCe . (e 22 CCCCCC. e DRDDDD PN € € € € GUNNPI NN DNN....

UCGGAUAAAUGCAAGUCGGAGUGUAACUAUAACGGGAAUAUGGUGGAAUAAGGGACUGUACCUUAAAUCCGAUCUU
UCGGAUAAAUGCAAGUCGGAGUGUAACUAUAGCGGGAAUAUGGUGGAAUAAGGGACUGUACCUUAAAUCCGAUCUU

CCCCCCa o (e I CCCCCnneent DDDDDD PRI ( ( (¢ G MINNNINN ...
UCGGAUAAAUGCAAGUCGGAGUGUAACUAUAGCGGGAAUAUGGGGGAAUAAGGGACUGUACCUUAAAUCCGAUCUU
CCCCCCa . (CCCeaeaeaes DDDD I € G (( TIPS DDDDD I CCCCCannnnt, NN DNN....

About 150.000 replications are needed to find the 76 bases clover leaf target

shape (see also figure 3.1) from a structure with Hamming distance 6. From

the 5933 different sequences only 10 are involved in the lineage. 1312 different

shapes are found in this run, while only 5 are part of the lineage.

Figure 3.15 shows the relation of sequences. From the start population,

which are 1000 sequence copies of type 1, sequence 7 is created after 0.0095

time units. The sequence type 7 is the ancestor of type 251, the most import

sequence of the flow reactor run. The creation of the first copy of sequence

251 was both, a fitness increase and a discontinuous transition. Since this was

a unique event, there are no other sources of sequence copies with such a high

fitness at that time. With a replication accuracy of 0.999 per sequence and

base, replications of sequence 251 leads mainly to new copies of the same type,
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Table 3.8: The most important replications leading to mutations in the lineage
sample run. A move on the neutral net (692 — 2203) turns out to be a bottleneck

in the lineage.

ancestor | descendant | frequency comment
1 7 5
7 251 2 | second time after 606 and 692 appeared
251 606 18
251 692 9
606 2203 1 dies immediately (no descendants)
606 251 1
692 2203 1 first bottleneck
2203 3613 1 second bottleneck and fitness jump
2203 692 2
2203 606 2
3613 2203 8
3613 4198 12
4198 5933 1

increasing its population share exponentially. Then other sequence types with
the same fitness are found, slowing down and further limiting the enhanced
reproduction of type 251. Nevertheless after a short time more than 50% of
all sequences in the reactor were copies of type 251 (see Figure 3.16). The
important role of this sequence type can be emphasized by the fact, that in
20.6% of all replications of this flow reactor run, sequence type 251 was the
ancestor. It’s clear that all 3¢ = 228 of its one point mutants can be found
among them. The opening of a single base pair between U4 and Go; or between
Agg and Uy, would decrease the distance to the target. But mutations on one
of these positions either stabilize the shape (C4 as well as Ayy) or lead to
completely different mfe-structures.

After sequence 251 the lineage goes over 3 sequences on the same neutral
net. One of these sequences (2203) is created only once by its ancestor in
the relay series. Although this is no shape transition, it is a bottleneck in

the lineage. Every sequence created after the following fitness increase is a
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descendant of this sequence copy. This is not uncommon because sequences
on the same fitness level found after the major transition at most only get the
chance to amplify itself and produce not more than a few neighbours, many
of them on the same neutral net. If the sequence of such a mutational step or
one of its descendants make a major transition, it appears as a bottleneck in
the final backtracking procedure to create the lineage.

The next step in the lineage is a point mutation (U4 — A;4) which shortens
a stack by opening a wobble base pair (type 3613, ancestor in 19,2% of all
replications) and leads to a fitness increase. After a silent mutation (type
4198) the target is reached (Usy — Gag) with sequence 5933, which supplant

the former population in a few time units.

3.9 Comparison of Relay Series and Lineage

The relay series [15,16,45] (a detailed description can be found in section 3.2)
give an insight into the relation of structures in a flow reactor run. From the
structures of the start population to the target shape it can be understood
now, how continuous and discontinuous transitions are involved into this evo-
lutionary simulation.

From the target shape o the relay series goes back to the ancestor 3 of «
which made « a structure innovation, a new or newly recreated shape in the
actual population. Then the structure innovation ancestor of 3 is searched.
In iterating steps one can trace back to a shape w, a structure in the start
population. This backtracking is based on shapes and does not consider the
sequences, that are the basis for these structures.

The sequences of the lineage can be easily transferred into structures. This
inheritance relation will be called structure lineage series and can be easily
compared with the relay series.

There are two important differences between the relay series and the struc-
ture lineage series: The relay series considers only structure innovations, the
creation of a shape which is not part of the actual population and disregards all

other structure productions. Only the creation and extinction of a structure is
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Figure 3.16: The lifespan and population size of selected sequences involved in the
lineage. Being one of the first sequences with a higher fitness, than the actual popu-
lation, increase the chance to play an important role. Sequence type 251 created 300
different sequence types, including all 228 sequences with distance 1. All neighbours
where also created by sequence 3613, which was the first one with Hamming distance
2 and is also major player in this lineage. When other sequences on the same neu-
tral net (like 4198) are established the population share of 3613 decreases. After the

target is reached with sequence 5933, the former population dies out immediately.
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recorded, regardless whether this shape is recreated again within the lifespan.
(i) If the shape of origin of the recreation is another structure, the ancestry is
always assigned to the first producer within a lifespan in the relay series. (ii)
The template sequence in a recreation of a shape can be on a distant position
in sequence space of their first ancestor sequence. The origin of this sequences
can be a very different shape. In both cases the real origin is blurred.

For both inheritance series the finding time of the target structure has
to be defined. Due to the stochastic outflow procedure sometimes the target
structure dies out again. We set the time ¢ as the first appearance of the target
shape, that never dies out again. For the lineage the underlying sequence copy
S(t) is the last one in the inheritance back trace to a sequence copy S(0) in
the start population.

In the 36 relay series steps 37 structures are involved, while the structure
lineage series consists of 41 different structures in 49 steps. Of the total of 45
different structures 8 are unique in the structure lineage series and 4 can only
be found in the relay series. The shape overlap is very high, which means that
in general the same structures are involved in the series.

The comparison of the succession of shapes shows that the same discontin-
uous transitions can be found in the relay series and in the structure lineage
series. Usually these transitions are the only connection between the popula-
tion before and after this event. Therefore any structure inheritance series of
this run passes that way. The continuous transitions between two discontin-
uous transitions follow another path and flips between structures of the same

boundary than the shapes of the relay series.

3.10 Movement and Spreading in Sequence Space and

Shape Space

Evolutionary optimizations in flow reactors proceed on two time scales. Fast
periods containing cascades of adaptive changes are interrupted by long quasi-
stationary epochs of neutral evolution, during which populations drift ran-

domly on neutral networks, until a neighbourhood is found, where a mutation
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Figure 3.17: Comparison of the relay series and the structure lineage series in a
flow reactor run with average population size Ng; = 2000 and a mutation rate of
p = 0.001 per base and replication. The sequence copies of the lineage were folded
into their mfe-structure to allow a comparison with the relay series. The green
lines show the lifespans of the structures involved in at least one of the series in
chronological order of their first appearance. During discontinuous transitions the

two series align with each other.
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leads to the next major transition.

Similar observations where made in an elegant serial transfer experiment
with Fscherichia coli, which was carried out by Richard Lensky and cowork-
ers [11,31,36]. For more than 3 years populations of 5 x 10® cells where diluted
1:100 every day, leading to about 10 000 generations of cells with a average
generation time of 2.6 hours. The phenotypic evolution in terms of cell size
was compared with the genotypic changes determined through DNA finger-
printing [36]. Only in the initial period, fast phenotypic changes happened.
In contrast the genotypic changes took place, while little phenotypic evolution
was determined in the saturation phase. In this section it is investigated, if this
contrary phenomenon of genotypic/phenotypic evolution can also be observed
in simulated flow reactor populations.

The usual time axis is replaced by replications r, in order to come as close
as possible to the number of generations, where on average one generation
corresponds to Ny replications. To visualize the diversity of genotypes over
time we apply to measures: (i) The first one is the mean Hamming distance
within or between populations:

dp(r,Ar) = Z;V:(;) iv(rlJrAr) d" (I, Iy)
N(r)- N(r + Ar)

It describes the spreading of the population in sequence space and is a

(3.29)

appropriate measure of the diameter of the mutant cloud. The size of the
mutant cloud increases with time on fitness plateaus and drops immediately
at fitness increases, which happen usually concurrently with a discontinuous
transitions at the end of an quasi-stationary epoch.

(ii) The other measure is the distance between the mean nucleotide se-

quences at two different times ¢t and ¢ + At:

c(r, Ar) Z Z 7r§k) (r) 7rj(-r) (r + Ar) (3.30)

j=A,U,G,C

The vector 7*)(r) = {7r A ,7rU ,7r(cf),7rc } is the square-normalized distri-
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Figure 3.18: Variability in genotype space during punctuated evolution.
Shown are the results of a simulation of RNA optimization towards a tRNA target
with population size n = 3000 and mutation rate p = 0.001 per site and replication.
The figure contains two plots with different measures of genetic diversity, dp(r, Ar)
and dg(r, Ar) with Ar = 8000 replications, against time, which is expressed as
the total number of replications performed so far, and the trace of the underlying
trajectory in green recording average distance from target. The upper plot contains
the mean Hamming distance between the population (dp; dotted line, right ordinate)
at time ¢ and time r + Ar and the lower one shows the Hamming distance between
the mean sequences at the same moments (d¢; full line, left ordinate). The arrow
indicates a remarkably sharp peak of d¢(r,8000) at the end of the second long
plateau which reaches a Hamming distance of about 10. Every adaptive phase is
accompanied by a drastic reduction in the genetic diversity while genetic variation
increases during quasi-stationary epochs. The mutant cloud, whose average size is
expressed by dp(r, Ar), expands fast during neutral evolution and reaches diameters
up to Hamming distance 25 whereas the center of the cloud migrates only at a speed

of Hamming distance 1 per 8 000 replications.
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2
bution of nucleotides at position k: 7" = ol / > (ozg-k)) with
j=AU,G,C

Z a(k)_
j=AUGC™j —

dc(r, Ar) is in essence a measure for the movement of the center of the dis-
tribution of sequences. It also increases during the quasi-stationary phase and
saturates at values slightly above Hamming distance 1 per 8 000 replications.
This is due to the increasing size of the mutant cloud (increasing dp(r, Ar)),
which leads to a quicker move of the center, if a distant cluster of similar
sequences amplifies or dies out.

At the end of every epoch a sharp peak can be found, which indicates
a quick relocate of the center of the mutant cloud. This peak is due to a
major transition, which leads to a fitness increase. The whole population is
supplanted quickly and the fitter sequence forms the new center of the mutant
cloud. The position of the bottleneck sequences relative to the former mutant
cloud specify the height of the peak. If it was located far away from the former
center in terms of Hamming distance the peak turns out to be higher. But in
any case it is limited by the maximal Hamming distance of any sequence pair
in the actual reactor population.

Although the picture of genotypic versus phenotypic evolution obtained
from in silico experiments is much more detailed than the results recorded
with E. coli [36], we see an asynchronous speed in phenotypic and genotypic
evolution. The genotypic evolution is faster during the phases of phenotypic

stasis and vice versa.

3.11 Principal Components Analysis

From the former section we know, that after a fitness increase the sequences
in a flow reactor simulation spread in sequence space. The diameter of the
mutant cloud increases, while the phenotypic evolution is humble.

In this section we want to observe graphically, if the spreading in sequence
space is uniformly distributed or the formation of clusters can be discovered.

For the analysis we take the population of the first fitness plateau of a flow
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reactor run shown in figure 3.2 and 3.18 at 1.2, 1.264, 1.36, 2.8, 4.0, 5.2, 6.4,
and 6.84 x 10° replications. To display the relation of the individual sequences
in a 2D plot, the genotype distributions were transformed to the principal axes,
and the individual sequences were projected by the 2 largest eigenvectors:

With the sequences with length ¢ of each of this reactor dumps the 44 x 4/
variance-covariance matrices were created. Every base of a sequence is split
into 4 binary digits, where presence or absence of a base is encoded with 1 or
0, respectively (A — 0001, U — 0010, G — 0100, C' — 1000)

Scaled with the eigenvalue the scalar product of the largest eigenvectors of
the variance-covariance matrix and the converted RNA sequence give the x-axis
position and the scaled scalar product with the second-largest eigenvector the
y-axis position in the 2 dimensional plot. The number of copies of a sequence
is pictured with the size of the dot, the distance to the target is color encoded.

To observe a continuous picture of the clustering of reactor populations,
reactor dumps after every 8000 replications were treated with the procedure
described above. It can be show that during the optimization procedure dis-
tinct clusters are created and the formation, disaggregation, and splitting of
clusters can be observed, although due to the limitation to two dimensions
this visualization method doesn’t necessarily reflect real distances between all

existing sequences.

3.12 Cluster Analysis

A major fitness transition in a flow reactor run is (except at the start) a very
rare event, where a fitter sequence is found, that survives in the reactor. Its
offsprings will soon replace the whole population, while the relatively unfit
former sequences die out. Mutations during the replication produce sequences
in the neighbourhood, that sometimes have the same fitness as their ancestors.
Some of them are on the same neutral net, others find new, equally fit struc-
tures. Other unfit sequences usually have a limited life time in the reactor.
After some replications the newly produced sequences spread in the neighbour-

hood. Are the sequence in this propagation process clustered to closely related



Chapter 3. Numerical Results 74

. - - °5
t=1.2 t=1.264 t=1.36 t=2.8
L\ . .
« i « &'.:, i " ) ay
t=4.0 t=2>5.2 t=06.4 t=06.84

Figure 3.19: Spreading of a population in genotype space during a quasi-
stationary epoch. The individual figures are snapshots of the genotype distri-
bution at times corresponding to 1.2, 1.264, 1.36, 2.8, 4.0, 5.2, 6.4, and 6.84 x 10°
replications. In order to visualize spreading, genotype distributions were trans-
formed to principal axes and individual sequences were projected onto the plane
spanned by the two largest eigenvectors. Along the series we observe an important
and characteristic feature of population spreading in neutral evolution: The popu-
lations break up in smaller subclusters which diffuse radially away from the center
of the distribution (See also the model on neutral evolution discussed in [4,27]).
Whenever an innovation with increase in fitness happens in one of the subclusters

this subcluster takes over further development and all other subclusters die out.

groups or do they spread individually?
One approach of cluster assignment is Ward’s minimum variance method

[63]. At the beginnig every single sequence is treated as a separate cluster.



Chapter 3. Numerical Results 75

5 o= .
Ty = nAgX’” (3.31)
SAQ(XklA) = D (Xpi— T)? (3.32)
€A
SAQ(X|A) = > SAQXxlA) = > > (Xpi— ) (3.33)
k=1 k=1 i€A

d(A,B) = SAQ(X|AUB)— SAQ(X|A) — SAQ(X|B) (3.34)

In iterating steps clusters with minimal d(A, B) are merged until one large
cluster remains or a given d(A, B) is exceeded. Although Ward’s algorithm
seem to be the method of choice for many clustering problems, it has two
important drawbacks for RNA sequence populations. (i) It usually produces
clusters of similar size and (ii) sometimes creates structure in uncorelated
populations. If groups of RNA molecules with a distinct nucleotide sequence
are formed in a flow reactor population, they probably could also die out
without exchange to the remaining population. Ward’s clustering method tend
to merge a small uncorrelated cluster to a larger one, giving the impression
that smaller clusters don’t exist. Decrease in population size of a subcluster
over time, down to dying out can therefore never be observed in a Ward cluster.

Another kind to find groups of correlated sequences, which can clearly be
seperated from the rest of a flow reactor population, is to create a complete
graph, whose vertices are the RNA sequences and whose edge weights are
the Hamming distance between them. If all edges are removed, whose weight
exceeds a given limit di’; > ¢, the graph splits into clusters. This method will
be called subgraph-clustering.

To examine the existance and formation of distinct clusters, a flow reactor
with average population size 3000 and replication accuracy of 0.999 per base is
started. The target shape is a tRNA clover leaf consisting of 76 bases (see figure
3.1). The mfe structure of the inital sequences is the target shape and therfore
this run has no major fitness transition. Every 2000 replications a subgraph-
clustering of the whole population with subcluster threshold Hamming distance

¢ = 9 is performed. Around 73% of the sequences can be found in every
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Figure 3.20: Cluster transition types: (a) shows the most common type of cluster

transition. All sequences of cluster A at r replications, that survived until r + Ar
replications can be found in one cluster, and vice versa. (b) sequences of cluster A,
can be found in 2 or more clusters at r + Ar replications. The transition to cluster
Ar4+Ar contains the highest population number and is therfore the successor of the
transition. (c) union of two clusters, no successor can be assigned. (d) exchange of
sequences between clusters, also no successor can be determined. (e) no sequence of
cluster A can be found in any cluster at  + Ar replications. (f) the ancestors of the

sequences of a new cluster cannot be found in any previous cluster

following dump. Then consecutive groups of clusters are compared and their
transitions are classified according to figure 3.20.

97.23% of all clusters have a direct successor (type (a) and partly type(b))
in the next population dump. That implies the existance of distinct clusters
that have mostly no sequence exchange with other clusters and validates the
method of subgraph-clustering for this approach. This succession is called
a cluster series. Because of the movement in sequence space clusters or at
least some individuals of a cluster can come closer to each other exceeding the
minimal Hamming distance beetween any member and combining two clusters.
This union (c) is recorded for 2.28% of the clusters. In 0.33% they die out (e)
and in 0.16% the exchange (d) between two clusters happend, respectively.

How do new clusters arise? 53.82% are splits from other clusters (type
(b)), while 39.85% are products of exchange (type (d)) and 6.19% come into

existence by union (type (c)). The remaining 0.39% have no direct ancestor
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(type (f)), either because the ancestor sequences died out or the sequences of
the clusters mutated so quickly between the dumps that no ancestor can be
examined.

To observe the spreading in sequence space the mean Hamming distance

within a population is given by

SN S dh (1, 1)
(N (1)

The highest average Hamming distance within a population of this flow

dp(t) =

reactor run is around 23, while a random set of sequence gives around 3-1/4 =
57. Surely this value can never be reached in a flow reactor with a replication
accuracy near 1, because every new sequence is inherited from an item of
the actual population and is therefore identical or minimal different from its
ancestor in most of the cases. But what about the maximal Hamming distance
of any two sequences in a population dump? If independent clusters exist which
spread, one would expect that relatively distant regions of sequence space are
explored. The figure 3.21 shows that the average diameter of a population
dump is only Hamming distance 34.2. This indicates that clusters have a
limited lifetime and have to split off from other clusters frequently.

Is the expected survival time of a cluster series dependent on its popula-
tion size? To explore this question we took all cluster series that disappeared
through die out, calculated its maximal population size and ploted it against
the number of replications during their existance (figure 3.22). We excluded
cluster series ending in unions and exchanges, because they are arbitrary clus-
ter series termination reasons. As expected only for short maximal population
sizes conclusions on the lifetime can be drawn. For larger population sizes the

difference between late and early dieout grows exponentially.
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Figure 3.21: Maximal and average Hamming distance and number of clusters in a
flow reactor run without fitness increases. After the population spreads in sequence
space, these values saturate. The maximal and average diameter of the mutant
cloud is limited by the population size of the reactor. Due to their limited lifetime,
indepenent moving clusters doesn’t exist. New clusters split off from existing clusters

and therefore they are located close togehter in sequence space.
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Figure 3.22: A log/log plot of the maximal population size of a cluster series vs. the

replications during its lifetime. All cluster series in this plot become extinct trought

die out (type (e)). The different colours show the origin of the cluster series. The

larger the maximal population size, the less one can foretell about its lifetime.



4 A Comprehensive Model of Evolution

In this chapter the creation of a new sequence in a flow reactor which is not
present yet is described. Dependent on the share z; and the fitness f; of
any present sequence I; in the reactor, the new sequence I, is created with a
frequency @)¢;. In principle the sequence I, can be created out of any RNA
sequence present at the current moment. Since the mutation rate is usually
low (e.g. p = 0.001) it is rather unlikely (but possible) that the Hamming

distance between I; and I, is greater than than 1 or 2.

n
% = Z Qejfjx;
J=Lj#e

The sequence I; is then folded into its structure Sy,. In an in silico exper-
iment S, can be the secondary structure folded with an appropriate folding
algorithm like the one implemented in the Vienna RNA Package [25,52]. In

vitro Sy represents the 3-dimensional structure of the biomolecule.

Se = Y(Iy)

The new sequence is evaluated and a fitness value based on the secondary
structure is assigned. In this work the following fitness function for sequences

with length [ is used:

1
0.01 +d}/l

Any distance measure dy between the shape S, and the target shape S;

fe = (4.1)

can be applied, like the Hamming distance between the parenthesis notations
of these two structures.
In wvitro the fitness can for example be based on the binding to another

molecule, the speed of replication, or an enzymatic function.
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Genotype-Phenotype Mapping

e PR
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Figure 4.1: A comprehensive model of evolution: After the creation of sequence
I, with a frequency ()y; through mutation of any sequence I;, the folding to its
minimal free energy (mfe) structure Sy and its fitness rating f;, the sequence becomes
present in the flow reactor with a single copy. Its further destiny is dependent on the
flow rate, its fitness, the probability to be reinvented by any other (neighbouring)

sequences and on chance of cause.
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Within the flow reactor population the new sequence I; has to compete with
the rest of the population to increase its population share x,. This increase
can be an exact replication (dz, = (Qg fex¢) dt) or the mutation to I, of any
other sequence (dz, = (Z]".:Lj 20 Qui fj z;)dt). On the other hand sequences
are eliminated regardless of their fitness with the current flow rate (dz, =

[2¢®(t)]dt). The change of the share x, sums up to:

d.’L’g

- = Qe foxe —xp B(L) + Z Qi[5 7

J=1,5#L

According to the quasispecies theory [6,35] a cloud of sequences is formed
in the near neighbourhood of the dominating sequences, which are mainly
products of erroneous replications of the dominating sequences. Mutational
backflow from this sequence cloud increases the population size of the domi-
nating sequences, which is important for their survival. Due to mutations the
outflow of a sequence in a (nearly) fitness homogeneous population is always
bigger than its error-free replication rate. Nevertheless such a cloud around the
dominating sequence can give them the crucial advantage and can increase the
probability for survival for some time [1,54]. But according to Motoo Kimura’s
neutral mutation-random drift hypothesis [29] the movement in sequence space

continues, which generates new dominating sequences after some time.



5 Conclusions and Outlook

Evolutionary optimization of RNA structures in simulated flow reactors is a
method to explore the mechanisms of evolution in general. Some thousand
(simulated) RNA molecules are optimized by means of an algorithm to com-
pute individual trajectories for chemical reaction mechanisms conceived by
Daniel Gillespie [18,19]. The RNA sequences are folded into their minimum
free energy (mfe) secondary structures and their fitness is rated using the Ham-
ming distance to a target shape [14]. The flow reactor run is terminated as
soon as the target structure is found and settled. Then the relay series is cal-
culated which is a kind of backtracking from the target structure to a shape of
the start population on the level of structures. Beside some generic properties
of folding ((i) more sequences than structures, (ii), some structures are more
frequent than others, (iii) neutral networks, (iv) shape space covering) [15,16]
other features of the optimization process are known: (i) Fast periods con-
taining cascades of adaptive changes are interrupted by long quasi-stationary
epochs of neutral evolution, during which populations drift randomly on neu-
tral networks. (ii) Continuous transitions are caused by single point mutations
leading to a different but frequent shape in the neighbourhood of the template’s
structure. If a new structure is created through a mutation which causes major
structural changes and is rarely part of the neighbourhood of the template’s
structure it is called a discontinuous transition. Usually a discontinuous tran-
sition is attended by a concurrent fitness increase (major transition).
Statistics of the trajectories shows that every flow reactor optimization
with identical start population leads to a different relay series track to the
target shape. In other words, no trajectory has been reproduced in detail
(By reproduction we mean that the same trajectory is obtained for identical
inital conditions except different start conditions of the pseudo random number

generator). Thus neither the succession of structures nor the length of the
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quasi-stationary plateaus can be predicted. This leads to a vast scatter in the
number of replications of flow reactor runs.

Reactors with a larger population size have two important differences: (i)
The number of continuous transitions is significantly smaller in contrast to the
number of discontinuous transitions, which stays astonishing constant with
varying population size. (ii) It takes more replications to find the target struc-
ture.

In the flow reactor simulation discontinuous transitions are usually rare and
unique events. If the structures of the involved sequences are part of the relay
series they form a bottleneck to the future population of the reactor. Any
fit sequence created after the discontinuous transition is inherited from them.
If we are also concerned with a major transition the population center shifts
from the center of the former population to the sequence created through the
discontinuous transition.

In general, serial transfer experiments perform worse than flow reactors.
The larger the reduction step and maximal population size the more replica-
tions are needed to find the target shape.

Lineages are an inheritance series on the level of sequence copies. Folded
into their mfe structures the comparison to relay series shows a conformity dur-
ing discontinuous transitions but different paths during continuous transitions
on the fitness plateaus.

It could be shown that during a phase of constant fitness the population
are lumped together in distinct clusters. Graphically this was done by a princi-
pal component analysis (PCA). Numerically the subgraph-clustering revealed
that nearly no sequence exchange between clusters can be observed. Similar
to in vitro experiments on fitness plateaus large genotypic but little pheno-
typic changes are found. During the fast adaptive phase at the beginning of
the run the situation is inverted: Little changes on the primary sequence are
accompanied by large structural changes.

With the Flow Reactor Class Library programs for the simulation and anal-
ysis of in silico flow reactor runs are provided. Written in C++ the classes are

programmed modular and are easily extensible.
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Discontinuous transitions play a crucial role in evolutionary optimization.
Although the sequences which can perform a discontinuous transition are not
distinguishable in terms of fitness they allow the exploration of new and of-
ten fitter neutral networks, whose neighbourhood can contain structures much
closer to the target shape. The number of discontinuous transitions stay con-
stant with varying population size and seems to be dependent on the size and
structure of the target as well as the fitness function and the complexity of the
folding algorithm.

The fitness function used in this work is based on the Hamming distance to
the target shape. In future experiments the folding with h-type pseudo knots
[23,24], the suboptimal structures [55], the results of kinetic folding, or three-
dimensinal interactions could be included into the fitness function to obtain
results, which are more comparable to natural processes. The Flow Reactor
Class Library should be extended with a graphical user interface (GUI), a
communication interface, and a database for the administration and evaluation

of the results.



Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

8]

C. Burch and L. Chao. Evolvability of an RNA virus is determined by its
mutatioal neigbourhood. Nature, 406:625-628, 2000.

J. Cupal, S. Kopp, and P. F. Stadler. RNA shape space topology. Artificial
Life, 6:3-23, 2000.

J. Cupal, P. Schuster, and P. F. Stadler. Topology in phenotype
space. In Computer Science in Biology, GCB’99 Proceedings, pages 9-15.
Univ. Bielefeld, Hannover, DE, 1999.

B. Derrida and L. Peliti. Evolution in a flat fitness landscape. Bull. Math.
Biol., 53:355-382, 1991.

M. Eigen. Selforganization of matter and the evolution of biological macro-
molecules. Die Naturwissenschaften, 10:465-523, 1971.

M. Eigen, J. McCaskill, and P. Schuster. The molecular quasispecies.
Adv. Chem. Phys., 75:149 — 263, 1989.

M. Eigen and P. Schuster. The hypercycle. A principle of natural self-or-
ganization. Part A: Emergence of the hypercycle. Naturwissenschaften,
64:541-565, 1977.

M. Eigen and P. Schuster. The hypercycle. A principle of natural self-or-
ganization. part B: The abstract hypercycle. Naturwissenschaften, 65:7—
41, 1978.

86



BIBLIOGRAPHY 87

[9] M. Eigen and P. Schuster. The hypercycle. A principle of natural self-or-
ganization. part C: The realistic hypercycle. Naturwissenschaften, 65:341—
369, 1978.

[10] M. Eigen and P. Schuster. The Hypercycle: A principle of natural self-

organization. Springer, Berlin, 1979.

[11] S. F. Elena, V. S. Cooper, and R. E. Lenski. Punctuated evolution caused
by selection of rare beneficial mutants. Science, 272:1802-1804, 1996.

[12] C. Flamm, W. Fontana, I. L. Hofacker, and P. Schuster. RNA folding at
elementary step resolution. RNA, 6:325-338, 2000.

[13] W. Fontana, D. A. M. Konings, P. F. Stadler, and P. Schuster. Statistics
of RNA secondary structures. Biopolymers, 33:1389-1404, 1993.

[14] W. Fontana and P. Schuster. A computer model of evolutionary optimiza-
tion. Biophys. Chem., 26:123-147, 1987.

[15] W. Fontana and P. Schuster. Continuity in evolution: On the nature of
transitions. Science, 280:1451-1455, 1998.

[16] W. Fontana and P. Schuster. Shaping space: The possible and the attain-
able in RNA genotype-phenotype mapping. J. Theor. Biol., 194:491-515,
1998.

[17] J. H. Gaddum. Lognormal distributions. Nature, 156:463-466, 1945.

[18] D. T. Gillespie. A general method for numerically simulating the stochas-
tic time evolution of coupled chemical reactions. J. Comp. Phys., 22:403—
434, 1976.

[19] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
J. Phys. Chem., 81:2340-2361, 1977.

[20] N. S. Goel and N. Richter-Dyn. Stochastic Models in Biology. Academic
Press, New York, 1974.



BIBLIOGRAPHY 88

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

W. Griiner, R. Giegerich, D. Strothmann, C. Reidys, J. Weber, 1. L. Ho-
facker, P. F. Stadler, and P. Schuster. Analysis of RNA sequence struc-
ture maps by exhaustive enumeration. I. Neutral networks. Mh.Chem.,
127:355-374, 1996.

R. W. Hamming. Error detecting and error correcting codes. Bell
Syst. Tech. J., 29:147-160, 1950.

C. Haslinger. Prediction Algorithms for Restricted RNA Pseudoknots.
PhD thesis, Univ. for Vienna, 2001.

C. Haslinger and P. F. Stadler. RNA structures with pseudo-knots:
Graph-theoretical, combinatorical, and statistical properties. Bul. Math.
Biol., 1:1-33, 1998.

I. L. Hofacker, W. Fontana, P. F. Stadler, S. Bonhoeffer, M. Tacker, and
P. Schuster. Fast folding and comparison of RNA secondary structures.
Mh. Chem., 125:167-188, 1994.

J. H. Holland. Adaption in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology. University of Michigan Press,
1975.

M. A. Huynen, P. F. Stadler, and W. Fontana. Smoothness within rugged-
ness: The role of neutrality in adaptation. Proc. Natl. Acad. Sci. USA,
93:397-401, 1996.

J. A. Jaeger, D. H. Turner, and M. Zuker. Improved predictions of sec-
ondary structures for RNA. Proc. Natl. Acad. Sci. USA, 86:7706-7710,
1989.

M. Kimura. The Neutral Theory of Molecular Evolution. Cambridge
University Press, Cambridge, UK, 1983.

J. R. Koza, F. H. Bennett, M. A. Keane, and D. Andre. Genetic Program-
mang III: Daruwinian Invention and Problem Solving. Morgan Kaufmann,
1998.



BIBLIOGRAPHY 89

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

R. E. Lenski and M. Travisano. Dynamics of adaptation and diver-
sification: A 10 000-generation experiment with bacterial populations.
Proc. Natl. Acad. Sci. USA, 91:6808—6814, 1994.

M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Trans.
on Modeling and Computer Simulation, 8:3-30, 1998.

D. R. Mills, R. L. Peterson, and S. Spiegelman. An extracellular Dar-
winian experiment with a self-duplicating nucleic acid molecule. Proc.
Natl. Acad. Sci. USA, 58:217-224, 1967.

E. V. Nimwegen, J. P. Crutchfield, and M. Huynen. Neutral evolution of
mutational robustness. Proc. Natl. Acad. Sci. USA, 96:9716-9720, 1999.

M. A. Nowak. What is a quasispecies. Trends Ecol. Evol., 7:118-121,
1992.

D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski,
and M. Blot. Genomic evolution during a 10 000-generation experiment
with bacteria. Proc. Natl. Acad. Sci. USA, 96:3807-3812, 1999.

S. K. Park and K. W. Miller. Random number generators: Good ones are
hard to find. Communications of the ACM, 31(10):1192-1201, 1988.

P. J. Plauger, A. A. Stepanov, M. Lee, and D. R. Musser. The C++
Standard Template Library. Prentice Hall, 2000.

I. Rechenberg. FEuvolutionsstrategie: Optimierung technisher Systeme nach

Prinzipien der biologischen Evolution. Friedrich Frommann Verlag, 1973.

C. Reidys, C. Forst, and P. Schuster. Replication and mutation on neutral
networks. Bull. Math. Biol., 63:57-94, 2001.

R. Robson. Using the STL: The C++ Standard Template Library.
Springer, 1997.



BIBLIOGRAPHY 90

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

P. Schuster. How to search for RNA structures. theoretical concepts in
evolutionary biotechnology. J. Biotechnology, 41:239-257, 1995.

P. Schuster. Genotypes with phenotypes: Adventures in an RNA toy
world. Biophys. Chem., 66:75-110, 1997.

P. Schuster. Landscapes and molecular evolution. Physica D, 107:351-365,
1997.

P. Schuster and W. Fontana. Chance and necessity in evolution: Lessons
from RNA. Physica D, 133:427-452, 1999.

P. Schuster, W. Fontana, P. F. Stadler, and I. L. Hofacker. From sequences
to shapes and back: A case study in RNA secondary structures. Proc.
Roy. Soc. (London) B, 255:279-284, 1994.

P. Schuster and K. Sigmund. Dynamics of evolutionary optimization. Ber.
Bunsenges. Phys. Chem., 89:668—682, 1985.

P. Schuster and A. Wernitznig. Stochastic dynamics of neutral evolution
RNA in the flow reactor. Proc. Natl. Acad. Sci., submitted, 2001.

S. Spiegelman. An approach to the experimental analysis of precellular
evolution. Quart. Rev. Biophys., 4:213-253, 1971.

B. M. Stadler, P. F. Stadler, G. P. Wagner, and W. Fontana. The topology
of the possible: Formal spaces underlying patterns of evolutionary change.
J. Theor. Biol., 2000. Submitted.

L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly,
2000.

A. E. Walter, D. H. Turner, J. Kim, M. H. Lyttle, P. Miiller, D. H.
Mathews, and M. Zuker. Co-axial stacking of helixes enhances binding
of oligoribonucleotides and improves predictions of RNA folding. Proc.
Natl. Acad. Sci. USA, 91:9218-9222, 1994.



BIBLIOGRAPHY 91

(53] J. H. Ward. Hierarchical grouping to optimize an objective function.
Journal of the American Statistical Association, pages 236—244, 1963.

[54] C. O. Wilke, J. L. Wang, C. Ofria, R. E. Lenski, and C. Adami. Evolution
of digital organisms at high mutation rates leads to survival of the flattest.
Nature, pages 331-333, 2001.

[55] S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster. Complete Subop-
timal Folding of RNA and the Stability of Secondary Structures. Biopoly-
mers, pages 145-165, 1998.

[56] G. Zipf. Human Behaviour and the Principle of Least Effort. Addison-
Wesley, Reading, MA, 1949.

[67] M. Zuker and P. Stiegler. Optimal computer folding of larger RNA se-
quences using thermodynamics and auxiliary information. Nucleic Acids
Research, 9:133-148, 1981.



Curriculum vitae

Andreas Wernitznig
* 8. Mai 1969 in Klagenfurt

verheiratet, eine Tochter

1975 - 1979
1979 - 1983
1983 - 1987
1987

1988

1988 - 1997
1995 - 1996
11/1997
seit 2/2001
1997 - 2001

Volksschule der Ursulinen
Bundesgymnasium Volkermarkterring
Bundesoberstufenrealgymnasium
Reifepriifung mit gutem Erfolg

Zivildienst

Studium der Lebensmittel und Biotechnolo-
gie an der Universitat fiir Bodenkultur
Diplomarbeit am Institut fiir Tumorbiolo-
gie und Krebsforschung der Universitat Wien
in der Arbeitsgruppe Molekulare Genetik
,Charakterisierung des Proteins Scp160p aus
Saccharomyces cerevisiae“

Sponsion zum Dipl. Ing.

Geschaftsfiithrer der Insilico Software GmbH
Dissertation am Institut fiir theoretische

Chemie

92

Klagenfurt
Klagenfurt
Klagenfurt
Klagenfurt
Klagenfurt
Wien

Wien

Wien
Wien
Wien



