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Zusammenfassung

In dieser Arbeit wird das dynamische Verhalten von konkurrierenden politischen Parteien
im Rahmen eines raumlichen Wahl-Modells untersucht. Die Grundlage des spieldynamischen
Modells ist die Annahme, dass politische Inhalte quantifiziert und deshalb als Punkte eines Eu-
klidischen Raumes dargestellt werden kénnen, dessen Koordinatenachsen den verschiedenen
politischen Inhalten entsprechen. Wir nehmen an, dass die Wahlerpositionen unveranderlich
sind, wahrend die Parteien die aktiven Spieler sind. Der Payoff einer Partei ist entweder der
erwartete Anteil an Wahlerstimmen oder der erwartete (relative) Vorsprung vor den anderen
Parteien. Jede Partei adaptiert ihre Plattform-Position in kleinen Schritten, indem sie dem
Gradienten ihrer Payoff-Funktion folgt. Das Ziel dieser Arbeit ist die Untersuchung des dy-
namischen Systems, das sich aus der Konkurrenz aller beteiligten Parteien ergibt.

Zunachst wird gezeigt, dass sich das dynamische System global “brav” verhalt: Alle Bah-
nen erreichen in endlicher Zeit die Box, die von den extremen Wahlerpositionen beschrankt
wird, und alle (Hyper-) Ebenen im Phasenraum, in denen mindestens zwei Parteiplattformen
ubereinstimmen, sind invariant. Das System weist Permutationssymmetrie auf, falls die
Wihlerpraferenzen nur von den Plattformpositionen abhidngen und unabhingig von den Par-
teinamen sind.

Modelle mit zwei Parteien zeigen ein tiberraschend einfaches dynamisches Verhalten: Unter
einer Reihe von milden Voraussetzungen konvergieren alle Parteiplattformen zum Mittelwert
der Wihlerverteilung. Fiir konkave Wahlerpraferenz-Funktionen ist dieser Mittelwert der glo-
bal stabile Fixpunkt des Systems. Sogar bei Annahme von nicht-politischen Inhalten (welche
eine Abhangigkeit der Wahlerpraferenzen vom Parteinamen bedeuten), treten keine Bifurka-
tionen auf.

Zwei verschiedene heuristische Modelle fir Stimmenthaltung werden untersucht. Im er-
sten Fall wird angenommen, dass die Wahrscheinlichkeit, mit der ein Wahlberechtigter am
Wahlgang teilnimmt, vom Unterschied der Praferenzen des Wahlers fiir die beiden Parteien
abhangt. In diesem Modell treten keine Bifurkationen auf. Wird hingegen angenommen, dass
die Teilnahmewahrscheinlichkeit mit der Distanz zwischen Plattform und Wahlerposition ab-
nimmt, kénnen je nach Wahl der Payoff-Funktion Bifurkationen auftreten.

Im Gegensatz zum Zweiparteienmodell wird der dem Mittelwert der Wahlerverteilung ent-
sprechende Fixpunkt in Modellen mit drei (und mehr) Parteien instabil, falls die Wahler
hinreichend kritisch sind. Diese Beobachtung trifft sogar fiir den Fall von konkaven Wahler-
priferenz-Funktionen zu. Das Auftreten von Bifurkationen hangt von der Steigung der mul-
tidimensionalen Payoff-Funktion ab, welche angibt, wie kritisch die Wahler sind. Bei numeri-
schen Untersuchungen finden wir reichhaltige Bifurkationsdiagramme mit einer grossen Zahl
von lokal stabilen Fixpunkten und Grenzzyklen. Viele der Resultate des Systems mit drei
Parteien lassen sich auf Multiparteiensysteme verallgemeinern.



Abstract

We explore the dynamics of a model of competing political parties under spatial voting.
Such models are based on the assumption that political issues can be quantified and hence
party platforms as well as voter positions can be encoded as points in a Euclidean vector
space the coordinates of which designate the different political issues. The active players
are the parties; the payoff of a platform is determined as the expected fraction of votes that
it receives, or as the expected fraction of votes that it is ahead of its competitor(s). The
parties are allowed to incrementally adapt their platforms by following the voting gradient
imposed by the preferences of the electorate and the platform of the opposition partie(s). The
emphasis is on the dynamical system formed by these conditions.

The resulting dynamical system behaves reasonably at a global scale: all orbits are eventually
bounded within a box that is spanned by the most extreme voter positions, and all planes
in phase-space on which two or more platform positions coincide are invariant. If the voter
utility functions are independent of the party labels the dynamical system has permutation
symmetry.

Two-party models behave surprisingly simple: Under a wide variety of circumstances the
platforms of all parties converge eventually to the mean voter fixed point. In particular, the
mean voter point is globally stable for concave voter utility functions. For a much larger
class of models we could at least ensure local stability of the mean voter fixed points. Even
non-policy values (which introduce an explicit dependence of the voter utilities on the party
labels) do not lead to bifurcations.

Abstention is modeled by two different heuristics: if the probability of participation depends
only on the utility differences between two different platforms no bifurcations occur. If the
participation probability decreases with distances between platforms and voter ideal points,
the mean voter equilibrium may become unstable for some party payoff functions.

In contrast to the two-party case, in systems with three parties the mean voter equilibrium
is unstable for sufficiently critical voters even in the case of concave voter utility functions.
The bifurcation point is determined by the slope of the multidimensional sigmoidal response
function that determines how critical the voters are. Numerically, we find elaborate bifurcation
diagrams containing multiple locally stable fixed points and stable limit cycles. Many of the
results for three parties can be generalized to multi-party models.
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Preface

The idea of writing a thesis on spatial voting dynamics was born on a cold
November evening in 1995 over a delicious sushi, when my husband Peter and 1
were visiting our friend John Miller at Carnegie Mellon University in Pittsburgh.
I asked John, who was working on this subject, to lend me his copy of the book
by Enelow and Hinich, which he has not received back since then. (It could have
been worse, I could have borrowed his cool machine for peeling apples which at

that time I liked even more.)

Back in Vienna, I asked Immanuel Bomze from the Department of Statistics,
Operations Research, and Computer Methods at the Faculty of Social Sciences
to supervise my thesis. He kindly agreed and it has been a pleasure to work
with him and my second advisor Reinhard Biirger from the Department of
Mathematics. The authorities of the Faculty of Natural Sciences approved of
this slightly non-standard arrangement for a mathematics thesis without any

bureaucratic complications. (Thanks to whom it may concern!)

Already during my masters thesis I had been using the computer resources of
the Department of Theoretical Chemistry and it was very convenient for me
that I was allowed to continue working as a non-resident alien in Peter Schu-
ster’s group. Thanks to the support of my friends there I became marginally
computer-literate (I learned how to blame screw ups on the machine), and en-

joyed the regular Tuesday-movies and a lot of great parties. Thanks everybody!

A substantial part of this work has been done at the Santa Fe Institute during

our regular February and summer visits. Thanks for stimulating discussions,
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office space, and computer resources! John Miller’s suggestions, who is an
external faculty member at SFI, were very helpful for constructing my models.
In February 1998 Paul Phillipson kindly agreed to proofread a first draft of this
thesis during a visit to Boulder, Colorado. His efforts resulted in a substantial

improvement of the presentation.

Vacations had a non-negligible impact on this work. The section on perturba-
tions, for instance, originated at the beach of Loretto, a small town in Baja
California Sur. The models for abstention are, as far as I recall, the eventual

outcome of one Margarita too many in Guanajuato on another trip to Mexico.

This work, and indeed, all my studies, would not have been possible without
the support from my family. My mother and my parents-in-law took care of
our kids whenever I attended classes, worked in Vienna, or was on travel. My
husband Peter always believed in me and always gave me hope when I was close
to quitting. It was his enthusiasm for science that got me curious about this
kind of work in the first place. My two sons Claus and Manuel were patient
and understanding when I was working instead of playing with them. Last but
not least I am grateful for all the help that I have received from my extended

family over the years.
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INTRODUCTION

1. Introduction

1.1. Spatial Voting Theory

The importance of adaptive processes in economic theory has long been reco-
gnized (see, for example, Malthus [40]). In this thesis we shall employ the tools
of evolutionary game dynamics to better understand the dynamic behavior of
an adaptive system in which agents are constrained to locally adapt to their

world.

Spatial voting theory describes two classes of agents: wvoters and candidates
(parties) [22]. Spatial voting models are widely used in Economics and Political
Science. Work on this subject can be traced back as far as to the 1920s in
the papers of Hotelling, e.g. [28]. The core of the theory was developed in the
classical works by Smithies [65], Downs [18], and Black [7], see section 1.9 for a

brief overview.

Voters can vote directly over alternative policies in the case of a committee, or
they can vote over alternative candidates in the case of an election. The key
element in these types of models is that voters as well as candidates are seen
as points in issue space. The issue space describes all the factors which are of
concern to the voter. The voters are assumed to be able to evaluate the objects
(i.e., policies or candidates) in terms of their own self-interest and to cast their

votes on this basis. Each voter has a particular opinion on every issue to be
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voted on, and therefore a given stake or interest in the outcome of the vote
which leads her to vote as she does. Furthermore, there are certain non-policy
issues, such as a candidate’s age, religion, and gender, on which parties have no

influence and therefore these issues will remain fixed during the campaign.

A voter’s position in issue space is referred to as the voter’s ideal point. It
is assumed that this position will does not change during the campaign. The
number of different issues determines the dimension of the issue space. Party
platforms are also regarded as points in issue space, but parties are allowed to

modify their positions adaptively in order to gain more votes.

It is assumed that the voters are sincere!, that means they know about their
self-interest, evaluate alternative policies or candidates on the basis of which
will best serve this interest and cast the vote for the policy or candidate most
favorably evaluated. Candidates are sincere (in the sense that they do not lie
about their true platform position) and opportunistic (in the sense that their
only goal is to win the election). The theory of spatial voting does not explain

the source or form that a voter’s or a candidate’s self-interest takes.

1.2. Voter Preferences

Spatial theory is an attractive framework to analyze choice because Euclidean

geometry is easy to visualize and the language of politics itself is replete with

Lye distinguish sincere voters from rational voters who might vote strategically for a party
that is not closest to their ideal point in order to favor a particular coalition.
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spatial references, e.g. consider the terms “left”,“right”, “moving left”, etc.
Collective choice is interesting only when preferences are not perfectly homoge-
neous and conflict results by positing that different voters have different prefe-
rences over the alternatives. These preferences may be represented algebraically

as well as geometrically.

Viewed in simplest spatial terms, the voter will cast her vote for the candidate
“closest” to her. For our purposes, it is very useful to regard the issue space
as an /-dimensional Euclidean space, where I denotes the number of different
issues. We now want to introduce the analogy between preference and distance

that is central to spatial voting models.

Let us first assume that all issues of the campaign are policy issues. The weighed
Fuclidean distance between voter v’s ideal point x, and party p’s platform y?

is defined by

”yp - '/L.'U”S'u’ (1'1)

where S, is a positive definite matrix of strength factors that determine how
much voter v cares about each issue. Let us think of a four-issue model; the
issues being money spent on education, money spent on defense, money spent
on road construction, and voting for or against abortion. It may well be that
a voter cares with equal strength about every issue and that her preferences
are separated, i.e., that her position on any one of the issues does not depend
on any position on the other issues. Then S is the 4 x 4 identity matrix. If
the voter’s feelings are more differentiated, for example, if she is very emotional
about the abortion issue, less interested in education, her interest in defense

and road construction is even less, but still the preferences are separated, then
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S will be a diagonal matrix, the different entries representing the strengths
given to different issues. Issues on which a voter puts more weight are called
more salient to her. Other voters may have “ideal packages” of preferences,
i.e., preferences will be correlated. If, for example, for a voter money spent
on education is somehow correlated with money spent on road construction,
then S will be a positive definite symmetric matrix, the off-diagonal entries

determining correlation among the issues.

Example. Consider a two-issue model. Suppose (41, Tp2) is voter b’s preferred

package of spending on both issues and preferences are correlated by

S11 S12
S = .
512 822

It is required that s;1 > 0, s99 > 0 and 5%2 < $11822. If spending on the first
issue is fixed at y; # xp1, then the voter’s most preferred spending level on the

second issue will be the value of x5 that minimizes the function

roj-

f($2) = [811(?J1 - $b1)2 + 2812(y1 - 33b1)(332 - $b2) + 822(332 - $b2)2]

Voter b’s most preferred spending level on the second issue is thus given by

S
Ibz(y1) = Tp2 — £(y1 - 33b1)-
529

The ratio $2 determines the size of the shift from his package ideal spending

level for project 2, while the sign of s;5 determines the direction of this shift.
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1.3. Voter Utilities

A utility function u,(y) measures the utility of a particular candidate or political

platform y for voter v. If all issues are policy issues, we define

uy (YP) = —(y" — 2,)S, (¥’ — 20). (1.2)

The voter’s utility function has its maximum at the voter’s ideal point, and it
declines with the distance from this ideal point. In literature, often the term

dissatisfaction function instead of utility function is used.

The geometric representation of preferences is in the form of indifference curves.
By definition, all points on a voter’s indifference curve have the property that
the voter’s ideal point associated with any point on that curve yields exactly
the same utility. Indifference curves are analogous to contour lines in hiking

maps, figure 1.

Each contour thus gives points of common utility (altitude). The most restric-
tive kind of preferences are Fuclidean preferences, for which utility declines mo-
notonically with distance. This can be represented algebraically by S = I, where
I is the identity matrix. Geometrically, the indifference contours are circles in
this case. A weaker characteristic of preferences is so-called separability [35].
Then S is a diagonal matrix of different strength entries and the indifference
contours are ellipses in main position. In this case, points equidistant from a
voter’s ideal point lie on different indifference contours. In a two-dimensional
choice space, if a one-step change in xi-direction leads to a higher indifference

contour than a one-step change in xs-direction, the first issue is more salient to
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Figure 1: Geometric representation of voter preferences. The center point of each graph
represents a voter’s ideal point. In the case of separable preferences (left, middle)
a voter’s most preferred point at a given distance in xi-direction stays at the vo-
ter’s ideal x2-level. Thus, Euclidean preferences are a special form of separable
preferences. In the case of convex preferences, a voter’s most preferred point at a
given distance in x1-direction is at an x2-level that is different from its ideal z2-level
(right).

the voter. Convex preferences are the most general assumptions about prefe-
rences usually made in spatial voting theory. In this case, S corresponds to a
symmetric matrix with correlation among several issues. Unlike in the case of
separable preferences, the weaker assumption of convexity allows a voter’s ideal
point on a given dimension to be functionally related to policy on another di-
mension. Convex preferences hence lead to indifference curves that are general

ellipses.

The model used most widely, originally proposed by Enelow and Hinich, is
based on separable preferences, see [22]. We shall require a much less stringent
condition on the voter utility functions in this work: we assume that u, : R! —
R satisfies

(35 — xvj)g—;‘;xy) <0 (1.3)
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for all y # z,, i.e., u, has a unique maximum at the voter’s ideal position x,,,

but —u, need not be convex.

Unless stated otherwise, we shall in general not require that the indifference

curves are convex.

1.4. Strength Factors and Non-Policy Values

Davis, Hinich, and Ordeshook [16] broadened the scope of the spatial voting lite-
rature by including weights or strengths in a multidimensional model. Throug-
hout their book [22], Enelow and Hinich use therefore a quadratic voter utility

function of the form

() 2y — 3 sui(yf — 2.0)°. (1.4)
1€l

where s,,; is the strength factor measuring how strongly voter v feels about issue
t, and m,,, is the so-called non-policy value of party p to voter v. Completely
indifferent voters, for who s,; = 0 for all issues, do not influence the expected
outcome of elections and can therefore be neglected in our model. If u, is not
of the form (1.2) we may interpret the curvatures of the voter utility function

at the ideal point as analogues of the strength factors.

Some voters base their decisions among candidates entirely on a single issue,
such as abortion, civil rights, or foreign policy. Such a voter would attach weight
1 to a single issue and 0 to all other issues. Most voters probably distribute their

strengths s,; more evenly. The correlation between ideal points and strength
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may be used to characterize different types of voters. For instance, Kollman,
Miller, and Page [32] consider centrist voters which place more weight on issues
on which they have moderate views, extremist voters placing more weight on
issues on which they have extreme views, and uniform voters with equal weights

on every issue. In their model, strength is a function of ideal point:

Spi = 1 — |y centrist
Swi = | Tl extremist (1.5)
Spi = 1/2 uniform

Non-policy issues are relatively fixed characteristics of the candidate that are
generally beyond his control, at least for the duration of the campaign. Age,
religion, party, and gender are obvious examples of non-policy issues in, say, a
presidential election. Similarly, the personal attributes of a party’s politicians
are non-policy issues in congressional elections. We may therefore assume that
the non-policy values are in general independent of platform positions. The
most general voter utility functions considered in this contribution are therefore
of the form 1, (y?) = my, + u,(y?), where u, depends on the policy issues only.
Since only differences of the form wu,(y?) — u,(y?) will enter our models, we
neglect the non-policy values without loosing generality if they do not explicitly
depend on p. Throughout this thesis we shall assume m,, = 0 unless stated

otherwise.
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1.5. Experimental Data for Spatial Voting Models

Extensive empirical analyses have been performed by Enelow, Hinich, and co-
workers on U.S. elections, see e.g. [22, 20, 21, 19]. Earlier work on U.S. elections
is reported in [69, 60, 55, 51]. Applications to congressional voting include
[38, 39, 36, 37, 52, 50]. In these studies data from the American National
Election Study [45], in particular so-called “thermometer scores” (for which a
respondent is asked to gauge support or disapproval for a particular candidate
on a numerical scale), are used to construct spatial maps of voter and candidate

positions, see figure 2.

Empirical tests have generally supported spatial election theory but the esti-
mation methods employed to produce the spatial representations of voters have
raised serious statistical issues which have not been fully resolved. One of these
issues is determining the number of dimensions, which is rather difficult because
the number of estimated parameters increases with the number of dimensions

[53].

1.6. Party Payoffs and Electoral Landscapes

Party platforms or candidates are described by their positions y? in issue space
R’, just as voters are defined by their ideal positions (and utility functions).
The basic assumption of all spatial voting models is that each voter will vote

for the party that yields the largest value of wu,(y?). However, the information
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Figure 2: Candidate positions (above) and voter positions (below) for the 1980 US presi-
dential election in a two-dimensional issue space.The data are taken from ref. [19].
The coordinate axes correspond to the first two principal components of the data
set.

about a platform as well as the position of a voter in issue space will be known
to the individual voter only with a certain accuracy [22, chap. 7]. We model this
behavior following [44] by introducing the probability P that voter v chooses
platform (party, candidate) 1 given the utility differences between the platform

— 10 —
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positions of all involved parties. We refer to P as the response function of the
voters. If the voter’s knowledge is infinitely accurate, then P, = 1 if party 1
has the largest utility for voter v. If m parties have the same largest utility as
party 1, then P, = 1/m, since voter v will vote for each of these m parties

with the same probability 1/m; otherwise P, = 0.

p
A

Figure 3: The sigmoidal response function P is used to model uncertainties in a voter’s
decision to vote for party 1. In the two-party case it depends only on the utility
difference z = u(y') —u(y?). The uncertainty increases as the slope P’(0) decreases.

In the case of two parties P will be a sigmoidal function, see figure 3 for details.
For the sake of mathematical tractability we shall assume throughout this work
that the function P : R — [0,1] does not depend on the individual voter v.
Almost the entire literature on spatial voting assumes complete knowledge and
hence works with the discontinuous function P,,. For our purposes it will be
necessary to assume that P is a continuously differentiable approximation of

Po-

The outcome of an election, that is the fraction of votes that each party receives,

determines its payoff. More precisely, the payoff of (or utility for) party p is the

— 11 —
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Figure 4: Voter distribution and electoral landscapes.

The upper part of the figure shows the voter distribution p in a 1-dimensional issue
space. The two parties occupy at a given time the positions y! and y2, respectively.
The lower portion of the plot shows the expected number of votes, for parties 1
and 2 as a function of their own platforms, given that the other party stays at its
current position. We call these curves the “electoral landscapes” perceived by the
two parties. The shape of the electoral landscapes can be explained by the fact that
party 1 receives the votes of all voters to the left of (y1 + y2)/2 (apart from the
uncertainties introduced by P). Hence Party 1 could receive more votes if it took a
position closer to party 2, and conversely, party 2 could increase its share by moving
closer to party 1.

- 12 —
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expected fraction of votes

Ep(yp|y1’ b "yp_l’yp+1’ b "yP)

1 _
= =Y Py, y"), . do (WP "), du (P, yP ), du (3P, YT,

TV
do(y', v?), do(yh, ¥®), . ., du (¥t YT,

do(y?,y%), . do (WP YD), do (¥ ),

(1.6)

i.e., the sum over the probabilities that each voter v votes for party p. Here
dy(y®, y") = u,(y*®) — uy(y') is the utility difference of the platforms y* and
y' for voter v. We shall refer to E,(yP|...), with the positions of all other
parties fixed, as the electoral landscape [32, 33| of party p, see figure 4. The
landscape metaphor is a common model in adaptive search. Applications to
political science include [5] and [6]. In the context of biological evolution it goes

back to Sewall Wright [71].

It is not hard to see that the vote landscapes in a two-party one-issue model are
always unimodal. This is not necessarily true for more than one issue or more
than two parties. There is a relationship between the distribution of voters’
strengths and the slopes and positions of peaks on an electoral landscape [32].
The electoral landscapes defined in equ.(1.4) depend in addition on the slope of
the sigmoidal function P. A few examples of typical electoral landscapes arising

from the same uniform voter distribution are collected in figure 5.

Instead of specifying the individual position of each voter v it may be more
realistic and/or more convenient to introduce the density p(z) of voters in issue
space. It is normalized in the usual way: [R:p(2)dz = 1. Instead of u,(y)

we now need to specify the utility function u(y, x) of a platform y for a voter

— 13 —
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Fraction of Votes for Party 1

Figure 5: Examples of electoral landscapes with different strength functions s(x) and sig-
moidal functions P with different slopes P’(0). The letters U, C, E correspond
to uniform, centrist, extremist voter, resp., as defined in equ.(1.5). For details see
text.

with position x. Furthermore, we may assume that strength is a function of

the ideal point, as defined in equ.(1.5). In analogy with the definition of d, it

def

is convenient to set d®(y*,y') u(y®, x) — u(y', z), where u(y, r) denotes the

utility of party platform y for voter with ideal point x. For instance, we have

u(y,x) = = si(@)(yi — x:)° (1.7)

=1
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where the strength factor is a function of the platform position as in equ.(1.3).
The expected outcome of an election is then
p+1, . P)

LY

Ep(yp‘yl, R yp—l’ Yy
(1.8)
fRI 73(dm(yp,yl)’“.’dm(yp’yp—l),dm(yP,yP‘I—l),”.’dz(yp’yp)’.“) p(a)) dx .

A more general model could be constructed by introducing a joint distribution

p(x, s) of voter positions = and strengths s.

Using the é-distribution we may translate the “discrete” model (1.6) into this

form by defining
1
p(x) = VZé(x—a:U). (1.9)

The relation of discrete and continuous voter distribution functions will be

discussed in some more detail in chapter 5.

1.7. Platform Dynamics

The emphasis of our model is on an adaptive dynamical system, whereby global
consequences emerge from locally adapting candidates. The inspiration for this
model comes from the computational results of Kollman, Miller, and Page [30,
31]. They found that parties following simple locally adaptive rules rapidly
converged toward common platforms. While the ideas of probabilistic voting
(for a general review see [12]) and locally restricted strategy searches in such

models [13, 63] have been widely discussed, here we assume that parties do not

— 15 —
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start at an identical status quo platform, and that their ability to maximize

voter support is limited to climbing the local voting gradient.

The players in our models are the parties which may change their platforms
in order to increase their share of votes. The expected fraction of votes E,,,
that is, the electoral landscape for each party, defines the payoff of a strategy
(platform). The basic assumption is that each party tries to increase its share
of votes by small corrections to its platform vy, see figure 6. Each party attempts
to increase its own utility by means of steepest ascent in the variables under its
own control, i.e., by locally optimizing its own platform under the assumption
of a fixed position of the platforms of all other parties. The other players of
course react to the changes in our party’s platform and adjust their positions.
Assuming that these platform adjustments are being conducted continuously,

guided by, say, opinion polls, we argue that
9P =V Ey(y',.sy’), p=1,...,P (1.10)

is a plausible ansatz for the dynamics of platform adjustment. This dynamics
corresponds to simultaneous hill-climbing of each party on its own electoral
landscape. However, a party’s vote landscape is constantly changing due to the
movements of all other parties in issue space. This type of game dynamics was
introduced in [44] for a two-party spatial voting model. Note, however, that the
dynamics here depends on the fraction of votes, not on the number of votes.
As a consequence, the velocity of adaptation does not depend on the size of the

electorate.

The platform dynamics is a dynamical system, equ.(1.10), “living” on the phase

space RYT. Tt will sometimes be necessary to directly refer to vectors in phase

— 16 —
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votes(1)

votes(2)

votes(1)

—~~

votes(2

Figure 6: The topmost part of the figure shows again the voter distribution p in a 1-
dimensional issue space. At time ¢, both parties will alter their positions following
the gradient of their own expected election outcome in issue space. By changing its
position y2, however, party 2 changes the vote landscape for party 1 at time ¢/, and

vice versa. The “vote landscapes” thus change at the same time scale at which the
parties try to hill-climb on them.

— 17 =
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space. In the following, we will use the notation x,y € R’ for positions (vectors)

in issue space and ¥ € R*! for vectors in phase space.

A troubling result of voting theory is the general lack of stable equilibria once
the assumption of a symmetric ideal point distribution is relaxed. Under sim-
ple preference-based voting it has been shown that in election theory, a pure
strategy equilibrium for the candidates becomes quite rare when the election
concerns two or more issues [49, 14, 34]. This discovery has its counterpart in
the committee-voting theory when voting takes place over multidimensional po-
licy alternatives. There exists rarely a policy alternative that cannot be defeated
in a majority vote. An even more disappointing discovery has been made in
the absence of majority rule equilibrium: the majority preference relation may
engulf the entire outcome in one gigantic cycle [42, 41]. This discovery caused
some theorists to despair of ever being able to predict candidate behavior or
committee-voting outcomes [57]. In this work we shall see that the voting dy-
namics proposed above restores stable outcomes to a certain extent, at least in

the long run.

1.8. Platform Dynamics Versus Other Types of Game Dynamics

It seems interesting to compare the dynamics of party platforms, equ.(1.10),

with some more standard models of game dynamics.

Probably the most widely used type of game dynamics is the replicator equation

[26]. One assumes a (usually finite) set of pure strategies (but see e.g. [10, 8, 9,
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72] for the infinite case). Each strategy is played with a certain probability x.
These probabilities are changed according to difference between the payoff fi(x)

for strategy k in the current population and the average payoff of all strategies:
e =k( fel) = D zifiz)). (1.11)
J
The multi-population version [67, 68]
& =af(fR(a',...,a") =) 2l Pt 2")). (1.12)
J

might be an alternative starting point for a model of platform adaptation. In
this picture the platform of party p would be represented as a superposition
of “pure” positions, the weights of which are given by the variables . The
payoff of such a pure strategy is fi (x!,...,2") which of course depends on the
position of all other parties. Such an approach, however, feels much less natural
than the simple gradient dynamics. In particular, the choice of a set of pure

strategies would be rather artificial in the context of spatial voting theory.

Hofbauer and Sigmund [27] consider the evolution of an essentially monomor-
phic population under the assumption that a small number of mutants y that
are very similar to the consensus z test out alternatives. Let E(y,x) be the
fitness (payoff) of such a mutant in a monomorphic z-population. Adaptive
Dynamics assumes that the whole population moves into the direction of the

most promising mutant:

&t =VyE(y, ) (1.13)
y=x

In contrast to replicator equations, this model is not restricted to the simplex.

It describes, however, the time evolution of a single population rather than
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the coevolution of two populations. A multi-population version of equ.(1.13),
however, might be useful in a more detailed model of the mechanism by which

a party modifies its platform.

1.9. A Brief Overview of Spatial Voting Theory

Spatial voting theory can be traced back as far as to the 1920s in the papers
of Hotelling [28]. Further research was done by Smithies in the forties [65]. In
the early work of A. Downs [18] and D. Black [7] a large body of theory based
on simple geometric representations of individual preferences was developed. It
was used for modeling policy choice in legislatures and in the mass electorate.
Black originally analyzed these two social choice problems with a single model.
Nevertheless, it is now customary to divide the spatial theory of voting into the

spatial theory of committees and the spatial theory of elections.

In the spatial theory of committees, the voters are the key actors, voting over
different policy alternatives, each of which is usually represented as a point in a
Euclidean space. In contrast, the spatial theory of elections treats the candida-
tes as the key actors, with the voters playing a fixed role. Results in the spatial
theory of elections have analogues in the spatial theory of committees. For ex-
ample, the absence of a pure strategy equilibrium in two-candidate contests is
equivalent to the absence of a policy alternative that is undefeated in pairwise
committee voting. Still, one must proceed with caution when translating results

obtained in election theory into results in committee theory.
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Initially, given Black’s formulation, candidates were interpreted as nothing more
than policy alternatives. The voters perceived a candidate as a vector of positi-
ons on the policy issues of the campaign. Voters were assumed to vote strictly
according to their preferences over policy alternatives. The resulting model
thus bore no essential difference to that of a committee deciding which policy
alternative to select. Downs [18] was the first to begin construction of a spatial
theory explicitly designed for elections. Davis and Hinich [15] built the mathe-
matical foundations for such a theory. From that point on, election theory and
committee theory have taken a very different course. With the introduction of
sophisticated voting, committee theory received a game-theoretic foundation,
providing voters with a strategic theory of behavior appropriate for small groups

23],

Much effort was put on looking at solution concepts for n-person cooperative
games that could predict the outcome of committee voting in the absence of an
undominated outcome. Interesting ideas such as the “bargaining set” [4], the
“main-simple V-set” [70], and the “competitive solution” [43] were explored,
premised on weaker forms of outcome stability. On the non-cooperative side,
Shepsle [64] originated a new approach to committee voting by emphasizing the
role of structures and procedures in shaping outcomes. Romer and Rosenthal
[59] introduced the field of positive models based on agenda theory. It became
manifest that outcomes are affected by determining powers, such as the order
in which policies are voted on, and the method of dividing the policies that are

voted on.

Mixed results were obtained on the question of outcome stability in non-co-

operative committee voting. In the case of one-issue-at-a-time voting, sincere

— 21 —



INTRODUCTION

voting, i.e., voting according to one’s preferences, leads to an equilibrium ma-
jority outcome, but if voters are sophisticated, an equilibrium outcome may
not exist [46]. It has become a challenge in committee voting to find out those
equilibria that correspond to fully rational behavior on the part of the play-
ers. Sophisticated equilibrium, for example, meets the criterion of the term
“subgame perfect equilibria”. Keith Krehbiel [35] gives a review of recent de-

velopments in the field of legislative choice.

Election theory, on the other hand, having its focus on large electorates, was
rather aimed at generalizing the model’s key assumptions while retaining the
basic framework of strategic candidates and non-strategic voters. Riker and
Ordeshook [58] give an excellent description of spatial election theory. Besi-
des a range of assumptions about voters and candidates a specification of the
combinations of assumptions that imply the existence of a pure strategy equi-
librium for the candidates is given. Furthermore, voters are permitted to have
different-shaped utility functions. For instance they are allowed to abstain from
alienation or indifference, i.e., ideal point distributions are no longer required
to be unimodal or symmetric. Spatial election theory now has mushroomed
to the point where it can be broken into subfields, such as agenda theory and

probabilistic election theory.
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2. Two Parties

2.1. Mathematical Model

We consider a system with V' voters, P = 2 parties, and [ issues. The platform
of a party p is a point y? in the I-dimensional issue space R’. Each voter is
characterized by her preferred position z, = (21,...,Z,) in issue space and
by the function u, : RY — IR which is used to evaluate the utility of a party
platform y for voter v. We shall assume as usual that equ.(1.3) holds, i.e., that
u, has a unique maximum at the voter’s ideal position x,. An example is the
quadratic voter utility function equ.(1.4) introduced by Enelow and Hinich [22].

The expected outcome of an election, equ.(1.6), is simply

iy ) = 5 30 Plunly') - u(5)
v (2.1)

Byly' ) = 5 30 Plunly?) - uuly")

in the case of two parties. It is convenient to use the notation

2 2 uy(y') — uy(y?) (2.2)

for the utility difference (instead of d'2). Following [44], P(z,) is the probability
that voter v chooses platform 1 that has a difference z, in utility against the
opposing platform 2. For the sake of mathematical tractability we assume that

the sigmoidal function P : IR — [0, 1] does not depend on the individual voter
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v. Furthermore, we assume throughout this section that P is twice continuously

differentiable. Sigmoidal functions are discussed to some detail in appendix A.

In two-party models it is customary to assume that party p’s utility, W, is

given by the fraction of votes that it is ahead of its rival:
Wily',y®) = Ei(y',y°) — Ea(y', o)
Wa(y',y®) = Ea(y',y®) — Ea(y', %)

The corresponding game dynamics is therefore yP = Vy» Wp(yl,yQ). This dy-

(2.3)

namical system was first described in [44]. Explicitly we have

i =V S [P() = P20 = o YTy () — ¥y P(-20)]

v v

= S P ) + P2V = 52 TP ) + P2 V()

v

= %vyg S [P(=20) = P(2)] = % SOV, P(—2) = V0P (2)]
= % Z[”P/(zv) + P'(=2,)]Vy2(—20) = % Z[P/(z,,) + P! (=2,) ]V, (3?)

(2.4)

In the case of continuous voter distributions we have instead
y'p = / I [p/(u(yp’ .T) - u(yqa .73)) + PI <u(yq, SL') - u(yp, x)) :| Vu(yp, LL’) p(x)d‘r
(2.4")
For sake of reference we note that equ.(2.4) reads in component-wise notation
. 1
gj = 5 2 [P'(20) + P'(=2)] Ojun(y")

. (2.5)
g; = 3 D[P (=2) + P (2)] 50 (v?)

where 0;u,(y?) denotes the j-th component of the vector Vu,(y?). The ma-

nifold Hy == {37 e R |y = yQ} on which z, vanishes is invariant under the
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game dynamics (2.4). It is worth noting that (2.4) has permutation symmetry,
i.e., a permutation of the platform indices leaves the dynamical system unchan-
ged. Consequently fixpoints outside Ho have to come in pairs: if (a, 13) is a fixed

point of (2.4), so is (b, a).

2.2. Boundedness of the Orbits

min
7

max
2

The extremal voter positions are x = min, x,; and x = max, T,;. Lhese

points span the box

(H[x?in,x?m‘]) (2.6

in the state space R?'. Miller and Stadler [44] showed that all orbits of a special

case of the above model will eventually approach B.

Theorem 1. The box B defined by the extremal voter positions is forward
invariant under the dynamics (2.4); all orbits of the ODE (2.4) are eventually

bounded in an arbitrary small neighborhood of B.

Proof. By definition we have P’(z,) + P'(—z,) > 0 everywhere. Suppose
yp > o, Then Opu,(y?) < 0 for all voters v and hence g} < 0. In fact, it
is even bounded away from 0 within any compact set fulfilling y? > z"®* + 6
with any arbitrarily small constant 6. The same argument can be made for

yh < xfc“i“. Thus all orbits will eventually wind up in a ¢-neighborhood of B.

Remark. If azgﬁn < zp® for all issues k then B is even strictly forward invariant

under the dynamics (2.4) and all orbits are eventually bounded within B.
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2.3. Trivial Fixed Points

We shall call a fixed point (&, 2) € Hs a trivial fized point of the voting dynamics
(2.4). Introducing the average voter utility

def Z Uy (Y) (2.7)

we find that the dynamics (2.4) reduces to the gradient system
y=2P'(0)VU(y) (2.8)

within the manifold Hs. The trivial fixed points are thus the critical points of
2

0
U. Using the identity Wuv (y?) = 0 for p # q we obtain the general form
k%Y1

of the Jacobian matrix of the dynamical system (2.4)

8@); 1 1
L= 7 Z [P’ (20) + P'(—20)] 0k 0jus(y")
+ = Z PH (20) 7)” (—2zv)] 8kuv(y1)8juv(yl)
9u
3? v Z P” (20) Ok Uy (y )+ P”(_zv)akuv(yQ)] ajuv(yl)
a.k (2.9)
32] Y Z PH — 2y ) Oy (Y 1) +PII(2v)akuv(y1)] 8juv(y2)
k
y?
92 =T Z [P (—20) Okt () + P (20) [0kt (y)]] O (y°)
Yk
+ — Z Zu + P’ (Zv)] aka UU( )
For a point (y,y) € Hs this simplifies to
oyt 9? 1
8—y‘i 2z, =0 N a—y% 2,=0 I O)V ZakaJuU(y) = 2P,(O)H'7k(y)
v = v = v (2.10)
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The Jacobian of a trivial fixed point is thus

3 =270) (B g0 ). (2.11)

where H(y) denotes the Hessian matrix of the average voter utility U(y):

02
~ Jy;0yy,

H;(y) Uly)- (2.12)

The stability of a fixed point on H5 is determined by the curvature of the average

voter dissatisfaction U(y). The stable trivial fixed points are the maximizers of

Ul(y)-

When, as usual, one assumes that u,(y) is a strictly concave function for every
voter v, U(y) is strictly concave, (i.e. there is a unique maximizer point of U(y)
which is a stable trivial fixed point). For the quadratic voter dissatisfaction
function (1.2) there is a unique extremal point of U (which yields a maximum)

defined by the mean voter position

1

EU S'Uj

This corresponds to a stable equilibrium of the platform dynamics. The Jaco-

bian at ¢ is of the form:

—251 0 0o ... 0
, 0 —25, 0 ... 0 1 0
) =2P0) | o(y 1) Cw
0 0 0 ... =251

where 5; = % >, Svi- If each voter’s interest is equally strong concerning each

4t 5 for all issues i. Then the Jacobian

issue, i.e. s,; = s,, then we get 5; = 5;
is simply

J(y,y) = —4P'(0)s1 (2.15)
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where I is the 27 x 27 identity matrix.
A much stronger result is proved in [44].

Theorem 2. The mean voter equilibrium (2.13) is a globally stable fixed point
of the platform dynamics (2.4) with a quadratic voter utility function of the

form (1.4) in the absence of non-policy values.

The stability and uniqueness results for the trivial equilibrium require strictly
concave utility functions (a typical assumption for similar dynamic game mo-
dels). However, some non-concavity in such functions may be quite reasonable,
for example, once platforms are at a sufficient distance from a voter’s preferred
position, changes that move the platform even further away are likely to have

little impact.

The following example, which is taken from ref. [44], illustrates the behavior
of our model in the cases where the concavity assumption on u is violated.
Consider the voter utility function

wly’) = =123 s [1 —exp{—w}] . (2.16)

v

Note that the Enelow-Hinich utility function (1.2) agrees with equ.(2.16) up to
third order in (y —x,). While the utility diverges in (1.2), it levels off in (2.16),
however. Gaussian voter utility functions were recently used in models of voter
turnout [29]. The curvature of u, changes sign at y; if |y; — zy;| = 7/V2.
The coordinates of non-trivial equilibria cannot be obtained explicitly even in

very simple examples such as the one in figure 7, which exhibits eight stable
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Figure 7: The platform dynamics for two parties are shown in issue space. Two voters with
strengths equal to one on all issues and ideal points of (—1,1) and (1,—1) were
used. Voters have utility functions given by (2.16) with v+ = 1. The mean voter
equilibrium is the origin (0,0). It is unstable. Six different initial platform pairs
were randomly generated about the origin (each pair has the same marker and line
style). Similar markers end up at the same stable equilibrium, which are of the form

yl = (57 5) y2 = (57 _é)
yl = (575) y2 = (_555)
yl = (_57 _6) y2 = (57 _5)
y'o= (=69 v’ = (=69

with & = 0.955 for v = 1 (of course, solutions with y! and y? exchanged also exist).
Which of these locally stable equilibria is actually reached depends on the initial
conditions. Note that none of the equilibria are symmetric— the parties agree on
one issue and dissent on the other.
This figure is reproduced from [44].

— 29 —



TwoO PARTIES

equilibria (due to its high symmetry) if v < v/2, while the trivial fixed point is

globally stable for v > v/2.

2.4. An Example with Continuous Voter Distribution

We consider here a single issue model with a continuous distribution of voter
preferences and voter utilities u(y,r) = —s(y — x)2. We shall see that the
trajectories of Equ.(2.4’) are determined by a surprisingly simple differential
equation, provided one succeeds in explicitly computing the integral over the
voter distribution. For the sake of tractability we choose the normal distribution

p(z) = — exp(—M> (2.17)

2wo 202

with mean yp and variance o?. Furthermore we choose the sigmoidal response
function Py(z) = (1 + erf(az))/2 derived from the error function erf(z) =
\% foz exp(—t?)dt. The utility functions for the two parties are therefore

Ui(z) = /OO erf (az)p(x)dx and Us(z) = /°° —erf (az)p(x)dz .

—0o0 — 00

(2.18)
Thus the dynamics of the continuous system (1.4’) is given by:

i 4as
Y1 =
077\/5 oo

v2 = cjra\ji _oo(x — y2) exp(—(s2a®(y2 —y1)*(y1 + y2 — 22)% + 1/2(x — p)?/0?))dz

(z — y1) exp(—(s*a®(y2 — y1)*(y1 + y2 — 22)? + 1/2(z — p)?/o?))d=

(2.19)
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Using the abbreviations
A =8a’s*(ys —y1)?0? + 1
B = —(8a%s%(y2 — y1)*(y1 + y2)0? + 2u) (2.20)
C =2a%s*(y2 —y1)*(y1 + y2)’0* + 4

we may write the exponent in the form (Axz? + Bz + C)/(20?), or more conve-

niently, in the form (A (x —v)% + D)/(20?) with

B 4a?s%(y2 — 11)?(1 + y2)o? + 1

__bB_ 2.21
v(y1, y2) 24 8a232(y2 _ y1)202 +1 ( )
and D(y1,y2) = C — Ay2. Using the change of variables ¢ 2£ (z — 7) and
setting A* = A/(20?) and D* = D/(20?) we obtain
4 oo
= m:ijﬁ eXp(—D*(y1,y2))/_ € exp(—A*(y1,y2)E?)dé
o0 (2.22)
4as

+ p— exp(—D*(yl,yz))(v(ylayz)—yl)/_mexp(—A*(y1,y2)£2)d£

and an analogous expression for ¢5. Since the first integrand is an odd function,
the first integral vanishes. The second integral is a Gaussian integral yielding
\/7/A*. Hence Equ.(2.22) simplifies to the following system of differential equa-

tions

i = %y, ) — 1) /A A (g, 9) exp(—D* (g, )

"Zf (2.23)
Yo = m\/ﬁ(v(yl,yz) —y2) V7 /A*(y1,y2) exp(=D*(y1, y2))

Let us define

0(t) 22 (D () VA ) g (220
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It easy to verify that ¢(t) > 0 since each individual factor is positive and A is

bounded away from 0. Hence we may write

v1 = P(t) Ay, y2) (V(y1, ¥2) — y1) = ¥(t) [=B(y1,y2)/2 — y1A(y1, y2)]

Y2 = P(t) A(y1,y2) (V(y1,¥2) — y2) = ¥(t) [=B(y1,y2)/2 — y2A(y1,y2)]
(2.25)

Since 1(t) > 0 the trajectories of the above dynamical system are the same as
those of the time-rescaled differential equations
1= 4a%s*(y2 — y1)*(y1 + y2)0” + 1 — 8a®s*(y2 — y1)*y10” — 1
=4a’s°0%(yo —11)* + L — 1yt
(2.26)
go = 4a?s*(y2 — y1)* (1 + y2)o® + pp — 8?5 (y2 — y1)?y20? — y2
= 4a’s* 0 (y1 —12)* + 1 — v

Remark. Consider a differential equation

. Ox
b= 57 = B (),

with a scalar function 1 (¢). Then the equation can be rewritten in the form:

ox Ot
97 Ot = Y(t)F(x)

Now let us set = = 1(¢). If 1(¢) > 0 then this is a one-to-one relation of ¢ and
7, and hence & = F(x) and & = v (t) F(x) have the same trajectories. Explicitly,

the transformation of the time axis is

ﬂﬂ:%}ﬂﬁﬁﬁ

Set n = y1 + y2, ( = y1 — Y2, and w = 8a?s%02. With this transformation we

obtain .
n=2u—mn

_ (2.27)
¢ =—C(w*+1)
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This decoupled system is easily solved explicitly.

n(t) = 2p + (n(0) — 2p) exp(—t)
) exp(_t) (2.28)
¢(t) = ¢(0) 1+ wy(0)2(1 — exp(—21))

As an immediate consequence we have the final result of this section:

Theorem 3. Equ.(2.19) has a unique, globally stable fixed point which coinci-

des with the mean voter point (u, ).

Again, the mean voter position is the unique globally stable equilibrium. The
voter distribution function has its maximum at u. Thus, the equilibrium point
in the system where both parties have the same platform coincides with the

maximum of the voter distribution function in this case.

2.5. Non-Policy Values

In this section we briefly discuss the effect of non-policy contributions to the
voter utility functions, i.e., we consider voter dissatisfaction functions of the
form

Uy (yP) = mb + u, (yP), (2.29)

where u, (yP) is the policy-dependent utility and m? is a constant that depends
on the voter and (the label of) the party, but not on the party’s platform

position. The difference in the dynamics stems from the fact that

Zy = ﬂv(yl) - av(?ﬁ) = m}) - m?; + Uv(yl) - uv(yQ) =0y + 20 (2-30)
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replaces z, in equ.(2.4). Note that Vi, (y) = Vu,(y). On Ha, we have z, = 0,

and thus

1

i = > [P'(8,) + P (=6,)Vuu(y7) (2.31)

and hence Hs is invariant. The stability of a trivial fixed point is determined
by its Jacobian (which can be obtained from equ.(2.9) by subsituting z, + 4,

for z, and subsequently setting z, = 0). One finds

0y;

=7 Z 5,)] 0401, (1)
+— Z [P"(8,) = P"(=6,)] O (y) Dyt (y)
a_yjl _ T N ne .
57 = T Z[ P7(8,) + P (=8)] Dt ()5 ()
Yk
o (2.32)
a—Z == Z (=P (=6,) + P"(8,)] Dt () (y)
ay? _ // "5V )
+ Z [P'(=6,) + P'(8,)] Ox0jus(y)
This can be recast in a much more convenient form by defining
Quiy) = 3 S [P"(6.) = P"(=8,)) Dt ()0 (0),
L (2.33)
Huly) = 4 D [P/(60) + P (—60)] 9kdiun(y) -
We find then
J(y,y)=Q(y)®<i j)JrH(y)@((l) 2) : (2.34)
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The first term is nilpotent since (i :1) is nilpotent. The stability of a
trivial equilibrium is therefore determined by the eigenvalue of H(y) alone.

This matrix can be regarded as the Hessian of the potential function
1 !/ /
U(y) =+ ; [P'(6,) + P'(—=bu)] uu(y) (2.35)

which determines the dynamics on Hy since § = VU(y) on this invariant mani-

fold.
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3. Complete Participation and Abstention

3.1. Introduction

In general, the voters face a decision between participating in the election (i.e.,
voting for one of the competing parties) and abstention. The literature on
voter turnout is extensive, see e.g. [2]. Formal modeling of voter turnout in
the rational choice tradition has typically not been very successful in explaining
many aspects of turnout behavior. Green and Shapiro [24, chap.4] summarize
much of the work in this area. A less restrictive model was proposed recently
by J. S. Irons [29]. It also assumes explicitly that voters weigh the costs and
benefits of voting but allows that these costs and benefits depend on the policy

alternatives in a more general manner.

In the context of the dynamical models presented here it will be more convenient
to recast the turnout behavior in terms of the probabilities ©, (%) that voter
v participates in the election as a function of the platform positions. For the
sake of tractability we shall restrict ourselves to very simple heuristic examples
of ©,(%) instead of incorporating a detailed model. Tt is then always possible
to write the expected fraction of votes Ej, in the form )  ©,(%)E;(y), where

E?(y) corresponds to a model with complete participation.

Complete participation of the voters in the election process implies additional
symmetries in the response function P. We shall use the notation Py instead of

P if the following conditions are satisfied:
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(i) Po(—2) =1— Py(z) for all z € R.
(ii) Pp(—o0) =0 and Py(o0) = 1.

(iii) Py is monotonically increasing on IR.
Py is the voting probability given that the voter participates in the election.

In the original model of Enelow and Hinich, which corresponds to exact know-
ledge of both party platforms, a voter always votes for the party that offers the
larger utility, and if both parties provide the same utility the voter is indifferent

and flips a coin; thus we have

0 if z<0,
Py(z)=¢ 05 if z=0, (3.1)
1 if z2>0.

For reasons of mathematical tractability and reality (as discussed in section 1.6)
we shall require instead:
(iii’) Py(z) is strictly monotonically increasing on IR.

(iv) Py(z) is twice continuously differentiable.

Two party models with these properties are discussed in detail in [44]. Examples

for valid response functions P, are

Py(z) = 1(1+tanh(az)) =1/(1+ exp(—2az)) (52)
Po(z) =  %(1+erf(az)) :
Complete participation implies
Wi(y',y?) = Ex(y', y®) — Ex(y',y*) = 2E1(y', y°) — 1 (3.3)

Wa(y', y?) = Ea2(y',y°) — Ea(yh,y°) = 1 = 2E1(y", y%) = -Wi(y', v°)
Since the dynamics depends only on V,»W, the constant 1 has no influence.

Rescaling the time axis by a factor of 2 leaves us with ¢? = V. E,(y!, y?),
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i.e., using E, instead of W, leads to the same orbits in the case of complete

participation.

In the case of incomplete participation we obtain different dynamical systems
depending on whether E, or W, is chosen. The resulting models may exhibit

qualitatively different behavior; an example will be discussed in section 3.4.

3.2. Abstention Depending on Voter Utility Differences

In order to incorporate abstention into the 2-party model we first consider the
case where the probability for non-voting is a (universal) function p of the utility
difference z,. A special case, in which p is a step function, is considered by Irons

[29]. An alternative ansatz will be explored in the following section.

Voting becomes uninteresting if the utility w,(y?) is very small for both parties
p = 1,2, and also the platform positions of the two parties are (almost) the
same. It seems reasonable therefore to assume that the non-voting probability
p(z) is a non-increasing function of |z|. More precisely, we require:

(i)  p(z) is symmetric, i.e. pu(z) = p(—=z). This means that the parties seem

exchangeable to a person who does not vote at all.
(ii) p(z) is decreasing for z > 0.
(iii) w(z) is twice differentiable. (We make this assumption for technical sim-

plicity.)
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P(=2) = (1= p(2))Po(—2),
Pz)+P(—2z)=1-pu(2), (3.4)
P'(2) = P'(=2) = —p'(2),

P'(0) = P'(0) = —1'(0) = 0,
and p”(0) < 0 by definition. Complete participation corresponds to setting
pu(z) = 0.

Using W as the party utility function, as in equ.(2.3), the dynamics can be

written in the form

1 14
=7V D (1= p(2))(2Po(z) — 1)
o (3.5)
V,yz > (- )(1 = 2Py(zy))

and the Jacobian at the trivial fixed point becomes

s=2ry)a-uo) (1 ) (5:6)

As in the previous section, H(y) denotes the Hessian matrix of the average voter
utility U(y). The mean voter equilibrium remains stable also with incomplete

participation, as long as H(y) is negative definite, since 1 — p(0) > 0.

If we use E instead of W, the dynamics is given by

1

Vvyl PO Z’U)

> (3.7)

i = %vyz Zu — (=20) Po(—22)
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The Jacobian at the trivial fixed point thus becomes

1 -1

3= grocwe (L ) roa-uon (B g ) 69

where we have used the abbreviation

4
o 1
Cri(y) == % Z Oty (y)95us(y) 5 (3.9)
v=1
and H(y) is again the Hessian of the average voter satisfaction U(y), equ.(2.12).

If (y, y) is a fixed point on Hy we have necessarily (1/V) )" 0w, (y) = 0kU(y) =
0. Therefore we can write
1V
Cij() = 3 D (Okun(y) — U (1)) (9510 (y) — U () (3.10)
v=1
Thus the matrix C(y) is the covariance matrix of the components of the vectors

Vu,(y) with the the average being taken over all voters v, and hence C(y) is

non-negative definite for any fixed point (y,y) € Ha.

Thus the eigenvalues corresponding to the first part of J are 0 and p'’(0)A;,
resp., where ); is an eigenvalue of C, and therefore positive?. In the case of
strictly concave voter utility functions, all eigenvalues of the Hessian H are
negative. Since the sum of two negative definite matrices is again negative

definite, all eigenvalues of J are also negative and the mean voter equilibrium

is stable.

2Strictly speaking covariance matrices are only positive semi-definite. However, eigenvalues
0 occur only in the degenerate cases where the voter positions are confined to a hyper-plane
in issue space. We will neglect this complication in the following.
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3.3. Abstention Depending on Voter Utilities

In a more realistic model, we assume that a voter will abstain if the platforms
are far away from her ideal point. For simplicity we set:
1
El(yla y2) = V Z PO(ZU)\I}(UU(yl))
1 © (3.11)
Eyy',y’) =+ D Po(—20) T (uy(y?))

where ¥(u) is an increasing function of u. Recall that the voter utility u is

negative and decreasing with distance from the voter’s ideal point. The voting

dynamics becomes

it = = 3 [P Th) + Po(a) ¥ (wn(u1))] Vuulyh)
N (3.12)
92 = o Z [Pé(—zu)\lf(uv(yz)) + PO(—ZU)‘I’/(uv(?ﬂ))} Vuu(y2)

v

with a discrete voter distribution. The continuous case reads

v = / [Po(u(y’,2) — u(y?, 2)T(u(y',2)) + Po(u(y', ) — u(y?,2))¥' (u(y", 2))]
x Vu(y',x) p(x)dz
= / [Po(u(y? 2) —uly", 2)(uly",2)) + Po(u(y?,2) — u(y', 2)) ¥’ (u(y?, 2))]

oo

x Vu(y?,z) p(z)dz
(3.12')

Again this dynamical system remains unchanged under permutations of the
platform indices. As in the other two-party models, Hs,i.e., z, = 0, is invariant.

The Jacobian at a trivial fixed point is
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o35 _ lz 2PYO) (o () + = 0" (10 ()] Okt (3) 50 (1)
oyl Vv 0 oMW WGk E ey

v

+ [P0 W (uuw)) + 57 (o ()] s0(v)

ay]l 1 / !
5yt = v D P O (o )2hus (1))
. ’ (3.13)
ay? 1 !/ !
st = v D P OV (w)0kus (1)0y4 (1)
Y2
a—z% = % Z |:[2P(;(0)‘I’I("v (v)) + %q”l(uu (v))]Oruw (y)ajuv(y)
+ PO (s (9) + gwuv(y))]akajuu(y)}
The dynamics on Hs is given by the differential equation:
.1 ; 1_,
i=v2 [PO(O)\I'(uU(y)) +5Y (uv(y))] Ve, (y). (3.14)

v

In the following we analyze a few special cases with continuous voter distribu-
tions p(z). We shall restrict ourselves to the one-issue case. Furthermore, we

assume the Enelow-Hinich-type voter utility function u(y,z) = —(y—2)? and an

def

exponentially decaying voting probability of the form W (u,(y)) exp(puy, (y))

with pu > 0.

As a first example suppose that the voters are normally distributed with mean

1

% e, p(a) = —= exp(;Tw;). Equ.(3.14) then becomes

0 and variance o

) 1 <, 1 x? 9
b= [ B0+ Julew (s~ uly =) (-2 — ) . (3.5
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Using the abbreviations

202 +1 —1y 2 12
(JE2ET S, T = b 3.16
a 597 . c=py (3.16)

we may write the exponent in the form (az + b)? + c. Setting w = (ax + b), we

obtain the following expression

1 e 1 I w2
e °[2P5(0) + ] (— — E) y/ e dw

v= _0'\/271' a o
1 oo
me_c[Qpé(O) + ,U] / we_w2dw (317)
2P(0) + p a2—,ueb2
- 250 ﬁigg e, exp(—puy?)

The second part of the sum vanishes, since the second integrand is an odd
function. Since a? — p = 1/(202) > 0, this is of the form § = —Cy exp(—puy?)
with a positive constant C. Thus the mean voter point y = 0 is the only fixed

point. It is obviously stable within H,.

The Jacobian at y = 0 can be obtained from equ.(3.13) by evaluating similar

integrals:
ayt  8uPy(0)+2u2  2P5(0) + p
oyt 2v/20a3 V20a
1))
oy? 3
v 2v200 (3.18)
257 —4uPy(0)
oyt 2v20a3
9y*  8uPy(0) 4+ 2u*  2P{(0) + p
oy? 2v/20a3 V20a
Rewriting equ.(3.18) in matrix form yields
4pPy(0) ( 2 —1> 2u? (1 0) 2P{(0) + p (1 0)
J = Bl AL 3.19
(¥:) ot \—-1 2 ) T 5 35a8 L0 1 V2oa \O 1 (3.19)
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The eigenvalues of the first matrix are 3 and 1, resp. Therefore, the eigenvalues

of the Jacobian are given by:

1

A= 2\/?&3 [4P{(0)(3p — a*) + 2u(p — a®)] .
Ag = 2 20dd [(4P5(0) + 2) (1 — a?)]
The second eigenvalue, \o, is always negative since u — a? = —1/(202%). For
the first eigenvalue, A1, a bifurcation occurs at P}(0) = &g'i__(fz)). The mean

voter fixed point is therefore stable if ;1 < 1/(40?) independent of P}(0). For
p > 1/(40?), it is stable for small values of P}(0). The mean voter equilibrium

becomes unstable if

1

B> 55,3

(3.21)

in this case.

Using W instead of E we obtain the seemingly more complicated dynamical

system

g = / Vi Po(u(y',2) — u(y?, @) ¥(u(y', @) — Po(u(y?, @) — u(y',2)) ¥ (u(y’, z)) p(z)dz

oo

v’ = / V2 Po(u(y?,2) —u(y', 2))¥(u(y® z)) — Po(u(y', ) — u(y?,2))¥(u(y', 2)) p(x)dz

(3.22)

Of course Hs is again invariant. Choosing V¥, the voter distribution p, and the

voter utility u as above, yields the following analogue of equ.(3.17) on Hs:

= - OO, ) (3.23)
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Again, the mean voter equilibrium y = 0 is the only fixed point on Hs. Since
the first integral yields zero, it is easy to see that ¥ = 0 holds for y = 0. As
above a? — i > 0 implies that this fixed point is stable within the invariant
manifold Hy. The Jacobian of the complete system can be computed easily. At

the mean voter equilibrium we find

a3t _  (4P'(0)+m)(u—a?) at _

o, atoV2 our (3.24)
oy _ 0 92 _ (4P'(0)+p)(p—a®) '
oyt oy adov/2

In this system, the mean voter equilibrium is always stable.

Now let us assume that the voters are uniformly distributed in the interval
[—1,1]. Again, we will consider both the expected number of votes E, and the

differences W, as payoff functions. Explicitly we have

By ) = 5 [ Pole)esp (= n(y! —a)?)da

i - (3.25)
Ex(y',y*) = 3 /_1 Po(—2) exp (= u(y* — x)?)dx

In the first case, the differential equations read

1
' = % / { P3(2) expl—u(y" —2)°] + Po(z)nexp[—pu(y" — 2)’] } (-2)(y" — x)dw
—1

1
y* = % / { P3(=2) exp[—u(y* — 2)°] + Po(—2)pexpl-nu(y® — 2)’] }(-2)(y* — z)d=
-1

(3.26)

Again, it is easy to see that Hs, where y! = g2, is invariant. On this plane, a

fixed point must fulfill

Y= % /_1 (P5(0) + pnPo(0)) exp (— puly — 2)*)(=2)(y —2)dz =0  (3.27)
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If we make the substitution w ==

y — x, the dynamical equation is transformed

to
y+1
g = (P5(0) + p/2) / w exp(—pw?)dw (3.28)
y—1
Since [ wexp(—pw?) = —i exp(—pw?) a fixed point must satisfy

exp (— p(y+1)?)[1 —exp(4py)] = 0. Clearly, the only solution is exp(4py) = 1,

i.e., y = 0, corresponding to the mean voter fixed point.

The next step is the computation of the Jacobian of the full dynamical system

at the mean voter fixed point. We find

9 .1 1 1
8—31 = (4P (0)p + pi*) / 1562 exp(—pz?)dz — (Py(0) + g)/lexp(—uw2)dm
o o1 1
8—52 = —2P6(0),u/_1 z? exp(—px?)dx
o -2 1
a—zl = —2P6(0),u/_1 22 exp(—px?)dx
0y / oy [ 2 2 / p [ 2
ke (4P (0)p + 1) T exp(—pz”)dz — (F5(0) + 3) leXP(—Wﬁ )dx
(3.29)
The Jacobian is therefore of the form
1
AP (0)u+ i —2Pg(0)p )
J = x? exp(pa? dx( 0 0
[ eotutyar (MRS o .
L .
—P§(0) - & 0
—I—/ exp(—px?)dx < 0 2 )
o) 0 -Ri©)-4
The eigenvalues of the first matrix are
A = pu(p+6Py(0)) and A= u(p+ 2P5(0)). (3.31)
The integrals can be evaluated using the substitution puz? =L ¢2:
1
— — 1
/ xze_“dew = M + 2—\/§erf(\/ﬁ)
1 1 p\ p (3.32)

/_ 11 emHT dy = \/gerf(\/ﬁ)
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The largest eigenvalue of the Jacobian therefore is

Amax = —pie " + 2P}(0) [\/gerf(\/ﬁ) . 3e—u] (3.33)

The mean voter equilibrium becomes unstable for

pet

2 [\/%erf(\/ﬁ) - 36_“]

Pi(0) > (3.34)

A bifurcation can only occur if

et () > 3e7H, de,if p> pt & 0.5861855742. (3.35)
I

The numerical value of y* was obtained using octave.

5 T T T T T
‘. Uniform Distribution —
Normal Distribution -----
4 + i
3+ i
P'(0),
1+
1 1 1 1

Figure 8: Critical values of Pé(O) as a function of p for the two-party models using E
as party utility Gaussian voter distribution (equ.(3.12’), dashed line) and uniform
voter distribution (equ.(3.25), full line). We set 02 = 1/3 in equ.(3.21), so that both
voter distributions have the same variance. There is no bifurcation for p < p*. The
critical values are p* = 0.58618557 for uniform distribution and p* = 3/4 in the
Gaussian case.
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Finally, let us use W instead of E. Then the dynamics is given by

=3 [Pa<z> exp (= u(y' —2)%) + Po(=hpexp (— ply' — 2)%)+
Pi(-exp (~ uts? — o) (20" )
72 = ! / [Pé(—z) exp ( — u(y? — m)Q) + Po(—z)pexp ( — u(y® - $)2)+

Pl(=)exp (- nly’ — x>2)] (—2)(y? - 2)de
(3.36)

Table 1. Summary of Section 3.3: Bifurcation at the Trivial Equilibrium

Party Utility Function
Distribution E(yl,y?) W(yt,y?)
equ.(3.12’) equ.(3.22)
Gaussian P(0) = 54 no bifurcation
Uniform P}(0) = pe 2 no bifurcation
O( ) 2[\/§erf(\/ﬁ)—3e—“:|

It is easy to see that Hs, i.e., y' = y?, is invariant. A fixed point on this surface
has to fulfill y = 0.

i= @R +u/2) [ -sew(~p-o)ds  (330)

—1

4f w and obtain

We substitute y — x

y+1
Y = (2P}(0) + u/2) /_1 w exp(—pw?)dw . (3.38)

— 49 —



COMPLETE PARTICIPATION AND ABSTENTION

Thus, ¥ = 0 holds iff 1 — e**¥ = 0, i.e., iff y = 0. The mean voter point is
an equilibrium in this model as well. Let us now determine the entries of the
Jacobian at this point:

oy’

1 1
9y = (4P5(0)p +,u2)/ z2e M dx — (2P§(0) + g)/ e M dx

-1 -t (3.39)

dy? 1 1
a—zz = (4P5(0) + 41%) / 2%e ™ do — (2P5(0) + 5) / e do

while the off-diagonal terms 9y /dy? = 9y?/0y' = 0 vanish on H,. Substituting
the explicit expressions for the integrals we find that the Jacobian has the
twofold eigenvalue A = —(4P}(0)+ ) exp(—p) < 0. The mean voter equilibrium

in this system is stable, since A is always negative.

3.4. Numerical Analysis

Not much can be said in general about the dynamics of equ.(3.12). We expect
a globally stable mean voter equilibrium for small values of p and P’(0) by

analogy with the continuous cases discussed above.

In order to study the dynamics outside the invariant manifold Ho, numerical
bifurcation diagrams have been computed, see fig. 9. The fixed point coordi-
nates are calculated using Broyden’s multidimensional secant method [11], as
implemented in the Numerical Recipes [54] routine brodyn(). 500 to 5000 in-
dependent initial values, uniformly distributed in the box B have been used in
order to ensure that all fixed points are found. Computations were performed

on a Pentium PC running Linux.
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0.4 T 1.0
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© 0000005

1o 10 10 107 10
P'(0) P'(0)

Figure 9: Bifurcation diagram for equ.(3.12). Parameters: 100 voters uniformly distributed
n [-1,1], uw(y,z) = —(y — )?, U(u) = exp(—pu), P(z) = (1 + exp(az))~!. Stable
fixed points are indicated by black circles, small gray dots denote saddle points. For
small values of p there is a supercritical pitchfork bifurcation (Lh.s., p = 1). For
large values of p one finds a saddle-node bifurcation (which is doubled due to the
symmetry of the model) and a sub-critical pitchfork bifurcation (r.h.s., p = 5).

The eigenvalues of the Jacobian are computed by first reducing J to Hessen-
berg form (using balanc() and elmhes() and then applying the QR algorithm
using hqr()). The reason for this approach is that the programs have been
designed to deal with an arbitrary number of issues and parties, and thus a
direct computation of the eigenvalues of J from the characteristic polynomial

of J is infeasible.

Bifurcation diagrams, among them the examples shown in fig. 9, show that a
variety of different bifurcations occur in equ.(3.12). Of course, the exact para-

meter values of the bifurcation points depend quite strongly on the details of
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104 Subcritical Pitchfork

2 Saddle Node

14
2 Saddle Node
Supercritial Pitchfork
0.1 T T T
0.01 0.1 1 P (0) 10

Figure 10: Schematic phase diagram for 2 party model with utility dependent abstention,
equ.(3.12).
Parameters: u(z,y) = —(y — z)2, ¥U(u) = exp(—pu), P(z) = (1 + exp(az))~!, 100
voters uniformly distributed in [—1,1].
The regions of the phase diagram are labeled by schematic phase portraits indicating
the forward invariant box B = [~1,1]?, the invariant manifold Hs (diagonal line),
stable fixed points (full circles) and saddle points (open circles). We find 4 different
phase portraits with up to 7 equilibria. For small P’(0) and small p there is a single
stable equilibrium on H2 close to the mean voter position. The exact locations of
the bifurcations depend on the voter distribution.

the underlying voter distribution. Different (random) choices of the voter posi-
tions are found to lead to qualitatively the same bifurcation diagrams, though

the numerical values are different.

The schematic phase diagram in fig. 10 was obtained from a series of 1-parameter
bifurcation diagrams (with p fixed and parameter P’(0)). Within the range of

the numerical survey (u, P'(0) < 10) we encounter four different generic phase
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portraits. For small values of both p and P’(0) there is only a single equilibrium
on Hs which is stable. An increase of u gives rise to bifurcations. With p large
enough, for small values of P’(0) we find two saddle node bifurcations which
are related by symmetry. As P’(0) increases, first a sub-critical and then a
supercritical pitchfork bifurcation occur. As a consequence, up to 7 equilibria
could be found. Within the parameter range of the numerical survey there is

no Hopf bifurcation.
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4. Three Parties

4.1. Generalization to Three Parties

Let us now consider an election with three parties whose platforms are denoted
by y!, ¥%, y3. As in the previous section we denote by wu,(y?) voter v’s utility

of party p’s platform. Voter v’s utility differences will be denoted by

dpy == uy(yP) — uy(y?). (4.1)

Note that d;jq = —de.

The generalization of the probability function P is non-trivial. We shall assume
that the probability of voting for party p depends only on the three utility
d’l)

3 v
differences d o

o and dy, with {p,q,r} = {1,2,3}. Hence we seek functions
P : R? — [0,1] with the following properties:

(i)  Problv votes for p| = P(d%,,d>,,dy,.) = P(d%,,dy,,d?,), since the proba-

pq> ~pr’ Tgr pr? pq’ T'rq

bility of voting for party p cannot depend on the labeling of the other two

parties.
.. 8 ) ) v 8 v v v
(i) Wp(dpq,dpmdw) > 0 and Wp(dpq,dpmdqr) > 0 holds everywhere
Paq pr

on R3, i.e., the probability of voting for p always increases with the utility

differences d,, and d,,.

In the case of complete participation we have in addition

(iil) P(d2,,d%,,d>) + P(d,,dv,,d%) + P(d,,dv,,d°,) = 1.

pq’ “pr Tqr qp’ —qr> 7pr TPy Trq’ Tpq
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The general three-party dynamics assumes that the expected fraction of votes

for each party is

14
1 v v v
Ep = V Z P(dpq’ dpr7 dqr) (42)

v=1

and that each party tries to locally maximize its share of votes, i.e.,

rq’ ~"pr?

|4

: 1 S P, d d

yp = vypEp = Vypv p(d d dq'r‘) (43)
v=1

where {p,q,r} = {1,2,3} denotes the three parties.

Note that every permutation of the three parties leads to the same set of dif-
ferential equations, i.e., any permutation of the three parties is a symmetry of
the dynamical system (4.3). As a consequence, if there is a fixed point (a, b, ¢)
of equ.(4.3), then (a,c,b), (b,a,c), (b,c,a), (c,a,b), and (¢, b,a) are also equili-

brium points of (4.3).

We may recast equ.(4.3) somewhat more explicitly in the form

Vv
. 1 a v v v 8 v v v
= Z {Wfp(dpm dp'r’ dqr) + Wp(dpq’ dpr’ dqr)} Vu,(y?)  (4.3)
v=1 Pq pr

It will be convenient to use the notation 9P, etc., in order to denote the
partial derivatives of P with respect to its first, second, and third argument,
respectively. Equ.(4.3) reads in this notation

1 |4

i = > A P(dyy, dy,dl,) + 02P(dyy, dby,dly) } Vi (yF) - (4.4)

v=1
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4.2. Boundedness of the Orbits

The extremal voter positions span the box

(H[w?in,x?”]) (45)

in the state space R3. Intuitively, a platform outside B can always be improved
by approaching B, since the platform comes “closer” to all voters. The following

theorem shows that this is in fact true under the dynamics (4.3).

Theorem 1. (i) The box B defined by the extremal voter positions is forward
invariant; all orbits are eventually bounded in an arbitrary small neighborhood
of the box B.

(ii) If B has non-zero volume, i.e., if " < 3% for all issues k then B is even

strictly forward invariant under the dynamics (4.3) and all orbits are eventually

bounded in the interior of B.

Proof. (i) The dynamics can be recast in the form
a4
i = o 2V vy ()
v=1

where P serves as an abbreviation for the sum of the two partial derivatives
of P in the curly parentheses of equ.(4.4). As an immediate consequence of the
axioms of the probability function P we know that ¢/ > 0 in R3.

The voter dissatisfaction functions fulfill of course

Yk > 2™ = Opuy,(y) <0 and Yk < x}fin = Oruy(y) >0
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for all voters v. Consequently, y¢ < 0 whenever yi > x®>

and g, > 0 whenever
yh < 27", Thus there are no w-limits outside B, and all orbits are eventually
contained in an arbitrary small neighborhood of B.

(ii) If B has non-zero volume then for each issue k there are voters v and w such

that
yr > o = Gpu,(y) <0 and g <P = Gpuw(y) > 0.

Thus §? < 0 whenever yf > 22 and g% > 0 whenever y} < 27", Thus B is

strictly forward invariant. g

4.3. Invariant Manifolds

Lemma 1. The plane ’ng(” 2L 7= (y', v v%) e R¥ | yP = y9}, is invariant

under the three-party voting dynamics.

Proof. It is sufficient to show that Hg%) is invariant; the invariance of the

other two planes follows then from the symmetries of the voting dynamics.

Observing that d; = 0 and 2, 2L d¥, = d%; on H{*®) we find that

v
. 1 0 v v v 0 v v v
g = % Z [@P( 51,53, di3) + —3d§3p( 215 23ad13):| Vu,(y?)

14
1
=7 Z [01P (=2, 0, 2,) + 2P (— 20,0, 2,)] Vo (y?)
v=1
1| 0 0
0" = 3 [ P s B) + P i )| )

14
1
= Z [01P(— 24,0, 2,) + 02P(—2,,0, 2,)] Vi, (3°) .
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23)

Thus, y? = y3 implies §2 = > = 0, and Hg is in fact invariant. g

Note that the three-party dynamics does not reduce to the two party dynamics,
equ.(2.4), when two of the three parties have identical platforms. In particular,
a “coalition” of two parties receives two-thirds instead of half of the votes at a

trivial equilibrium, since each party individually gets one third of the votes.

Corollary. The manifold Hs 2£ {7 € R* |y! = y2 = 3?} is invariant under

the three-party voting model (4.4).
Proof. Follows from Hsz = Hgm) N Hg?’). -
Fixed points on Hg will be referred to as trivial. The first and second partial

derivatives of the response function P will be important in determining their

stability.

Lemma 2. On H3 we have

81P(0,0,0) = 8;P(0,0,0) L P’

03P

9?P(0,0,0) = 0,0,0) XL p”

(
(
8195P(0,0,0) + 8295P(0,0,0) = (4.6)
3P(
(0,

9109P(0,0,0) == P

Proof. The equations between partial derivatives are immediate consequences

of the symmetry property (i) of P. 4
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On Hg3, where the platforms of all three parties coincide, we find again a gradient

system:
1
= 7 2_01P(0,0,0) + 9:P(0,0,0)]Vuy(y") = 2P'VU(y") . (4.7)

The equilibria on this manifold are thus again exactly the critical points of the

average voter utility U(y).

4.4. Stability of Trivial Fixed Points

Let us now determine the Jacobian of our dynamical system for a fixed point
on Hs. By virtue of the symmetries of our model it is sufficient to compute the

entries 8y] /9y and 8y] /Oy2. We find explicitly

8y 1 v v v v v v
ayjl v Z {8f7)(d12a di3, dsz) + 8§’P(d12, di3, d33)+
k v
20109P(dYy, dis, d3s) }ajuv (yl)akuv(yl)
1 v v v v v v

+ % Z {81’P(d12, ds, d3g) + 02 P(d1y, dis, d23)}8kajuv(yl) (4.8)
8:&1 1 v v v v v v
ay% -V Z { - 8%73(6112’ di3, dyz) — 0102P(dYy, d5, d33)

+ 8105 P(dY, i, dy3) + 0203P(d3s, dis, dbs) } jue (y) drun (y?)
Substituting the values of the partial derivatives of P at the point (0,0,0) as

described in the previous subsection then yields

oy} 1

a—zjl 2P +P)— Z Ojuy (y) ko (y) + 2P 7 > Odjun(y)

a/; Hs3 v (49)
y.

58| =P+ P)g Zé‘ o ()0t (9)
yk: Hs
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The Jacobian at point (y,y,y) € Hs can thus be written in the form

A 2 -1 -1 1 00
Jy,y,y)=(P+P"Cly)y@ | -1 2 —-1]|+2PH(y)@|0 1 0],
-1 -1 2 0 0 1
(4.10)
where we have used the abbreviation
v
Cyj(y) = Z ko (Y)0Uy () - (4.11)

C is the covariance matrix of the components of the vectors Vu,(y) at a fixed
point of (4.4) on H3 by the same argument as in equ.(3.11). Again, H(y) is the

Hessian of the average voter utility.

We observe that the 3 x 3 matrix occurring in the first term is singular. It
has the simple eigenvalue 0 and the double eigenvalue 3. The first term is
therefore positive semi-definite provided P” + P > 0. The second term is
negative definite for a maximum of the average voter dissatisfaction, e.g., for
the unique fixed point when the Enelow-Hinich satisfaction function (2.1) is
used. Bifurcations may therefore occur at the trivial fixed point depending on
the ratio of P” + P and P’ even if U is a quadratic function. The three party

model differs qualitatively from the two party case in this respect.

4.5. An Explicit Example for P

The complicated form of the platform dynamics suggest that a detailed analysis

by analytical techniques will not be possible. Supplementary numerical studies
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are necessarily restricted to varying a small number of parameters. We therefore

choose the response function

P( ;’Jja ;)k:a ;)k) =

Po(diy) Po(dis) + Po(d3,)Po(dss) + Po(d§1)P0(d§2)(; 12)

which is a generalization of the sigmoidal function P, introduced in section 3.1.

The denominator in the above expression,
Ay = Po(diy) Po(dis) + Po(ds,) Po(dss) + Po(dsy)Po(dsy) (4.13)

is chosen such that condition (iii) from section 3.1., i.e., complete participation,

is satisfied.

Lemma 3. Equ.(4.12) fulfills the properties (i), (ii), and (iii) for a valid re-

sponse function P with complete participation.

Proof. We shall first simplify the notation by setting a = dY,, b = dis, c = d35.
We denote the denominator by A,. It is easy to see that (i) is fulfilled, since

def PO(a’)PO(b) _
Plabe) = BB T Pol—a) Po(e) T Pol D) Bo(—0)
_ Po(b)Po(a) _
Po(b)Po(a) + Po(—b) Po(—c) + Po(—a)Po(c)
= P(b,a,—c).

Incorporating the fact that

% = Py(a)[Po(b) — Py(c)],

since P}(a) = Pj(—a), we will show that condition (ii) is fulfilled since

P = L (Ph@Po) A~ 22
_ Pl(a) Po(b) Po(—a)Po(c) + Po(b) Po(—b) Po(—c) + Po(a) Po(b) Po(c)

or >0
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0 b oP(b,a, — 0 b
Symmetry of the system guarantees Plabe) _ 9P a,=c) _ IP(a, ’c). .
oa da ab

Introducing the abbreviation AY) 2L 9A,/du,(y’) we obtain the following,
rather complicated differential equation describing the platform dynamics of

three parties:

4

g1 - v v v v

i = % >~ A PY(dy) Po(dSs) + Po(dyy) P (dis)]0;u (y")
v=1

Po(dYy) Po(dys) Ay 2 AN dju, (yh)

|
K

Il
—

v

Agl[Pé(dqzjl)PO(dg:s) + PO(dgl)Pé(dgs)]ajuv(y2)

M<<

1
.92
yj—v

e
Il
—

(4.14)
1
V v

Po(dsy) Po(dss) A2 AP 9ju, (y7)

K

Il
—_

)

. 1 - v v v v

i3 = 5 Ay [P(d50) Poldsp) + Po(dsy) Po(d5))05,(s°)
v=1

\4
1 v v —
= 5 O Poldgy) Po(din) AT AP0y, (47)

v=1

This form is used explicitly for numerical investigations, in particular for the

calculation of bifurcation diagrams in section 4.11.

In order to determine the stability of the trivial equilibria we need the parame-

ters P’, P”, and P. A short calculation yields

2 .8
P = §P(’)(o), P'=0, and P = §P6(0)2. (4.15)
The Jacobian on Hj is of the form (4.10)
4 1 0 O 3 2 -1 -1
J= §P6(O)H® 01 0]+ §P6(0)2C @ -1 2 —1]. (4.16)
0 0 1 -1 -1 2
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The slope P§(0) of the sigmoidal function P, thus plays a crucial role for the
stability of the trivial equilibria. A trivial fixed point (y,y,y) that corresponds
to a maximum of U will be stable for small values of P{(0) and unstable for
large values of the slope. Recall that a steep slope of the function Py at 0
indicates a strong division of voters for either party whenever the platforms are
different. We can also say that P{(0) expresses how critically voters react in case
there are alternatives to choose between. For a more detailed analysis we shall
restrict ourselves to quadratic voter dissatisfaction functions in the following

subsection.

4.6. Three-Party Enelow-Hinich Model

We shall determine the critical value p* of P{(0) explicitly for the quadratic
Enelow-Hinich model with equal strengths s,; = s for all v and <. It is easy to
verify that the co-ordinates of the trivial fixed point are given by the average

voter’s position

1
vi=yl =yl =1 2L = "z, (4.17)

as in the two-party model discussed in the previous section. The matrix C

reduces in this special case to

4 2
Cij = % Z(.’L‘m — -i'i)(-rvj —_ i’j) def 452Vij (418)

v

i.e., it is a multiple of the co-variance matrix V of the distribution of voters in

the issue space. Let p denote the spectral radius (maximum eigenvalue) of the
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covariance matrix

e 1 — —
Vij =5 D (@i — &) (w0j — T5) (4.19)

of the distribution of voters in issue space. The largest eigenvalue of C is then
45%p. In the Enelow-Hinich model the Hessian H is diagonal. With constant
strength s we have explicitly H = —2sI. Therefore, each eigenvector of C is an

eigenvector of H. The largest eigenvalue of J is therefore

4P 0 8P (0)?
AmaX: 0( )(—28)14—&482[)3
S J (4.20)
_ 8sP}(0) '

(4spf%(0)——1>.

The average voter equilibrium therefore becomes unstable when PJ(0) exceeds

the critical value p* = Hlp . In the 1-issue case this reduces to
1
o — 4.21
P 4svar(x)’ (4.21)

where var(x) is the variance of the one-dimensional voter distribution.

Remark. The more general model with arbitrary strength cannot be solved ex-
plicitly since generally, H and J do not have the same eigenvectors and therefore

the computation of the eigenvalues will not be obvious.
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4.7.Incomplete Participation

In this subsection we consider a simple model with incomplete participation.

Consider the response function

Pla,b,c) = Po(a)Po(b). (4.22)

Lemma 4. The response function P defined above represents a probability,

i.e., P is non-negative and

Q = P(a,b,c)+ P(—-a,c,b) + P(=b,—c,a) < 1.

Proof. We have
P(a,b,c) = Py(a)Py(b)
P(—a,c,b) = (1 — Py(a))Py(c)
P(—=b,—c,a) =1 — Py(b) — Py(c) + Po(b)Py(c)
We have to distinguish two cases:
case 1: Py(b) > Py(c).
Q = Po(a)[Po(b) — Po(c)] + Po(c) + 1 — Py(b) — Po(c) + Po(b)Po(c)
<Py(b) — Po(c) + Po(c) +1 — Py(b) — Po(c) + Po(c) < 1

case 2: Po(b) S P()(C). Q S P()(C) +1-— P()(b) - P()(C) + Po(b) =1. B

Now we have to compute the three parameters P”, 75, and P’. A short calcu-
lation yields

P" =0, P=P(0)?* P =Pj0)/2. (4.23)
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Therefore Apax = 25P}(0)[6spP;(0) — 1] with Enelow-Hinich voter utilities with

equal strength where H = —2sI. The critical value of P§(0) is in this case

1

p* = (6sp)~! and p* = (6svar(x))~! in the 1-issue case.

4.8. Three Party Model with Normal Distribution of Voters

The dynamical system in (4.4) with normal voter distribution and a single issue
explicitly reads

. -2 [ —z2?
gl = (01P(dra, dis, das) + 82P(d1a, dis, d2s) ) (y' — ) exp(—— )da
oVv2r J_ 20
o0 2
) — —x
y? = / (317’((121, d23,d13) + 02P(d21, d23, d13)) (y> —z)exp(——)dz  (4.24)
oV2m [_ 20
.3 -2 > 3 22
y° = (01P(ds1, ds2, d12) + 82P(da1, d3z, d12) ) (y° — @) exp(=—5 )d
ov2m J_ 20

It is easy to see that Hg is invariant. The fixed points on this line are given by

the equation

j = (91P(0,0,0) + 9;P(0,0,0))(y — =) exp( -, 5 )da
oV2r J_o 20
4 . 2 (4.25)
__ ; T Vdr =
= 27r7) y/_oo exp( 5,7 Jdz =0

This is fulfilled for y = 0, which is in fact the mean of the voter distribution.

def

Substituting % t2 we get

/00 eXp(_—xj)da: = o\V21 (4.26)

20

—0o0
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and hence y = —4P’y. Let us first consider the simple model with incom-

plete participation. We simply set P(d;j, di, djr) == P(di;)P(d;r.). Now we

compute the Jacobian at the trivial fixed point:

8(P" +P)o?—4P'  —A(P" +P)o? —4(P" + P)o?
J=| —4(P"+P)0> S8(P"'+P)o?—4P  —4(P"+P)o?
_4(fpll + P)O’2 _4(7)// + 7))0_2 8(7)// + 7))0.2 _ 4rpl

(4.27)

2

where o2 = var(z). The expressions P”, P, and P’ are defined as in section 4.3.

At the trivial fixed point, P =0, P’ = P‘;2(0), and P = P(;(O)Q. The Jacobian

is therefore of the following form

2 -1 -1 1 00
J = 4P}(0)*s? -1 2 -1 ] —2P0) 0 1 0 (4.28)
-1 -1 2 0 0 1

The first matrix has 0 as a simple eigenvalue and 3 as an eigenvalue with mul-
tiplicity 2. A bifurcation in this system occurs at P}(0) = (602?)~!. Not surpri-
singly, this is the same result as for the discrete voter distribution discussed in

the previous section.

In the case of complete participation, we have P” = 0, P’ = %Pé(()), and

P = 8P}(0)2. The Jacobian thus reads:

49 2 -1 -1 . 1 00
J:?P6(0)202 -1 2 -—1 —gp(;(o) 0 1 0 (4.29)
-1 -1 2 0 0 1

A bifurcation occurs at P§(0) = (402)~1. This result agrees with that obtained

for the discrete voter distribution discussed in the previous section.
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4.9. Three Party Model with Uniform Distribution of Voters

Let us assume that the voters are distributed uniformly on the interval [—1, 1].

Then the dynamics in three dimensions is of the following form:
gt = (—1)/ (1P (d12, d13, dog) + 02P(d12, di3, d23)) (y' — x)dx
7* = (-1) /1 (1P (da1, doz, di3) + 02P(do1, dos, d13)) (y* — x)dz  (4.30)
7* = (-1) /1 (01P(ds1, d3a, di2) + 02 P(d31, ds2, d12)) (y° — )da
On H3, the dynamics reduces to
= —4P'y (4.31)

Thus, the mean voter y = 0 is again a fixed point. Let us compute the Jacobian

at the trivial fixed point for the case of incomplete participation:

S(P"+P)—4P'  —E(P'+P) —4(P" +P)
J=| —5(P"+P) §(P'+P)-4P  —5(P"+7P) (4.32)
—4(P" +P) 4P +P  EP'4+P)—4P

where P", P’, and P are again defined as in section 4.3. We may write the

Jacobian at the trivial fixed point as follows:

4 2 -1 -1 1 00
J:§P6(0)2 -1 2 —1]—2P}0) 01 0 (4.33)
-1 -1 2 00 1

A bifurcation occurs if the largest eigenvalue of the Jacobian (which in this
case has multiplicity 2) becomes zero. This happens at P{(0) = 3. Since

the variance of the uniform distribution on [-1,1] is 1/3, the location of the
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bifurcation is consistent with the result p* = (6svar(x))~! from the previous

two sections.

The case of complete participation yields the following Jacobian:

39 2 -1 -1 g 1 00
J=""Pi0)*| -1 2 -1 —gp(;(o) 0 (4.34)
1

= 0 1
27 1 -1 2 0 0
The bifurcation at the trivial fixed point occurs at P}(0) = 3, which is again

consistent with the result p* = (4svar(x))~!.

4.10. General Continuous Voter Distributions

The agreement between the results of the previous two sections and the discrete
case considered in section 4.4 strongly suggests that equ.(4.10) can be generali-
zed to continuous voter distributions. Assuming a continuous voter distribution,
equ.(4.3) becomes

= [ 0P (g, dyrdar) + P (g dyr dop) Dy ) . (4.35)

We see immediately that on H3 this reduces to
U, = 2P’ /]R’ ou(y, x) p(z)dz (4.36)

Setting yr = 0 in (4.36) defines the coordinates of the trivial fixed point(s).
Similarly, we find for the Jacobian matrix at a point § = (y,y,y) € Ha:

8yl€ _ " A
o= 2P+ P) [ oy, )0y, ) )i

+ 2P’ /]RI OOy, x) p(x)dx (4.37)
2

ZJdk _ _(p! >
By? (P"+P) /]R’ du(y, x)ou(y, x) p(x)dx
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In analogy with the discrete case we introduce the average voter utility

U= [ uloo) oo, (4.38)

Clearly, Hyi(y) = [rr OxOiu(y, z) p(x)dz is the Hessian of U. Using equ.(4.36)

with y = 0 we may interpret

Coly) = [, druly.)dua(y. ) o) (139

as the covariance of 0,U and 0,U. With this notation we recover equ.(4.10)
also in the case of general continuous voter distributions. In section 5 we shall
discuss the relation of continuous and discrete voter distributions in some more

detail.

Finally, consider the Enelow-Hinich type voter utilities (1.7) for a single issue,

u(y,z) = —s(@)(y — =)

For simplicity we assume that p(xz) and s(x) are
symmetric around 0. Obviously, ¥y = 0 is the unique mean voter fixed point
in this case. We consider the three example of position dependent strength

functions introduced in equ.(1.5).
For uniform voters, s(x) = 1/2, we find C = var(z) and H = —1.

For extremist voters, s(z) = |z|, we find C = 4curt(x) = 4f+°° xt

o T¥p(x)dx and
H = =2 [* [z]p(x)ds

For centrist voters, s(x) = max[1 — |z|,0], we have to assume that the support
of p(x) is contained in [—1,1] in order to obtain “pretty” equations. With this
additional assumption we find H = fj;o |z|p(x)dx —2 and a rather complicated

expression for C.
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Table 2. Position Dependent Strength Factors.

The bifurcation at the trivial fixed point of a 3-party Enelow-Hinich model with
position dependent strength factors depends quite strongly on the model for the
strength factors, equ.(1.5). We assume a uniform voter distribution on [—a, a]

with @ < 1 and use the response function P defined in equ.(4.12).

uniform extremist centrist
H -1 -« a—2
C a?/3 (4/5)a* (4/3)a? — 203 + (4/5)at
p* (3/2)a”* (5/8)a”" —H/(2C)

1/(2« |l <«
Suppose (z) = { o Ix} >a

The value of H, and C for the three models of the strength functions are

, 1.e., the uniform distribution on [—a, a].

compiled in table 2.

Using the response function (4.12) we obtain

4 8
/\maw = g 6(O)H + gPé(O)QC (440)

from (4.10). The bifurcation points p* = —H/(2C) are given in table 2. Note
the strong dependence of the bifurcation points on the model for the strength

factors.

4.11. Numerical Analysis

In this section we report a few numerical results obtained for a three party

model with a single issue. Two bifurcation diagrams are shown in figure 11.
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The procedure for obtaining the bifurcation diagrams is explained in section 3.4.

The phase space is projected onto the single coordinate

o Y25y

. (4.41)

in order to break the symmetry of the model and make all fixed points visible.

The response function is Py(z) = (1 + tanh(az))/2.

A close inspection of the figures shows that the search for rest points does not
work perfectly. For instance, the mean voter equilibrium is not found for all
values of P’(0). This problem could be overcome by increasing the number of
initial guesses for the search algorithm, at the expense of a further increase in
CPU requirements (The computation of figures 11a and b already took several
weeks on fast workstations because the evaluation of the party utilities are

computationally rather demanding).

There is a large number of bifurcation points in the three party model. For
small and moderate values of P’(0) we find the same sequence of bifurcations
with different voter distributions. For large values of P’(0) numerical difficulties
make the interpretation of the bifurcation diagrams doubtful. We have identified
a sequence of 8 bifurcations in both examples shown in figure 11 and in a
number examples not shown here. These bifurcations are listed in table 2. An

enlargement of the first three bifurcations is shown in figure 13.

The first bifurcation is a saddle node bifurcation with the invariant planes H,,.
Hence it occurs with multiplicity 3. For slightly larger values of P’(0) we find
a degenerate transcritical bifurcation in which 3 unstable fixed points (that are

located in the in the planes H,, and have a single unstable manifold) “collide”
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Figure 11: Numerical bifurcation diagrams of three-party one-issue Enelow-Hinich models.
Stable fixed points appear as bold black lines. Two types of saddle points were
found: Saddles with one unstable direction appear in bold grey, while those with
two unstable manifolds correspond to thin black lines (or small dots).
top: 100 voters with ideal points uniformly distributed in [—1, 1].
below: 20 voters with ideal points uniformly distributed in [—1,1]. Beyond P’(0) =
17 the program seems to produce spurious solutions in regions of the phase space
where the gradients become very small.

Note that the two diagrams differ only by the voter distribution. Hence the dynamics
is very sensitive to the details of the voter distribution at least for large values of

P'(0).
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Figure 12: Detail of a bifurcation diagram for the 3-party 1-issue Enelow-Hinich model with
20 voters. Different random numbers were used to generate a voter distribution that
is different from the one in figure 11.

Table 3. Bifurcations in the Three-Party Model.

Bifurcation points from the two cases shown in figure 11 are listed here.

Bifurcation Multi- 100 voters 20 voters
Type plicity fig. 12 top fig. 12 bottom
Saddle-Node 3 0.76225 0.905
deg. Transcritical 1 0.7627 0.910
Pitchfork, supercrit. 3 0.7785 1.05
Hopf, supercrit. 6 1.59 2.06
Saddle-Node 6 3.43 3.51
Hopf, supercrit. 6 3.69 3.78
Saddle-Node 6 15.45 7.685
Saddle-Node 6 18.75 14.0
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1.0
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Position of Party 1  (y1)

Figure 13: A large limit cycle for P/(0) = 5, V = 20 voters, and a single issue.
Fixed points are indicated by symbols: < indicates saddle points with two equal
coordinates (there are 2 sets, any two of them are projected onto the same point
in the yl/y2 plane). A full circle indicates the mean voter point, A denotes saddle
points with S3-symmetry, i.e., not on any plane Hypq.

with the (stable) mean voter fixed point. After the bifurcation the mean voter

is unstable as well (with two unstable manifolds).

At higher value of P’(0) the stable equilibria within H,, undergo pitchfork bi-
furcations producing 6 stable fixed points and three saddle points, one within
each of the three planes H,,. The coordinates of the 6 stable equilibria are re-
lated by permutation symmetry. As P’(0) increases further these sinks undergo

supercritical Hopf bifurcations, thereby giving rise to stable limit cycles.

At even larger values of the bifurcation parameter we find a sixfold saddle
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node bifurcation followed by a supercritical Hopf bifurcation. At large values
of P'(0) the system does not contain stable fixed points. A number of saddle
node bifurcations produce additional saddle points as P’(0) increases. In this

regime we also find large stable limit cycles, such as the example in figure 13.
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5. Perturbations

5.1. Perturbed Vector Fields

The question of how small perturbations affect the dynamics has been the ob-
ject to extensive investigations. In the following, the most important facts on
perturbation theory are summarized. We follow the presentation in reference
[25, chap. 16]. Then we will consider two applications of perturbation theory:
First we briefly discuss an extension of the spatial voting model to ideologi-
cal parties. Then we show that discrete voter distributions may be viewed as

perturbations of continuous ones and wvice versa.

Consider a normed vector space E and let W be an open set in E. Let V(W)
be the set of all C! vector fields on W. For any vector field G € V(W) we define

the norm

1G]l == sup{|G(y)|, [0G:(y)/0y;| } (5.1)

yeEW
A neighborhood of F € V(W) is therefore a subset A € V(W) containing a set

of the form

{G e VMG - Fll\ < €} (5.2)

We call G a regular e-perturbation of F if it satisfies (5.2).

Proposition 1. Let 7 : W — E be a C! vector field and & € W an equilibrium
of & = F(x) such that the Jacobian of F at Z is invertible. Then there exists a

neighborhood U C W of & and a neighborhood A C V(W) of F such that for
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any G € A there is a unique equilibrium g € U of § = G(y). For any 6 > 0 we
can choose the neighborhood A of F so that |j — &| < 6.

Proposition 1 applies to the special case where & is a hyperbolic equilibrium,
i.e. where all the eigenvalues of the Jacobian at & have nonzero real parts and
therefore the Jacobian is invertible. The indez ind(%) of & is the number of
eigenvalues (counting multiplicities) of the Jacobian having negative real parts.
If dim £ = n, then ind(Z) = n means & is a sink, while ind(Z) = 0 means it
is a source. If the Jacobian of F in % is hyperbolic, then we may choose A in
Proposition 1 such that y has the same index as . In many cases we encounter
a family of vector fields depending on a parameter {. We shall write F¢ to

incorporate this fact.

Proposition 2. Suppose F; is a family of functions that is continuous in &
(i.e., the map ¢ : R — V(W) : £ — F¢ is continuous) such that Fy = F and ¢ is
a hyperbolic fixed point of § = F(y). Then there is £, > 0 and a neighborhood
U of ¢ such that for all £ in the interval 0 < £ < £; there is a unique fixed point
y(&) € U of F¢. The parameter &, can be chosen such that §(¢) is hyperbolic
and has the same index as §. In addition, §({) is a continuous function of the
perturbation parameter £ for a given fixed point §(0) = g of the unperturbed

vector field.

A similar result holds for periodic orbits as well [25, sect. 16.2]. If there is a
unique closed orbit in the unperturbed system, one will also find closed orbits in
the perturbed system if the perturbation is sufficiently small, but the uniqueness
is in generally not guaranteed. However, there is one special case where the

uniqueness of the closed orbit of the perturbation is certain: If v is a periodic
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attractor (resp. repellor) under F and G is sufficiently close to F, then there
will be a unique closed orbit 3 in the perturbed system G.

The flow y = F(y) and the flow § = G(y) are topologically equivalent if there is
a diffeomorphism between the vector fields (resp. a homeomorphism between
the solutions) that carries each trajectory of the original flow onto a trajectory

of the perturbation.

If for some € all e-perturbations of F are topologically equivalent to F, then F
is called structurally stable. On R? it is relatively easy to characterize stable
flows. For instance, based on the Pontryagin-Andronov theorem [3], Peixoto
[48] showed that a flow on a forward invariant disk D? is structurally stable if
and only if

(i)  the equilibria in D? are hyperbolic,

(ii) each closed orbit in D? is either a periodic attractor or a periodic repellor,

(iii) no trajectory in D? goes from saddle to saddle.

Furthermore, Peixoto’s theorem guarantees that almost all flows on a forward

invariant disk D? are structurally stable (on orientable manifolds).

The situation is more complicated in higher dimensions. An important result
is the generalization of Peixoto’s theorem that states that almost all gradient
fields are structurally stable [47]. This result serves as a motivation to introduce
perturbation in our model. We may expect that at least the gradient-like flow
within the invariant planes H,, where all party platforms are equal, will be
structurally stable for a wide range of parameters, excluding bifurcation points

(which, of course, are non-hyperbolic).
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5.2. Policy Dependent Platform Utilities

Let us suppose that, in addition to maximizing its share of voters a party also
cares about achieving an “ideal” platform, designated by Y? [44, sect. 4.6]. A
party’s utility then depends on both the number of expected votes E, and the
distance, D(y?,YP), between its actual and ideal platforms. We thus replace
party p’s utility by (1—&)E,(y', ..., y7)—£D(yP, YP), where £ parameterizes the
relative importance of the election outcome versus the ideological component.

The voting dynamics is then
P =UP(y) — € [V(F) + TP(y") ], (5.3)
where T?(y?) = V,» D(yP, YP) and VP(§) = VB, (v, ..., y").

Restricting attention to the box B, we may assume that '’ and its partial
derivatives with respect to y;? are bounded (as D is assumed to be continuously
differentiable on R! x R! ), by some constant M. Without loss of generality
(i.e., without changing the dynamics) we will assume that I'? and £ are scaled
such that M =1 and £ measures the size of the ideological payoff component.

Thus £[¥P(y) 4+ I'P(yP)] forms a regular perturbation of the vector field ¥ (7).

Introducing an ideological payoff component will in general break the symmetry
of the vector field and, hence, also the symmetry of the mean voter equilibrium.
Thus, in general, we will find §'(¢) # §%(¢) even for small values of & > 0.
Using a perturbation approach that was also extensively applied to selection-
mutation equations in theoretical biology [66] it is possible to estimate the

location of the perturbed mean voter equilibrium. Taking into account the
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knowledge that ¥(y) = 0, with this approach it is possible to estimate the
location of a perturbed mean-voter equilibrium:
I3

e =g+ @ | | roe. (5.4)
I (y")

Thus, the distance of the equilibrium positions of the P parties is proportional

to the parameter &.

In the extreme case, when £ ~ 1, and a party’s behavior is mostly determined
by its ideology, we may consider the voter-dependent term ¥ as a perturbation.
In this case each party will settle down to an equilibrium close to YP, since in

the limiting case where ¥ = 0 the vector field is of the form
§P ==V D(y", Y7) (5.5)

This is a gradient system in which each party converges to a minimum of

D(yP,Y?) independent of the other parties.

5.3. Continuous Versus Discrete Voter Distributions

In this section we shall see that the dynamics of platform adaptation is essenti-
ally the same whether we assume a continuous or a discrete voter distribution.
More precisely, we show that to each continuous voter distribution we can con-

struct a discrete one leading to essentially the same behavior, and vice versa.

It will be convenient to abbreviate the vector field of a spatial voting model

with voter distribution p simply by F(y, p). Our ODE is thus § = F(y, p). Let
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) be a compact set in R?*. In practice we choose () such that all, or at least
the overwhelming majority of voter ideal positions are located within ). In the
following we shall be concerned only with the platform dynamics within @ in

order to be able to apply the perturbation theory outlined in section 5.1.

Theorem 1. Let Q ¢ R3! be compact. Let p be a continuous voter distribution
that is bounded above by a|2z|~® and suppose |Oxu(y?, z)|, |0;0;u(y?, x)|, and
|0;u(yP, £)0;u(y?, x)| are bounded by A + B|z|? uniformly for all § € Q and all
zeR". If a > 2(8 + 1) the following is true:

For each § > 0 there is a discrete voter distribution p with V' = V(§) voters,

such that

1 F(y, p) — F(y, p)|l« < 6. (5.6)

In other words, if p(x) decreases sufficiently fast and/or if the absolute values
of the derivatives of the voter dissatisfaction function do not increase too fast,
then we may replace a continuous voter distribution by a discrete sample. The
changes in the dynamics constitute a regular perturbation, the size of which
is determined by the sample size, i.e., the number of voters in the discrete
case. This result is of particular interest for numerical investigations, since the
models with continuous voter distributions lead to integro-differential equations

that are not easy to implement in practice.

Proof of Theorem 1.
For the proof of the theorem we shall need a number of technical lemmas. The
first step looks rather far-fetched. It will be convenient, however, to restrict

most of the work to a compact subset of IRY:
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Lemma 1. Let F(x) > 0 and suppose p is a continuous distribution and let
®(r) and 9 (r) be non-negative functions such that

®(r) > max [F(z)]  ¢(r) > max ()]

Suppose there is a positive function R(8) such that for all § > 0 the following
is true:

(i) There is a probability density p such that |p(z) — p(x)| < (14 1/vol(1))é
if |x| < R(6) and p(x) = 0 for |x| > R().

(o]

(i) surf(1) / O(r)y(r)yr'—tdr < 6.

R(5)
Then: (%iII(l) SR(6)'®(R(6)) = 0 implies %ir% /]RI F(z)(p(x) — p(x))dx = 0.

Proof. ®(R()) is an upper bound for |F(x)| on the compact sphere with radius
R(6)) and ®(r)(r) is a radial symmetrical upper bound for |F(x)|p(x). Using

polar coordinates we obtain

@) = s < [Pl - o
<

< / |F(x)[(1+ 1/V01(1))6dﬂ:+/ |F(x)|p(x)dx
|z|<R(6) |z|>R(8)

< (14 1/v0l(1))®(R(8))évol(1)R(6)! + surf(1) / ®(r)(r)yri—tdr
R(6)
where vol(1) is the volume and surf(1) is the surface of the n-dimensional hyper-

sphere with radius 1, respectively. Since the second part of the above sum is

smaller than é by assumption the proof is complete. g

Next we show that we can satisfy the requirement of lemma 1 with reasonable

upper bounds ®(r) and ¥(r):
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Lemma 2. Set ®(r) 2L ¢; + cor? and (1) <L a1~ with ¢1, cp, a1, 0,3 >0

and a > @+ I. Furthermore let

R(é) def (6/B)1/(I+ﬁ_a) With B = al(c%—kc;) fOI‘ 6 < B
o — _

oo

and R(6) <L 1 for § > B. Then / ®(r)(r)yri—tdr < 6.
R(8)

Proof. Case (i) < B: We find
== a C C
Jracey ®O(r)r —tdr = S0 (5)577 4 %y 5 < MR S =4

a—(B+I) B —
since /B < 1land (a —I)/(a—=1—-0)>1.

Case (ii) 6 > B: Then R(6) = 1 and the integral simplifies to cya1/(a — I) +
caa1/(a—B3—-1)< B <b.4

Lemma 3. Let @, ¢ as in lemma 2 and suppose a > 2(I + 3). Then

lim 6®(R(8))R(6)! = 0.

§—0

Proof. Of course it is sufficient to consider § < B. In this case we find

«—2(I+p) o«—2(I+p)

SO(R(6)R(S) = 1 (%) = + e (%) T et o) (%) e

which converges to 0 since the exponent of ¢ is positive. g

Next we construct a step-wise continuous distribution p satisfying the assump-
tion of lemma 1. To this end we divide K(6) into N = N(§) small compact
sets IC; with non-zero measure that intersect each other at most with their

boundaries. We define:

- det 1 1
ple) = vol(K;) /,C ple)de + vol(K(5)) /]Rf\zc(a) pla)de
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in the interior of IC;. The mean value theorem implies that there is an z; € ;

such that
) = plas) + L ()

Furthermore we set j(z) = 0 on R? \ K(6) and adopt the convention that j(z)
is the (arithmetic) mean of p(x;) for all KC; that contain z. It is easy to verify

that p(x) is indeed a probability density:

/]R, plx)dr = /’C (5) pla)dr = Z vol(Ki)p(w:) + vol(K(6)) L(6)

:/ p(m)daz—l—/ p(a:)dac:/ p(x)dr =1.
K(6) R'\k(s) R’

As in Lemma 1 we assume f]RI\IC(é) p(x)dxr < 6, and the radius of KC(§) is at
least 1. Therefore 0 < L(é) < 6/vol(1). Since p is continuous and K(6) is
compact we may choose the covering {K;} such that |p(z) — p(z;)| < 6 on K;

for all 7, and hence we have everywhere:
|p(z) — pla)| <6+ L(6) < 6(1+1/vol(1)).

Thus there is indeed a probability density satisfying the conditions posed in

lemma 1.

In the next step, we construct a discrete voter probability distribution

pz) = %me)é(x @),

where p(x;) is the number of voters with ideal point x;. Therefore, the fraction

of voters having x; as ideal point x; is

/ ple)de = p(a) |V |
K;
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We define
p(z;) = [V vol(K;)p(z)].

Then |p(x;) — Vvol(K;)p(x)| < 1, which is equivalent to

/’C‘ p(z)dx — /IC p(x)dx

7 7

Ip(z:)/V — vol(Ki)p(x)| =

<1/V.

It remains to link the function F(.) in the above integrals to the spatial voting
model. Consider the general case with P parties. The response function for

each party p can be written in the following way:
P(dp,l, dp,Q, ceey dp,P, dl’g, ceey dljp, ceey dp_ljp)
= Tp(u(yla 'T)a u(yQa x)a ceey u(yP’ 37))
For the j-th component of the differential equation for platform p we have

F(z) = 8%(%@% ), 0y, 2), . uy", ) = B,T,d;u(y”, 2)

Since T}, is a sum of continuously differentiable multi-dimensional sigmoidal
functions, 9,7}, is bounded by assumption. For simplicity we write u, = u(y?, x)

in the following. In case of the partial derivatives of the vector field we have
9 — ag.p
F(z) = a—yz(aprajup) = 0y0p TpOkuqdjup + 91,017 0;76p quyp.

Again, 0,0,T), is bounded by assumption. The behavior of F'(.) therefore de-

pends only on the form of the voter dissatisfaction function (and its derivatives).

In summary, we have

[F(x)| <€ max_ {[0;u(y’,z)],|0k0;uly?, z)],|05u(y?, x)Okuly?, )|}
,J>P,q,YEQ

with some constant C' > 0, and theorem 1 follows. g
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Corollary 1. For the Enelow-Hinich model the conclusion of theorem holds
if p(z) < ay/|z|*¥*+2). For the Gaussian voter dissatisfaction functions in the

example (2.16) is suffices to require p(z) < a1/|z|?*L.

Proof. One easily verifies, that the Enelow-Hinich model satisfies
Oru(yP,x) < A + B|z| while the second derivatives are constant. Thus 3 = 2.

Both the first and second derivatives are bounded in the example (2.16), i.e.,

B=0. ,

Corollary 2. The conclusion of the theorem is true if the first and second
derivatives of u are bounded by a polynomial in |x| and p decreases exponentially
with |z|. It is trivially satisfied if p has compact support (as in the case of the

uniform distribution) for arbitrary C? functions w.

Remark. The converse is rather trivial. Given a discrete voter distribution of

the form
1%

p(z) = % S 6z — ), (5.7)
we may replace the 6-distribution by a continuously differentiable approxima-
tion such that the difference between the vector fields is arbitrarily small. For
instance, if |u(z,y)| < f(y)eX =I* for an arbitrary function f depending only
on y, we may use a Gaussian distribution with sufficiently small variance to

approximate the é-distribution.
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6. Discrete Time Dynamics

6.1. Discrete versus Continuous Time Models

Elections usually are held at regular time intervals. One may therefore view
the platform dynamics as a discrete process mapping one election outcome onto
the next one. This amounts to dropping the assumption that opinion polls are
conducted continuously, focusing instead on the platform changes due to the
pre-election campaign. Instead of a continuous time model of the form y = f(y)
we have to consider its discrete time analogue y' = y + 7f(y) where the time

scale 7 measures the platform mobility from one election to the next.

In the following, let f be a continuously differentiable vector field on IR™ and 7

a positive constant.
Lemma 1. y = f(y) and ¥’ = y + 7f(y) have the same fixed points.

Proof. =0 < f(y)=0andy' =y <= f(y) =0.4

Lemma 2. Let J denote the Jacobian of f, i.e. Ji(y) = 0fr/0y;. Then the
Jacobian of the discrete time system is J=1+7J , where I denotes the identity

matrix.

Proof. In componentwise notation, the entries of J read %y?j’ = b + T%y(ly),

l.e. jkl = (5kl + TJkl- x
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def

Lemma 3. If \ is an eigenvalue of J then A 1+ 7A is an eigenvalue of J

that belongs to the same eigenvector.

Proof. Let x be an eigenvector of J for the eigenvalue A\. Then

Je=Tr+7hr=(1+7\z = z. 4

We know that for a stable fixed point in the continuous time system, all eigen-
values of J are negative. A fixed point is stable in the discrete time model if

|A| < 1 for all eigenvalues.

Lemma 4. If a fixed point is stable in the discrete time model it is also stable
in the continuous time model. If a fixed point is unstable in the continuous

time model it is also unstable in the discrete time model.

Proof. For the sake of generality, we will write down all the eigenvalues with

complex entries, i.e.

5\1 def ()\) )\2 def %(A) )\1 def ()\) )\2 def %()\)’.

Then the relations between the real parts of the eigenvectors are
A =1+7)\ Ao = TAs )\1:(5\1—1)/7' )\2:5\2/7',.
If the fixed point is stable in the discrete time model, then
A2=1+2rA + (D)A <1

for all eigenvalues which is equivalent to A\; < —7|A|*/2 < 0 for all eigenvalues.

If the fixed point is unstable in the continuous time model, i.e., Apax;1 > 0,

then Amax:1 > 1 follows, and therefore |Apax| = \/;\?nax;l + X'?nawﬂ > 1. 4
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For our purposes it will be useful to consider the case of real eigenvalues (since

the Jacobian at the trivial fixed point of the voting model is symmetric).

Lemma 5. Suppose J has only real eigenvalues. Then a stable fixed point in
the continuous time model is also stable in the discrete time model provided

T < 2/r(J), where r(J) is the spectral radius of J.

Proof. First we observe that r(J) = —Anyin since all eigenvalues of J are non-
positive. —1 < 1+ 7Amin and 1 + 7Anax < 1 have to be fulfilled for a stable
fixed point in the discrete time version. The second condition is fulfilled for

every value of 7. The first condition holds iff 7 < —2/Anin = 2/7(J). 4

Remark. A bifurcation occurs at 7% = —2/ A\ = 2/7(J).

6.2. Discrete-Time Enelow-Hinich Models

6.2.1. Two-Party Model

Lemma 1. In the discrete time two party model a bifurcation occurs at the

trivial fixed point for 7* = [2P/(0)max;5;] " .

Proof. The eigenvalues of the Jacobian at the trivial fixed point are

i = —4P'(0)s;,
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Figure 14: Bifurcation in the discrete time 2-party model. P’(0) = 1/2. Back dots indicate
the stable equilibria for different values of 7. The dotted line marks the mean voter
equilibrium.

where ¢ = 1,...,I. The fixed point is stable in the discrete time system iff

IAil = |14 Ai| < 1 for all i. This inequality can be written as
—1 <14 mmin); <1+ 7max)\; < 1.

The second part of the above inequality is of course fulfilled since all eigenvalues
A are negative. The first part of the inequality is fulfilled only if
-2

T < - .
min; \;

Since min;(—4P’(0)5;) = —4P'(0)max;5;, the first part of the inequality is
fulfilled only if 7 < [2P’(0)max;s;]~*. 4
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Remark. If we assume equal strength of voters’ interests in all the issues, i.e.

1
5; = 5 for all 7, then 7* = 5P (0)5

6.2.2. 3-Party Enelow-Hinich Model with Complete Participation

Lemma 2. A bifurcation at the trivial fixed point in the discrete time system

* 3
occurs at 7 = Py (0)5*

Proof. Let us assume that the trivial fixed point is stable in the continuous
time model and that 5; = § for all i. The Jacobian at (y,y,y) € Hs can be

written in the form

X 2 -1 -1 1 0 0
Jy,y,y)=(P+P"Cly)@ | -1 2 —-1|+2PH(H®|0 1 0
-1 -1 2 0 0 1

Since the 3 x 3 matrix occurring in the first term has the simple eigenvalue 0

and the eigenvalue 3 with algebraic multiplicity 2, the largest eigenvalue of J is

given by
4Py (0 8P, (0)?
Amax = 0 (0) .—25-1+ ﬂ-zl(g)?p-s
3 9
8s5P' (0)

== <4sppo’(0) - 1) .

Since the trivial fixed point is stable in the continuous time model, 14+ Apax < 1

holds. The minimal eigenvalue is

4Py’ (0)
3

- (—25) - 1.

)\min =

The critical value of 7* in the discrete time model is therefore
-2 3
Amin  4P'(0)5" ™

T =
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As a consequence of the above considerations, we get the following result for

the discrete time three party model with incomplete participation:

Lemma 3. The bifurcation at the trivial fixed point occurs for 7% = Py (0)5
0 S
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7. Multi-Party Systems

7.1. Generalization to P parties

In this section, we will consider an election with P parties, the respective plat-
forms being denoted by y!, ...,y*. Voter v’s utility of party p’s platform will
be denoted by u,(y?), as in previous sections. The utility differences for voter

v will be denoted by

dpy == o (yP) — wu(y?) (7.1)

v o _ Ju
and hence dpq = dqp.

The probability function P : R(:) [0, 1] depends on all (123 ) pairwise voter

utility differences. We use the notation

Prob[v votes for 1] = Py(d) = P(d¥y, ..., d p;ds, ..., d%_1p) (7.2)
Note that the first P —1 arguments have a different influence than the remaining
(P —1)(P — 2)/2 arguments. We require that the multidimensional sigmoidal
function P has the following properties:
(i) 8qu(ci) = J0P,/dd,, > 0 for the first P — 1 arguments. The probability
of voting for party p thus increases with increasing values of d,4, ¢ # p.

(ii) We require that the voting probabilities are independent of the party la-

belings. Thus, for any permutation 7 of (1,..., P) fixing 1, i.e., 7(1) = 1
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we have
P(dy2,dis,...,d1p;das, dog, ... dap,dss,...,dp_1p) =
P(dryr(2)s Ae(yr(3)s « - - » A (1) 2 (P) A (2)m(3) D (2)m (4) 5 - - - (7.3)

ey de@yn(P)s Ar(3)m(4)s - - - » A (P—1),7(P))

- -

In the same way Pp(d) = Pi(n(d)) is constructed for any permutation 7 map-
ping 1 to p, where p € {1,2,..., P}. Condition (i) implies that the orbits are
bounded within a box B, here B is the I-dimensional box spanned by the
extreme voter positions. The proof is analogous to the two and three party

models.

The permutation symmetry (ii) implies that we need to compute only the partial

derivatives

oP o*p %P
1 a1 and 19,2 "
dyp  Oypdy; 9y, 0y;

All other partial derivatives can be obtained using a permutation 7 of the
indices. In particular, the partial derivatives at the mean voter position d=3d

are determined by only three parameters:

P =8,P(G), P'=000P(), and P =0,8,P(5). (7.4)

Lemma 1. 0pP(0) =0

Proof. Let 7: 7(2) = 3 be the transposition (2,3). Then

Pldra,dis, ..., dvpydoz, dog, .., dsay . dp_1p) =
P(dis,d12,...,d1p,dsa,dog, ... ds4,...,dp_1p), Where do3 and dsa, resp.,

are at position P. Then 0pP(dy2,d13,...,d1p,do3,...,dp_1p) =

—9pP(dy3,d12...,dip,d32...,dp_1p). Therefore, 9pP(6) = 0. 4
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P—1
Lemma 2. Z 0,0pP(0) = 0.

p=1

Proof. Consider 7 : 7'(2) = 3. Then P(dlg, d13, d14, ey dlp, d23, ey dp_l’P)

= P(dlg, dlg, d14, ey dlp, dgg, ey dp_l,p), and dgg, resp., dgg are on pOSitiOIl
P. Then
P—-1
Op Y 0pP(dra, dis, dra, ..., d1p,das, ..., dp_1p) =
p_la P—-1
r p; OpP(d12, d13,d1gs - - ., dipydas, ..., dp_1 p) =
9 P-1
Frm p; 8pP(dys, d1a,dra, ..., dip,dsg, ..., dp_1 p) =
P-1
—0p Y _ 0,P(di3,d1a,dus, ... d1p,dsa,....dp_1,p)
p=1

The lemma follows immediately. Clearly, the result holds for every position

q > P as well.

The dynamics of the multi-party system with discrete voter distribution can

thus be written in the form

i = % Y 0,2 (@0u(y” ) (7.5)

v q#p

def

The I-dimensional surface Hp {yly* = y? =,...,=yF'} is of course invari-

ant. A fixed point within Hp will be called ¢rivial. Note that by property (ii) in

section 7.1 every permutation of the party indices leaves equ.(7.5) unchanged.
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7.2. Explicit Example for P

Consider the multidimensional response function

P
1
v v v v v v v def v
P( 129 %13y« » o U1 Py U235 Y24y« » s YW2Py e+ ¢ P—l,P) A_ H PO( lp)’ (7'6)
v
where the normalization factor is

P P
A=Y TL Rola) (7.7)

Lemma 3. The above response function fulfills the properties (i) and (ii).

Proof.

873 P, dv v v 3] v v v
8d§’ = (14 %2) [PO(d13)P0(d14)---P0(d1P)[Av - PO(d12)P0(d13)---P0(d1P)]
2 v

+ P()(d71]2)P0(d11)3)Po(dvlp)Po(dgg)Po(d54)P()(dv2p) >0

Furthermore,
P(dfru)w(z), dli(l)w(s), SRR d;(l)w(Pﬁ
S dfr(a)w(g), dz(Q)w(AL)a ceey dz(a)w(P)dz(a)n@), S dfr(P_nw(P))

1 . .
= A_PO( w(l)ﬁ(g))PO(d*/r(l)ﬂ'(:”) e Po(dﬂ'(l)ﬂ'(P))

A short calculation yields

2 L 4(P-1
pzﬁﬂm% P’ =0, P:Jiglﬂ@? (7.8)
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7.3. Bifurcations at the Trivial Equilibrium

The Jacobian at a point in H p has the following entries:

Ayt
aZjl N Z{[Za%

Z 0p04P1(0 }8 u(y, ) O u(y, T,)

p,q=1
PF#q

Z 9, P1(3)9;0ku(y, x,) }

P—-12P-3

oyt 1 —
L5 [0S om@ s S S 0@ |t etz
J v p=1

p=1 =P

Since for any position ¢ > P the expression J, 25:_11 0pP1(0) vanishes, we

obtain the following Jacobian at a point in Hp:

P-1 -1 -1 ... -1
. -1 P-1 -1 ... -1
J=|P"+(P-2)P|C(y)® : : : .
-1 -1 -1 ... P-1 (79)
1 00 0
) 010 0
+[(P_1)P]H(y)® : : : :
000 ... 1

Note that this expression indeed generalizes equ.(2.11) for P = 2 and equ.(4.10)
for P = 3. The first part of the Jacobian can be written as PI — L, where I is
the identity matrix and L is the matrix which has 1 in every entry. It is easy to
see that the eigenvalues of L are P (with multiplicity 1) and 0 (with multiplicity
P —1). Whenever Z is an eigenvector of L with eigenvalue A, then P — X is
an eigenvalue of PI — L (counting multiplicities). Therefore, the eigenvalues of

PI + (—1)L are P (with multiplicity P — 1) and 0 (with multiplicity 1).

- 101 -



MULTI-PARTY SYSTEMS

7.4. P-Party Enelow-Hinich Model

From the above calculations, we get the following Jacobian for a model with P

parties:
P—-1 -1 |
4P =1)(P -2 -1 P—-1 ... -1
J= ( 13)2( )P6(0)2C(y) ® : . :
-1 -1 P—-1
(7.10)
1 0 0
2(P -1 0 1 0
%Pg(O)H(y) ® C .
0 0 1

As in the three-party model, the matrix C at the trivial fixed point in the

Enelow-Hinich model with constant strength s,; = s for all v and 7 reduces to

Cij = 482V (7.11)

YK

where V is the co-variance matrix of the voter distribution in issue space. Let

p denote the spectral radius (maximum eigenvalue) of the covariance matrix

e 1 — —
Vij = & D (@i — ) (w05 — 7)) (7.12)

of the voter distribution in issue space. The Hessian H is diagonal. We have
explicitly
H = —2sI. (7.13)

The largest eigenvalue of the Jacobian is therefore

4P(P —1)(P — 2)4s2
N = PLZ VP =257y 12

P2
:wpg(o)(zL(P —2)spPy(0) - 1).

4s(P — 1)P, 0
P o0 (7.14)

- 102 -



MULTI-PARTY SYSTEMS

For P = 2 we have A,.x < 0, and for P = 3 we have

8sP!(0)

)\max =

(4spP§(0) — 1), (7.15)

recovering equ.(4.20). The average voter equilibrium becomes unstable when

P}(0) exceeds the critical value p* = . In the 1-issue case, for P > 2,

1
4(P—2)sp

this reduces to
1
* 7.16
P 4(P — 2)svar(z)’ (7.16)

where var(x) is the variance of the one-dimensional voter distribution.

With the response function

P
/P(d11]23 dql)Sa LR quPa gSa 54, LRRR gPa R 71)3—1,P) = H Po(dqup)’ (7'17)
p=2
we get
P =22"Ppj0), P"=0, and P =23"FP)0)>2. (7.18)

The largest eigenvalue of the Jacobian at the trivial equilibrium is

Amax = 237 P}(0)2P(P — 2)4s%p — 23~ P P} (0)(P — 1)s (7.19)
A bifurcation at the trivial fixed point occurs at P}(0) = ﬁ. In the

1-issue case, for P > 2, this reduces to

. P-1
b= P(P — 2)4svar(x)’ (7.20)

For P = 2, we have AL.x < 0, and for P = 3 we have

Amax = 25P(0)(63pP)(0) — 1). (7.21)
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7.5. Two Times Two Parties

Let us consider a model with four parties with pairwise equal platforms. Wi-
thout losing generality, let us assume y! = y? and y? = y*. We want to show

that the system reduces to a 2-party model with a modified response function

P. With

-

Pi(d) = P(di2,d13,d14, d23, das, d3a)
_ Po(di2) Po(diz) Po(dra) (7.22)

it [ Poldip)

in the surface H4 2L {y € R¥|y' = 43,y = y*} we have the following expres-

sions for the voting probabilities:

_ Po(2)?
Pi(z,—2) = 2(P0(z)2 + Po(—2)2)

= Ps(z,—2)

. Po(—Z)2
7)2(2, _Z) - Z(P()(Z)Q + PO(—Z)Q)

= 734(2, —Z)

(7.23)

def def
where z == dj9, and —z == do;.

Using the function P(z)

2
L % as a response function, we shall see
that this model reduces to a two-party model. Of course, the probabilities of

voting for each party is % if the platforms are equal, i.e. z = 0.

The dynamical equations are of the form

i’ = %Z [Pg(zuiiggjé}z—zv)b [Po(z0) Po(—2,)]0ju(y", =)

(7.24)

" = %Z [P&(zj)lji(;gz)_m]g [Po(20) Po(—20)]05u(y? )
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Remark. If we compare the dynamical equations for the 2 x 2-party case with

those in the 2-party case, we observe that both systems are of the form

1
yjl = v Z ®( 20, _Zv)aju(yl’xv)
o (7.25)
ij = V Z é(zva _Zv)aju(y2’xv)'

Now we shall show that P(z) is indeed a sigmoidal function.
Lemma 1. Let Py(z) be a twice differentiable sigmoidal function with
Py(z) =1 — Py(—=z) and Py(z) — 0 for 2 — —oo. Then

= Py(2)?
PR = BT ma)

is a twice differentiable function satisfying P(z) = 1 —P(—z) and P(z) — 0 for

zZ — —0OQ.

Proof. Tt is easy to see that P(z) + P(—z) = 1. Furthermore, P(2) is strictly

monotonically increasing, since

o -

2P{(2)Py(2) Po(—2)
[P§(2) + P53 (—=2)]?

>0

It remains to show that z = 0 is the only point of inflection of P.

0% - 2
229 = ARG 1 2P

(1 = 2P(2))(1 + 2Py(2) — 2P2(2))
+ Py'(2)Po(2)(1 = Po(2))(1 = 2Py(2) + 2P5(2))

The term in the denominator, (1—2Py(z)+2PZ(z))3 is always positive, since it

can be written as [(1 — Py(z))% + Py(2)?]? > 0. It occurs also in the second part
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of the above sum, which reads P{(2)Po(2)(1 — Py(2))(1 — 2Py (2) + 2P2(z)). Of
course, we have P['(z) < 0 for all z > 0 and Pj/(z) > 0 for all z < 0, while all
other entries are positive independent of z. The term 1+ 2Py(z) — 2P2(2) =
1 + 2Py(2)(1 — Po(z)) in the first part of the sum is always positive, while
(1 -2Py(z)) <0 forall z> 0 and (1 —2Py(z)) > 0 for all z < 0. Therefore,

z = 0 is the only point of inflection of P(2). 4
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8. Conclusions

8.1. Summary

We have derived a dynamical system describing the adaptation of party plat-
forms in a spatial voting model. Such models are based on the assumption that
political issues can be quantified and hence party platforms can be encoded
as points in a Euclidean vector space the coordinates of which designate the

different political issues.

Voters are characterized by their ideal points and their utility functions that
depend monotonically on a measure of the distance between a party’s platform
and the voter’s ideal point. The probability that a given voter votes for a
particular party depends on the pairwise differences of the utilities of all the
parties for the given voter in such a way that the party yielding the highest
utility is the one that is most likely to receive the vote. The corresponding voter
response functions can be viewed as multi-dimensional sigmoidal functions. The
slope of these sigmoidals, which measures the extent to which the voters are
rational (or critical towards the party platforms) has turned out to be the most

important parameter.

The active players are the parties. The payoff of a platform is determined as the
expected fraction of votes that it receives. Parties change their platforms along

the gradient of their payoff functions. The phase space thus has the dimension
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I x P in a model with [ issues and P parties. Some general properties of this
dynamical system show that it behaves reasonably at least at a global scale: all
orbits are eventually bounded within a box that is spanned by the most extreme
voter positions. All planes in the phase-space on which two or more platform
positions coincide are invariant. In most cases we assume that the voter utility
functions are independent of the party labels; then the dynamical system has

Sp-permutation symmetry.

In section 2 we have considered a variety of different aspects of the two-party
case. Most notably, we find that under a wide variety of circumstances the
platforms of all parties converge eventually to the mean voter fixed point. In
particular, the mean voter point is globally stable for concave voter utility
functions. For a much larger class of models we could at least ensure local
stability of the mean voter fixed points: in particular the introduction of non-
policy values, which introduce a dependence of the voter utilities on the party
labels, does not lead to a bifurcation. It is known, on the other hand, that the

mean voter equilibrium can become unstable if the voter utilities are Gaussian

[44].

Is section 3 we have considered two party models where voters are allowed to
abstain. The probability of abstention was modeled at a heuristic level. In
the first case we have assumed that voters will abstain if the utility for both
parties is small and/or the parties’ platform positions are very similar. The
resulting dynamical system maintains its symmetries and it is possible to show
that the mean voter equilibrium is stable in the case of convex utility functions,
independent of whether the expected fraction or the expected gain of votes is

used as a party’s payoff function.
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As an alternative approach we have assumed that probability for participating
in the election decreases with the distance of the platforms from a voter’s ideal
point. In this case we find that it makes a difference whether the expected
fraction of votes for a party or the expected fraction of votes that a party
is ahead of its competitor is chosen as the party payoff function. With the
expected difference, there is no bifurcation, while with the expected fraction
of votes the mean voter fixed point becomes unstable for critical voters and a
participation probability that drops sufficiently fast with the distance to the

platforms.

In the next chapter the model is generalized to three parties. In contrast to
the two-party case, the mean voter equilibrium is unstable for critical voters
even in the case of concave voter utility functions. The bifurcation point is
determined by the slope of the multidimensional sigmoidal response function
that determines how critical the voters are. A number of explicit examples,
with both discrete and continuous distributions of voter ideal points in issue
space are discussed. We obtain analogous results in all cases. This suggests
that the details of the voter distribution have only a minor influence on the
qualitative dynamical behavior. The analytical studies are complemented by a
numerical survey. We found rather complicated bifurcation diagrams for this
type of model. In particular, for sufficiently critical voters there are multiple
locally stable fixed points. In other parameter ranges we find stable limit cycles

and the absence of stable equilibria.

Perturbations were the theme of chapter 5. After a brief discussion of platform

dynamics with ideological parties, i.e., parties whose platform mobility is limited
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to the surrounding of the parties’ preferred position in issue space, we consider
the differences between discrete and continuous voter distributions. We show
that under fairly general conditions we may approximate a continuous voter
distribution by a discrete one in such a way that the discrepancy is a regular
perturbation of the dynamical system. This perturbation can become arbitrarily

small if the discrete approximation contains a sufficiently large number of voters.

In chapter 6, we have analyzed a two party as well as a three party model
with discrete time dynamics and compare the results with those obtained in
the continuous time cases. It turns out that even with a simple quadratic voter
utility function, a bifurcation occurs at the trivial fixed point in both the two-
and the three party model, provided the time between two subsequent elections

in the discrete-time model is large enough.

Most of the results obtained for three parties carry over to multi-party systems
(chapter 7). In particular the mean voter equilibrium becomes unstable for
sufficiently critical voters. Finally we showed that a 4-party system in which
two pairs of parties have the same platforms always translates into a two-party

system.

In summary, the dynamical model of platform adaptation leads to reasonable
behavior. Platform positions converge towards the mean voter position if the
voters are not critical towards (or not interested in) the behavior of the parties.
On the other hand, a population of critical voters keeps platform positions well
separated and in substantial fractions of the parameter space there are no stable

equilibria and we observe periodic attractors.
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8.2. Directions for Future Research

Several modifications of the payoff function could be considered. An interesting
phenomenon described in the book [22] is that the voters are oftentimes more
supportive of the incumbent, see also [17, 56]. This could be modeled by an
extra payoff contribution to the incumbent’s payoff function, (i.e., the party

with the largest fraction of votes at the time of the previous election).

Instead of the expected number of votes, a party’s probability of winning could
be used as its payoff function. The simple-minded model of ideological parties
discussed in (5.2) is not entirely satisfactory. It would be interesting to design

a more realistic model for this case.

In this work abstention was treated on a very simple phenomenological basis.
However, the literature on voter turnout is extensive [2]. While rational choice
theory was generally not very successful there are promising hybrids of rational
choice modeling and behavioral approaches, see e.g., [29]. Detailed models of
this kind could provide more detailed insights into the influence of abstention

on platform dynamics.

A severe limitation of all the models presented in this thesis is the fact that
voter positions are treated as fixed parameters. In a more realistic setting,
voters would respond to the parties’ campaigns by modifying their ideal points
and/or strength factor. A very simple way making the voters active players
would be to allow their ideal points to move in response to a gravitation-like
“opinion field” in the vicinities of parties, figure 15. One might set

Ey =V, > Up(yP,z,) (8.1)

p
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Figure 15: Allowing the voters to change their minds: Voters close to the parties’ platform
positions are attracted by the campaign, those that are far away remain unaffected.
The “sphere of influence” of a party (gray circles) could model the quality of their
campaign.

where the field ¥, (y?, x,) decreases with the distance between voter position x,
and party position yP. More sophisticated models might also include differential
effects on strength factors, or effects that depend on the mutual distances of

parties.

The formation of coalitions is a most important effect in multi-party systems
that was completely excluded from the models discussed here. It is clear that
in models with multi-party systems a party’s payoff is given not only by its
voters, but also by its possibility to participate in a government coalition. It is
by no means clear that this could be formulated within the framework of spatial

voting theory.

It might also be worthwhile to study the influence of election procedures [61, 62]

(for instance, majority voting versus proportional representation) on platform
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dynamics. It is very likely that such a model will involve much more complicated

versions of the response function P.

Many of the above extensions and modifications of adaptive voting dynamics
might not lend themselves to modeling by means of differential equations and
most likely can be treated only by computer simulations. In a different vain it
would be interesting to investigate applications of the gradient-like dynamics to
other models such as firms that are competing with one another over complex

goods.
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Appendix A: Sigmoidal Functions

Sigmoidal functions play a prominent role in this thesis. In this appendix we
review some of their properties in detail. In the following we consider a function

f:IR — IR. We shall use X and Y to designate (finite or infinite) intervals.

Definition. A function f is

convex on X if f(px + qy) < pf(x) + qf(y);

concave on X if f(pz + qy) > pf(z) + qf(y);

strictly convex on X if f(px + qy) < pf(x) + ¢f (y);
strictly concave on X if f(px + qy) > pf(z) + qf (y);

affine on X if f(pz + qy) = pf(z) + af(y)
for all z,y € X such that * <y and 0 < p,q < 1 such that p+ ¢ = 1.

Lemma 1. f is strictly convex (concave) on X if and only if f is convex

(concave) and there is no interval Y C X such that f is affine on Y.

Proof. Suppose f is convex and not affine on any interval Y but there are

three points x1, 2, and z = (1— A)z1 + Azg, such that

f(z) = (1= A)f(z1) + Af(22)

is fulfilled for some A with 0 < A < 1. Then there must be points p and ¢ such

that
p=(1-=XA)z1+ Az

q=(1—XApx1 + A2,
with 0 < A, < A < Ay <1 such that

f(p) < (1= 2p)f(1) + Apf(x2) and

flg) < (1= Ag)f(z1) + Agf(2),
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Convexity of f implies that

f(z) <1 —=a)f(p)+af(q)

for some o € (0,1) and

z=(1-a)p+aq,

which can be rewritten in the form:
z=[1—-a)(1—=A,)+a(l =)z + [(1 —a)\, + ar|zs.

If we define
A=(1—-a)X, +a)g,

substituting the strict inequalities for f(p) and f(q) we find

f(2) <[(1 = a)(1=Ap) + a(l = Al f(z1) + [(1 — )Ap + adg]f(22)
= (1= A)f(z1) + Af(2),
and we arrive at a contradiction. Hence, if f is convex and not affine on any

interval it must be strictly convex.

The converse is trivial. For concave f the proof is analogous.

Definition. A function f : R — R is sigmoidal if it satisfies:

(i) f is bounded.

(ii) f is monotonically increasing on IR or monotonically decreasing on RR.

(iii) There is a point m € IR such that f is concave on (—oo,m) and convex on
(m, +00), or vice versa. Any point m with this property is called an inflection
point of f. We say f is non-trivial if it is not a constant function.

The function f is strictly sigmoidal if (iii) is replaced by
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(iii’) There is a point m € R such that f is strictly concave on (—oo,m) and

strictly convex on (m, 4+00), or vice versa.

Lemma 2. Let f be a sigmoidal function. Then the set M of its inflection

points is an interval. f is an affine function on M.

Proof. Suppose m; and msy are points of inflection and let x € (my,msg). f is
concave on [my,00) and therefore also on [x,00), and f is convex on (—oo, ms]
and therefore also on (—oo, x]. Thus x is a point of inflection, and the set of all
inflection points is an interval. Since f is both convex and concave on [my, ms],

f is affine on this interval, and hence on M.

Corollary. Consider a sigmoidal function f and let m be an inflection point.

Then m is unique if and only if f is strictly sigmoidal in a neighborhood of m.

Proof. Follows immediately from Lemmas 1 and 2. 4

Definition. A sigmoidal function f is symmetric if there exists an m € IR such

that f(m + x) + f(m —x) = 2f(m) for all z € IR. We call m a center of f.
Lemma 3. A center m of a sigmoidal function f is a point of inflection.

Proof. Suppose m is center point of f. Then there exists an x € IR such that

m—z <m<m+zandm=3(m—x)+

1

5(m+2). If m is no point of inflection,

then

Fm) = £ (=) + G0m+2)) £ 3 fm =)+ flm+ 0

which is a contradiction to the fact that m is a center point. g
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Lemma 4. Let f be a non-constant sigmoidal function. Then the center m is

unique. If f is constant each m € IR is a center.

Proof. Suppose there are two center points m; and ms.

Then for every ¢ € R there exist § = 2ms — ¢ and ¢ = 2m — ¢ such that
f(a@) + £(@) = 2f(m2) and
f(@) + f(q) = 2f(m1).

Particularly, for m; =< 2mo — m; and My == 2m; — my the following must

hold:

flmi) + f(m1) =2f(me)  and  f(ma) + f(a) = 2f(m1)

These expressions can be transformed to:

f(my) + f(m2) = f(my) + f(m2).

Analogously, for my = 2my — 19 and my = 2mq — My

we get

f(mg) = 2f(mz) — f(in2) and

f(ma) = 2f(m1) = f(ma).
Substituting f(mq) = 2f(mz) — f(my) and f(my) = 2f(my) — f(ms), we see
that

f(my) + f(mg) = f(m1) + f(ma).

We now can define TErLl = 2my — m; and Tgng = 2my — my. Then
Fmy) = 4f(my) = 3f(ma)

f(”gh) = 4f(m1) - 3f(m2)
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and again, we get

FOn) + f(ima) = f(ma) + f(ma).

Continuing this process, we find that the function values of all successive mirror
images of m; and ms that are obtained by iterating the above procedure must lie
on a common straight line. On the other hand, f is monotonous and bounded.

Thus, f must be constant. g
From (i) and (ii) we conclude immediately that the limits

a= lim f(z)< lim f(z)=">

T—r— 00 r— 00

exist. If f is differentiable, then f/'(x) > 0 for all x. A twice differentiable
sigmoidal function satisfies f"”(z)f"(y) < 0 for all z,y such that z < m < y.

This inequality is strict for strictly sigmoidal functions. Of course we have

f"(m) = 0.
Theorem 1. A sigmoidal polynomial is constant.

Proof. Let p(z) = a,a2™ + a,_12" 1 4+ ...+ ag

n—1
limp(x):limanm”(l—i—a T )zoo

rT— 00 an T an '/I’.n
Analogously,

lim p(z) =

r——00

o0 for n even,
—oo for n odd.

Thus, there exists no sigmoidal polynomial function.

Theorem 2. A sigmoidal rational function is constant.
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Proof. Let us assume without loosing generality that

p(x) = apa™ + ap_1x™ "+ ...

+ ag and () = bpx™ + bpp_12™ L + ... + bo.

Since 2&) has to be bounded, ¢(x) # 0 has to be fulfilled. Thus, ¢ must be an

q(z)

even polynomial, i.e. m has to be even. We then have the following rational

function:

For x — oo,

p(x) apr" +anp_12" 4.

+(l()

q(z)  bppx™ + bpp_gxm L 4L

() oo if n>m

lim —+~ = 0 if n<m

=—co q(2) ‘;—Z if n=m

—00o forn>m

) p(z) %) forn >m
lim —% =

z——oo q(x) 0 forn<m

Gn forn=m

bn

+ bo

and n odd

and n even

There is no possibility for p(x)/g(x) to be monotonically increasing, except if

p(x)/q(x) is constant. g

Definition. A normalized sigmoidal function f has the following additional

properties:

(i) limg_ o f(x)=-1
(i) limg_o f(z) =1

(i) f(0)=0

We close this section with a table of the most useful sigmoidal functions.

Table 4. Important Normalized Sigmoidal Functions [1].

f(ﬂ(C)) f'iw)) f'(0) ff|(9€‘)dw

sgn(x 26(x 00 x

2 arctan(z) 7T(1+332) 2/m 2 [zarctana — 5 In(1 4 27)]
tanh(x) 1 — tanh®(x) 1 In cosh(z)
erf () \/2— exp(—x?) % zerf(z) + \/i; exp(—a?)
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