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ZUSAMMENFASSUNG

Zusammenfassung

Die vorliegende Arbeit betrachtet die Sequenz-Sekundarstruktur-Abbildung in RNA von drei ver-
schiedenen Blickwinkeln aus. Die einfachste Herangehensweise, die gleichzeitig die detaillierteste
Information liefert, zahlt systematisch alle Sequenzen einer gegebenen Linge auf und bestimmt fiir
jede von ihnen die Struktur. Mit einem realistischen Strukturvorhersagealgorithmus (wie minimale-
freie-Energie-Faltung) und dem natiirlichen Basenalphabet kommt dieser Ansatz aus Zeit- und
Platzgriinden jedoch nur fiir sehr kurze Sequenzen in Frage. Als ein Beispiel werden in dieser
Arbeit durch vollstindige Aufzihlung gewonnene Faltungsdaten fiir den Sequenzraum Q.. der
Sequenzen der Liange 16 iiber dem natiirlichen Alphabet vorgestellt und die Anwendbarkeit eines
Zufallsgraphenmodells fiir die neutralen Netze dieses Raumes wird diskutiert. Die Faltungsland-
schaft zeigt die bekannten Eigenschaften der Sequenz-Sekundirstruktur-Abbildung von RNA: es
gibt wenige haufige und viele seltene Strukturen, Sequenzen, die in haufige Strukturen falten, sind
anniherend isotrop iiber den Sequenzraum verteilt und gleichzeitig rdumlich nah zu Sequenzen, die
in beliebige andere hiufige Strukturen falten, und der Raum besitzt ausgedehnte neutrale Netze.
Die bei einer so kurzen Sequenzlange ausgebildeten Strukturen sind notwendigerweise wenig stabil,
wodurch Mutationen hiufig kontext- und positionsabhéngige Effekte haben. Das ist wahrscheinlich
ein Grund dafiir, daB die Netze in Q.,,- weniger dicht sind als vom Zufallsgraphenmodell
vorhergesagt, jedoch stirker verbunden. Auflerdem ist die offene Kette die bei weitem hiufigste
Konformation und daher erscheinen die neutralen Netze der Strukturen in ihrem Netz eingebettet.

Vollstandige Aufzihlung kommt fiir Sequenzen der Linge, wie sie natiirlicherweise in Zellen gefund-
en werden, nicht in Frage, so dal die Graphstruktur der neutralen Netze solcher Sequenzen im
allgemeinen unbekannt ist. Im zweiten Teil der Arbeit wird eine Methode vorgeschlagen, die es
erlaubt, den Grad der Verbundenheit eines Netzwerks aus einer kleinen Stichprobe seiner Sequenzen
zu schitzen. Die Methode setzt voraus, daf} fiir zwei Sequenzen, die zur gleichen Komponente des
Netzwerks gehoren, ein verbindendender Pfad existiert, der in der Hiille des kiirzestmoglichen
Pfades enthalten ist (lokale Verbundenheit). Diese fiir allgemeine Graphen nicht voraussetzbare
Eigenschaft wird vom Zufallsgraphenmodell fiir die neutralen Netze in Faltungslandschaften vorher-
gesagt. In der Arbeit wird gezeigt, daB sie in Netzen des Raumes Q2% so weit erfiillt ist, daf der
Anteil lokal verbundener Sequenzpaare in einer Stichprobe das Vorhandensein einer oder mehrerer
Zusammenhangskomponenten im gesamten Netzwerk zuverléssig schatzt.

Im letzten Teil der Arbeit wird schliefflich ein neues Konzept struktureller Neutralitit eingefiihrt,

das in mancher Hinsicht der biologischen Realitat besser entspricht. Zu einem teilstruktur-neutralen

Netz sollen alle diejenigen RNA-Sequenzen gehdren, in deren Sekundirstruktur eine bestimmte

Teilstruktur auftritt. Als Objekt spezifischer Erkennung reichen solche Strukturmotive hiufig aus,

um eine bestimmte Funktion zu vermitteln. Ob Sequenzanteile zusdtzlich zur fiir die Funktion

bendtigten Teilstruktur den Anteil neutraler Mutationen erhShen oder nicht, hingt von zwei

Variablen ab: von der Anzahl von RNA-Sequenzen gegebener Linge, die mit genau n Kopien

der Teilstruktur kompatibel sind (fiir diese Zahl wird eine geschlossene Formel angegeben), und

von der Wahrscheinlichkeit, mit der eine kompatible Teilsequenz bei verschiedenen Gesamtlangen

tatsichlich die Teilstruktur annimmt. Lingere Gesamtlangen werden begiinstigt, wenn die Teilstruk-
tur wenig komplex ist (mit entspechend hoher Wahrscheinlichkeit der de novo Ausbildung kompatib-
ler Teilsequenzen in den zusdtzlichen Sequenzanteilen) und gleichzeitig stabil genug, um auch in

einem ausgedehnten Sequenzkontext noch zu falten. Als erster Schritt hin zu einem Zufallsgraphen-

modell von teilstruktur neutralen Netzen werden Alternativen der Graphenstruktur diskutiert, die

man auf den zu einem Strukturmotiv kompatiblen Sequenzen definieren kann. Das Netzwerk wiirde

dann als Teilgraph des Graphen der Kompatiblen modelliert.



ABSTRACT

Abstract

In this thesis the sequence to secondary structure mapping of natural RNA molecules is approached
from three different directions. Exhaustive folding of an entire sequence space yields the most
highly resolved picture of the landscape, yet if the model is to be close to biological reality (that
is, the natural base alphabet is used and the folding algorithm is the biophysically meaningful
minimization of the free energy of folding) then this approach is too costly with respect to
computation for all but very small sequence spaces. Exhaustive folding data is presented for
the sequence space QY% and the applicability of a random graph model to the neutral networks
of this space is discussed. The folding landscape exhibits the features which are known to be
characteristic for the RNA sequence to secondary structure mapping: a distinction of common
and rare structures, a near isotropic distribution of the sequences which fold into the former,
closenesss in space of sequences which fold into different common structures, and huge neutral
networks. Because of the necessarily restricted number of base pairs at such a short chain length,
the structures are not very stable, leading to frequent context and position specific effects of
mutations. As a result, the networks of the space are less dense then predicted by the random
graph model, but they are more connected. In addition, the open chain represents by far the most
frequent conformation and, hence, the neutral networks of all structures appear to be embedded
into its net.

For RNA sequences over the natural alphabet which are of lengths typically found in cells, it is not
feasible to exhaustively fold the entire landscape, and therefore the graph structure of a neutral
network is generally unknown. In the second part of the thesis, we propose a method which
estimates the total degree of connectivity of a neutral network while using only a small sample of
its constituent sequences. It assumes that any two sequences in the same component are connected
by a path which is at most a single mutation away from the shortest possible connecting path.
This property, local connectivity, is predicted for neutral networks of folding landscapes by random
random graph theory. We show that in Q2 it holds sufficiently well to distinguish connected
networks from disconnected ones based on the the fraction of locally connected pairs in a small
sample.

Finally, we introduce a new concept of structural neutrality, which in many cases comes closer
to biological reality. A substructure neutral network includes all RNA sequences which, in their
minimum free energy secondary structure, share a common structural motif. Often such motifs,
as the target of specific recognition, are enough to convey a common function. Whether or not
an increased total sequence length leads to enhanced neutrality depends on two parameters: the
number of RNA sequences of a given length which are compatible with exactly n copies of the
substructure (for which we give a closed formula) and the probability of a compatible subsequence
to actually adopt the substructure at different total lengths. Longer total lengths are favoured
with small, inherently stable substructures. Small size means a high probability of more than a
single compatible subsequence per sequence, which however can only be exploited if folding is not
too much affected by a larger sequence context. As a first step towards a random graph model
of substructure neutral networks, we discuss graph structures which can be imposed on the set of
compatible sequences (modelling the neutral network as an induced subgraph in the compatibles).
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INTRODUCTION

1 Introduction

1.1. Where are We Now: Views on Life from Antiquity to Molecular Biology

Up to well into the twentieth century it was not really understood what it is that distinguishes
organisms from inorganic matter [62, 105, 101]. Living beings obviously contain dead material, but
it is put to very special uses when part of them. In particular, many traits and actions of organisms
are purposeful. According to an old tradition of thought, also commonly found in contemporary
primitive cultures, all nature is actually alive, and there exists a continuity between inorganic and
organic matter. In the European Middle Ages and Renaissance that was reflected in the believe in
spontaneous generation and the idea of the “chain of being” , ascending from inorganic matter to low
life forms, to higher organisms, to man. Spontaneous generation of higher organisms was disproven
by Francesco Redi in 1668. With the growing acknowledgment of the complexity and diversity of
organisms their functioning and their very existance became increasingly miraculous. The attempts
to explain these phenomena followed two main traditions, which date back to classical antiquity
and which were thought to be incommensurate. The wvitalistic tradition, started by Aristotle,
assumed that purposeful traits and actions must be caused by an analogue of the human free will.
Such a wis vitalis (force of life) may or may not be supernatural. In the form of presumed physical
forces which act solely on living matter it was still held up in the first half of the 20th century
[18, 15]. Mechanicism stressed linear causality as it is known from the crafts. A mechanical cause
predates its effect in time, and typically consists of a force acting on matter. The most radical
proponent of mechanism in biology was Descartes [62], according to whom an organisms is nothing

but a sophisticated machine.
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Mechanicism, although seemingly more modern, does not give an explanation for the observed
harmonious design of the “machines”. Jean Baptiste de Lamarck in 1800 [14], by falsely connecting
two known facts, arrived at a completely new view at this problem: organisms may self-design by
way of inheritance of those environment-induced alterations which can indeed be observed to occur
(e.g. exercise leads to muscle development). Self-design (adaptation) in a changing environment
will lead to evolution (change of organisms over time), and therefore will not only allow for a self
contained mechanistic theory, but might also explain the observed diversity of life.

The structure of Lamarck’s theory is in fact the same as that of the vitalistic theories, with the
final goal replaced by a physical “mould”, the environment, a perfect fit with which is actively
strived for by the organisms. The rate of change in the environment sets an upper limit to the
diversity which can be produced in a given time interval. Charles Darwin, whose name is today
most tightly associated with the change of paradigm from a static organic world to evolution, in
1859 proposed a different mechanism, which would not only lead to adaptation and evolution, but
in addition redefines “goals” in an important way.

Darwin’s ideas on the principles of heredity were as vague and speculative as those of Lamarck,
as well as, for that matter, those of the entire scientific community of his time. The theories of
the time could neither explain the relative stability of genetic information over the generations nor
the occasional occurence of hereditary variations. His own genetic theory, Pangenesis, was equally
unsuccessful in this respect. That Darwin’s theory of evolution of 1859 [13] remained essentially
valid up to our days was exactly due to the fact that it did not require any assumptions on how
nature accomplishes this near-stability.

He observed two things: first, there is hereditary variation among the offspring of organisms,
as is demonstrated by the ability of breeders to gradually improve their stocks by selecting the
best offspring for further breeding. Second, as was pointed out by Thomas R. Malthus [60], the

environment is a necessary factor for regulating the size of (human) populations: it makes sure
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that only that fraction of all offspring will reach maturity which the environment can bear. In the
presence of variation, Darwin concluded, those that survive would not just be a random sample,
but rather those which are best adapted to the environment. If small improvements are hereditary,
then complex adaptations can be gradually built up, leading to as perfect a “fit to the mould”
as with Lamarck’s mechanism. The difference between Darwin’s and Lamarck’s theory (except
for the mechanism, of course) is rooted in a different view on the relation between individual and
species: for Lamarck, all individuals of a species are essentially indistinguiable and undergo a
concerted adaptation towards a common “goal”, which is set by the environment. In Darwin’s
view, it depends on the variations which happen to occur in the offspring of an individual which
aspects of the environment are exploited for adaptation. Different individuals may take different
routes, eventually leading to speciation. Thus the partial independence of evolutionary dynamics
from the environment (and its dependence on the dynamics of occurrence of genetic alterations,
mutations) is as inherent to the theory as its stress on diversity and speciation. This has been
neglected by many of Darwin’s followers.

The 19th century laid an excellent groundwork of detailed descriptions, from whole organisms
to subcellular structures. Morphological descriptions were sometimes supplemented by chemical
analyses (discovery of the nucleic acids of the cell nucleus by Friedrich Miescher in 1869). The
general trend was towards an interpretation of this body of knowledge in simple laws, in the style
of physics. The phenomenon of individual development, as puzzlingly purpose directed as species
specific adaptations, gained special interest. In 1883 Augusts Weismann introduced the distinction
between a “legislative” part of the living substance and an “executive” one and located the former
in the cell nucleus. His theory of inheritance assumes that only germ cells contain the full set of
“genetic determinants”, while body cells loose specific subsets during the course of differentiation.
All phenomena of transmission genetics are brought about by an unbroken lineage of germ cells,

the germ track, and accordingly are not influenced by alterations to parts of the body (soma track):
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the cause-effect relation between germ track and soma is strictly linear. This tenet, which greatly
facilitates the study of genetic processes, is still part of contemporary molecular biology.

The basic rules of transmission genetics were found by Gregor Mendel in 1866 [63] and rediscovered
during the first decade of the 20th century by Hugo de Vries, C. Correns and E. Tschermak. The
simplicity of the rules was appealing, yet in the eyes of many biologists they did not capture
that kind of continous variation which were thought to be not only typical for organisms but also
a prerequisite for Darwinian evolution. This discomfort, together with the lack of an adequate
theory of the developmental effect of the hypothetical genes, led to a broad spectrum of genetic,
developmental, and evolutionary theories during the first three decades of the twentieth century —
one could call this the pre-paradigm phase of modern biology [56]. The first step towards its
resolution was the gradual acceptance of the chromosomal theory of inheritance, which is connected
with the name of T.H. Morgan. The Morgan lab demonstrated the existance of spontaneous
alterations of Mendelian genes (mutations), and it was later shown that environmental factors can
trigger their appearance, but do not determine the direction of change [16]. R.A. Fisher and J.B.S.
Haldane demonstrated the ability of alleles with small positive selective values to spread through a
population [25, 40]. Thus all assumptions of Darwin had been shown to be consistent with a theory
of inheritance which assumed particulate genes, lined up in a linear order on the chromosomes,
each specifying a unique trait and possibly being present in more than a single variant (allele) in
a population. The paradigm which emerged during the period from approximately 1936 to 1947
is called the Synthetic Theory. It adopts the Darwinian explanation of adaptations by Natural
Selection, but is a more comprehensive theory in that it is able to make quantitative predictions
on the basis of Mendelian population genetics.

Classical genetics, elaborate as it was in the middle of the 20th century, was still merely a
parsimonious description of the passage of traits through the generations. The physical nature of

a Mendelian gene and how it causes a trait to appear was unknown. In 1944 Oswald Avery proved
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that the transforming principle in aqueous cell-free extracts of pneumococci was desoxyribonucleic
acid (DNA) [62]. That finding led to an intense interest in nucleic acids in the ensuing years,
culminating in the elucidation of the molecular structure of DNA by James Watson and Francis
Crick in 1953. The structure itself — two linear heteropolymeric strands held together by monomer-
specific hydrogen bonding — suggested that the molecule might replicate by growing a complementary
copy on each strand. During the 1950s and 1960s not only the mechanism of replication was
proven, but a principle of gene action was discovered which had not been anticipated by any of
the earlier hypotheses. Genes consist of segments of nucleic acids which code for the sequence of
a protein molecule by means of a trinucletide code. The old question whether biological processes
are initiated by an outside agent or keep themselves going by unbroken chains of interactions was
answered on an unexpected middle ground: the cell does indeed contain a “body of knowledge” by
which it is able to initiate biochemical processes if needed, and to carry them out in ways which
may be so far from a direct cause-effect relationship that it looks like design by an intelligent being.
That body of knowledge however is a material part of the cell, synthesized by the cellular machinery
on replication, and expressing itself via physical interactions. Causation on the subcellular level
often is tantamount to the actualization of coded information: that is the missing link between
vitalism and mechanicism.

Genes were found to express themselves via a short lived complementary copy made of ribonucleic
acid (RNA). It is that copy which is translated into a protein chain, by means of a translation
apparatus which, too, contains RNA molecules at crucial places. In the early days of molecular
biology therefore the so called central dogma was coined: DNA makes RNA makes protein, the flow
of information through this chain being strictly one way. It was a revival of August Weismann’s
concept of an unbroken lineage of genetic material (DNA), which constitutes a linear cause for the
body (proteins), with no back flow of information. During the 1970s it was found that certain

viruses are capable of retrotranscribing RNA into DNA, and according to recent discoveries the
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coding nucleotide sequence of some messenger RNAs is subjected to directed changes by complexes
of proteins and RNA molecules [8]. Yet it still holds today that no mechanism is known which
would “retrotranslate” a protein sequence into RNA or DNA.

It becomes however increasingly clear that linear causation does not capture the essentials of live.
A network of mutual regulation pervades all biochemical processes, including the genome (the
totality of the DNA of a cell or virus). The environment can influence the expression of genetic
information by inducing the binding of a regulatory protein molecule or a chemical modification
of the DNA. Such epigenetic changes can even be passed on to daughter cells. What distinguishes
these processes from an inheritance of aquired characters is the fact that the environment can only

trigger reactions which preexist in the sense that they are coded for in the genetic material.

1.2. The Molecular Basis of Evolution

According to modern thought, true heritable alterations of the genetic material are confined to
random changes of coding nucleotide sequences. The number of possible nucleotide sequences
of even moderate length is enormous. If there is a single optimal one, how can it be found by
selection ? From the 1960s on that problem has been attacked from several directions, which
today merge into a unified view on molecular evolution.

The two main arguments in resolving the problem stress a) mechanisms which maintain genetic
diversity in natural populations, effectively parallelizing the search for better adapted variants, and
b) mechanisms which shield the phenotype (the sum of traits of an organism which are exposed to
selection) from alterations of the genotype (the genetic material), thereby allowing more variants
to be tried out.

Manfred Eigen, Peter Schuster, and John McCaskill during the 1970s and 1980s developed a theory
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of the maintainance and optimization of information in polynucleotide sequences under error prone
replication. Manfred Eigen demonstrated in 1971 [19] that the only prerequisite for Darwinian
evolution is an open system with replication far from thermodynamical equilibrium and living on
limited resources. In such a system every polynucleotide sequence is associated with a spectrum of
mutants, the molecular quasispecies, which, assuming a fixed mutation rate and sequence specific
fitness distribution, is completely defined by the sequence (for a review see Manfred Eigen, John
McCaskill and Peter Schuster 1989 [21]. The important point is that selection of a sequence is
tantamount to selection of a quasispecies: the Darwinian process itself assures the maintainance
of variability. The quasispecies is however only stable up to a defined mutation rate, the error
threshold, which at a fixed single-nucleotide replication accuracy depends on the sequence length.
Manfred Eigen and Peter Schuster in 1977 proposed a mechanism which would allow to store more
information in polynucleotides without enlarging the individual sequences: the hypercycle [22, 23].
RNA, as a potentially genetically active nucleotide sequence which at the same time folds up
into a defined structure (see chapter 2) by which it is able to specifically interact with other
molecules and catalyze biochemical reactions [83, 65, 66], gained attention as a model system for
molecular evolution during the 1980s and 1990s. Single RNA molecules can undergo Darwinian
optimization, as has already been demonstrated by Sol Spiegelman in the early 1970s [86, 55].
A realistic approximation to their secondary structure, which often is the main determinant of
tertiary structure and thus function, can be readily computed [45, 46, 26]. Walter Fontana and
coworkers during the 1980s focused on Darwinian evolution scenarios on RNA sequences in which
selection is for features of the (computed) secondary structure which is adopted by a sequence [30,
29, 27, 28, 32]. In the course of this work it became increasingly apparent that selectively neutral
variants play an important role at least in this model landscape.

Ever since during the 1960s new electrophoretic methods revealed an unexpected diversity on the

level of proteins, it has been discussed to what extent these variants were visible to selection. In
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1969 Motoo Kimura [52] suggested that most of them were products of neutral alleles, drifting
randomly through the population. This idea, which had already been proposed by Sewall Wright
in 1932 [103] as a means to enhance the search capacity of evolving populations, was at first
strongly opposed by most biologists. Only during the 1970s and 1980s, when more and more
crystal structures of biological macromolecules were solved, it became understandable how very
different amino acid (or RNA) sequences could indeed be selectively neutral: these sequences
adopt three dimensional structures which are so similar that they are essentially indistinguishable
in any relevant molecular interactions [5] (see chapter 2 for a review of the relation between
sequences and structures). At the same time it became apparent that the problem of molecular
optimization is not so hard as originally thought: very often it is enough to find one out of
many equally “optimal” solutions. Neutral variants, by shielding the phenotype from genotypic
diversity, themselves constitute a means to maintain this diversity in the population. In contrast
to the quasispecies, there is no inherent limit to the amount of sequence diversity which can be
stored this way.

During the 1990s the group of Peter Schuster concentrated on the role of neutral variants in
molecular evolution, especially as exemplified by the RNA folding landscape. They were able
to show analytically how increasing neutrality in the phenotypes leads to an increase of the
phenotypic error threshold [33, 72]. What matters here is not the absolute number of genotypic
realizations of a given phenotype, but the expected number of neutral variants among the outcomes
of single mutational events. This leads to the concept of a neutral network: this is the set of all
sequences which are neutral with respect to some phenotype together with the neighbourhood
relation “accessible by a single mutation”, which turns the set into a graph. Such “evolutionary
networks” had already been observed for the mapping of protein sequences to their (idealized)
lattice structures by D.J. Lipman and W.J. Wilbur in 1991 [59]. For the mapping of RNA

sequences over the binary alphabets {A,U} and {G, C} into their computed secondary structures



INTRODUCTION

they were demonstrated by Walter Griiner et al. (1996) [37, 38]. Neutral networks convey an
ideal combination of search capacity and robustness to mutations: the genotypes may diffuse over
the network by single nucleotide exchanges without loosing the currently optimal structure, until
a non neutral mutant is encountered which increases fitness. The population will then switch
to the network of that structure [48, 49, 96, 91]. In order to be of maximal use, they should be
connected graphs and a maximal number of new phenotypes (structures) should be available in the
1-error neighbourhood of the network or even of a single sequence (shape space covering). (Walter
Fontana and Peter Schuster proposed to base a topology in phenotype space on the accessibility
of one network from the other [31].) That the sequence secondary structure mapping in RNA
comes close to such an ideal case is suggested by theory [71] and from the available data (complete
networks over the binary alphabets and statistical evaluation of networks over the natural alphabet
[44] [88, 89]). This suggests that the success of the organic evolution to no small part is due to an

excellent solution by Nature of the representation problem of her optimization task [98].

1.3. Organization of this Work

This work is devoted to the study of neutral networks of RNA minimum free energy secondary
structures. So far the investigation of neutral networks of RNA secondary structures has followed
two lines: a mathematical model of network topology based on random graph theory has been
developed by Christian Reidys et al. [71]. It assumes a sequence independent probability of
folding, which might not hold in natural structures. Walter Griiner et al. (1996) [37, 38] have
explicitly determined the networks of RNA sequences up to length 30 over the binary alphabets
{A,U} and {G,C}. The folding model was that of a thermody-namic (minimum free energy)

folding algorithm [46, 45] and thus can be assumed to have captured the essential features of
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natural structures. Neutrality was defined with respect to the full length structure (that is, two
sequences are members of the same neutral network if their structures coincide at every position
in the sequence). The restriction to binary alphabets was due to technical constraints (limited
storage).

This thesis extends the previous work in two respects. In the first part we present for the first time
data on all neutral networks in a space of RNA sequences over the natural alphabet {A,U,G,C}.
For reasons of limited storage the length of the sequences is restricted to 16. In the second part
the concept of structural neutrality is extended to include neutrality with respect to a substructure,
which comes closer to biological reality than requiring all positions to exactly match some reference
secondary structure.

The work is organized as follows:

In chapter 2 we will summarize the biophysical background of the sequence structure mapping in
biological macromolecules, as well as the mathematical tools which have been used to describe it,
with a special focus is on neutral networks of RNA secondary structures.

Chapter 3 presents the results of the complete mapping of an RN A sequence space of length 16 over
the natural alphabet {4, U, G, C'} to the respective minimum free energy secondary structures [45].
It is shown that the mapping from sequence to shape space for this length and alphabet possesses
the properties described above which aid optimization: most neutral networks are connect-ed graphs
(every pair of sequences on a network can be interconverted by a series of single nucleotide mutants
which are on the network) and for a certain subset of structures it holds that nearly all of them
can be reached by at least one single nucleotide mutation of a member of the network of any of
these structures. For reasons which will be discussed the degree of connectivity is even higher than
expected from mathematical theory.

Chapter 4 deals with the case of sequence lengths which no longer permit exhaustive folding.

Mathematical theory predicts a property of neutral networks, local connectivity, which allows to

— 10 -
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test pairs of sequences for the existence of a connecting path on the network in linear time. If this
property holds then one can estimate the degree of connectivity of the total network from that of
a sample of its constituent sequences. We show that the property holds quite well for minimum
free energy secondary structure neutral networks of RNA sequences of length 30 over the binary
alphabet {G,C} and that it is possible to exploit this fact for a prediction of global connectivity.
In chapter 5 the concept of structural neutrality is relaxed to include all sequences which share
some substructure. It is well known from both the structures of natural macromolecules and the
outcomes of artificial selection experiments that a specific function is often conveyed by a defined
part of the total structure, other parts being more or less free to vary. In the first part of the chapter
we give a closed formula for computing the number of RNA sequences of a given length which are
compatible with exactly n copies of the substructure, that is, which contain exactly n (possibly
overlapping) subsequences which can form all base pairs that are required in the substructure. In
the second part properties of the substructure neutral network at different total sequence lengths
are discussed for two example substructures of different complexity. It is shown that the population
dynamics of a set of replicating sequences on the network is considerably influenced by the degree
of complexity of the substructure.

Finally, the results obtained are discussed in chapter 6.
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2 Configuration Spaces in Molecular Evolution

2.1. Biological Macromolecules

2.1.1. Sequences and Structures

The chemical constitution of biological macromolecules (DNA, RNA, proteins) is that of a linear
heteropolymer. The constituent monomers ((desoxy)ribonucletides, amino acids) engage in noncova-
lent interactions with other monomers of the same or different chains, thereby folding the chain
up into a three dimensional structure.

Structure is described on several levels. Primary structure is the covalently linked sequence of
monomers. On the level of secondary structure, only patterns of specific interactions are considered.
In nucleic acids, secondary structure is tantamount to base pairing (Watson-Crick and G-U pairs in
RNA). Protein secondary structure in contrast does not include long rang interactions, which is why
it is possible to assign a secondary structural state (helix, extended, turn, coil) to a single residue
in this case. Tertiary structure describes the detailed foldup of the chain in three dimensional
space, including distances and relative orientations of interacting monomers. Finally, quarternary
structure deals with associations of more than one macromolecule into supramolecular complexes.
Under suitable conditions most biological macromolecules spontaneously adopt a well defined
second-ary and tertiary structure. It is the linear covalent configuration of the chain which somehow
specifies a cascade of interactions, eventually resulting in a correct foldup. (Exactly how it does so
is still unknown. Solving the “folding problem”, especially in proteins, is one of the big challenges

of contemporary bioinformatics.) The folding pathway is one example of coded information which
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Figure 1: Structure in proteins and nucleic acids. Left: The structure of 6pti (pancreatic trypsin inhibitor). The
secondary structure of the molecule consists of two helices and a central twisted beta sheet. Protein
secondary structures are locally defined: a single residue is assigned to some structural state according
to its torsion angles ( states in this example are H — alpha heliz, G — 3-10 heliz, E — extended (beta
strand), L — loop). A secondary structure element consists of several adjacent residues which are in the
same state. How a beta sheet is composed of its constituent beta strands belongs to the level of tertiary
structure in proteins. Right: The structure of yeast tRN A4%P . In nucleic acids, the secondary structure
is defined to be the pattern of Watson-Crick and possibly G — U base pairs. In a linear representation,
the two positions which form a pair are assigned to a left and right matching parenthesis. Alternatively,
the pure secondary structure can be depicted as a planar graph (inset). The relative orientation of the
paired stacks into an L-shaped three dimensional structure belongs to the level of tertiary structure.

is stored in the primary structure. Coding (in the primary sequence) and serving as molecular
machines by means of a sophisticated tertiary structure are the two main aspects of biological
macromolecules. In modern organisms different kinds of molecules are specialized in one or the
other of these tasks. DNA takes the idea of coding to the extreme by specifying, in its primary
sequence, the primary sequence of other macromolecules (RNA, proteins). Higher order structure
does not play a role in DNA: it is a linear molecule, which by means of base pairing forms a single
intermolecular double helix with a complementary strand. Proteins are at the other extreme of

the spectrum: they can adopt a variety of complicated three dimensional structures (and therefore
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serve as the working horses of the cell), yet all their primary sequence codes for is its own folding
pathway.

In between there is RNA. It is intermediate in its capabilities as well as a true intermediate in
the process by which the genetic information stored in DNA is expressed: the immediate product
of a coding segment (gene) in DNA is always a complementary RNA molecule, which then either
directly serves a functional role or else in a second step is translated into a protein chain. RNA
molecules adopt complicated secondary structures by means of intramolecular base pairing, which
then further fold up into tertiary structure. Although less structurally versatile than proteins,
cells do use them for structural and catalytic tasks [83]. Like the peptidyl transferase activity in
ribosomes (which at least in part depends on the RNA moiety [66, 51], these tasks are sometimes
very basic to the cellular machinery. RNA molecules in addition can readily evolve new functions
under appropriate selection [11, 106] and they are able to autocatalytically rearrange themselves,
mimicking recombination [10]. For all these reasons many researchers place RNA very close to the
origin of life (assuming an early “RNA world” [35]).

Both primary and secondary structure can conveniently be displayed as a string over some alphabet.
For primary structure, the alphabet consists of the set of names of the constituent monomers
or their abbreviations (Adenosine, Uridine, Cytidine, Guanosine in RNA). Because secondary
structure in proteins is defined on a per-residue basis, it, too, can be described as a string of
abbreviations (of the structural states). Secondary structure in RNA, with which we are mainly
concerned in this work, is more complicated because it includes long range interactions. A proper
RNA secondary structure however has properties which nevertheless allow for a succinct string
representation: a position is not only either unpaired or paired with exactly one partner, but in
addition it holds that for two positions p;, p2 with p; < ps the pairing partner of ps must occur to
the left of the partner of p;. The pairs thus behave like the parentheses in a correctly bracketed

expression. Accordingly, an RNA secondary structure is suitably displayed as a string over the
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ACGAUGGGUUACC|G|AGGCAAGUCGUAG
Point mutation ,l,
ACGAUGGGUUACC|A|AGGCAAGUCGUAG

ACGAUG|GGUUACCG|AGGCAAGUCGUAG
Insertion l
ACGAUG|GGUUACCG|GGUUACCG|AGGCAAGUCGUAG

ACGAUGGG|UUACCGAGGC|AAGUCGUAG
Deletion l
ACGAUGGG|AAGUCGUAG

Figure 2: Three classes of mutations. Point mutations are copying errors with single base exchanges; they leave
the chain lengths constant. In case of insertions part of the template sequence is duplicated during
replication. A deletion leads to an error copy which is shorter than the original.

alphabet {(,),.}, with a dot indicating that the position is unpaired, and a pair of matching

parentheses corresponding to a base pair.

2.1.2. Mutations

A given cell or virus inherits its genetically active nucleic acid molecules from other cells or viruses
by way of replication (making a complementary copy of the chain). Several types of errors may
occur in this process. By far the most common one is substitution or point mutation, which replaces
a nucleotide by a different one. Neither the chain length nor the relative order of the elements
of the chain is affected by this type of mutation. Mutational events which lead to a reordering
of the positions of the chain call for more sophisticated concepts of neighbourhood in an abstract
space of sequences. Insertions and deletions of one or more nucleotides, which may either occur by
slippage of the copying enzyme or by imprecise recombinational events, are generally taken into
account when comparing biological sequences. Frameshift mutations are less likely to occur in the
first place (in Taq polymerase, their rate is 2.4 x 10~° per site, as compared to 1.1 x 10~ for

base substitutions). Because of their nonlocal effect on a genetic message they will, even if they
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occur, hardly be accepted in a coding sequence. This latter constraint does not apply to functional

nucleic acids (RNA). Insertion and deletion mutants have been observed in ribosomal RNA[17].

2.2.The Main Mathematical Tool: Graphs

The concept of a graph is the basic mathematical tool to describe pairwise relationships between
the elements of a set. Formally it is defined as follows:

Definition 1. (Graph). A graph G is a pair (v[G], €[G]) and a map o @ t: ]G] — v[G] X v[G].
An element V € G is called a vertex of G with v[G] as vertex set. Analogously € € G is called
an edge and €[G] is the edge set. The vertices o(€) and t(€) are called the origin and terminus of
€ respectively. o(e) and t(€) are the extremities of an edge €. If from (v,v') € €[G] it follows that
(v',v) € €[G] then the graph is called undirected, otherwise it is called directed.

Definition 2. (Regular graph). A graph is called regular if for each node v the number of
nodes v' for which (v,v') € €[G] is equal to a constant.

Although any binary relation can be succintly expressed as a graph, edges often have the meaning
of a “reachability” of one or the other sort — be it spatial closeness of bases in a secondary structure
graph, or the fact that origin and terminus of the edge can be interconverted by a unit operation
of some process. By chaining together more than a single such unit step nodes can be reached
from a starting node which are not directly linked to it by an edge: if this is the case, there is a
path between the nodes.

Definition 3. (Path). A path in G is a sequence (vi,€1,vV2,€2,...,Un,€n,Unt1), where v; €
G,e; € G,o(e;) =v; and t(e;) = vig1.

Definition 4. (Connected vertices). Two vertices v,v' € G are called connected if there ezists

a path in G in which both vertices occur.
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The minimal length of a path connecting two vertices is a natural distance measure on the nodes
(also called the canonical metric on the graph [9]). If there is no path between two nodes, the
distance is set to infinity, which preserves the triangle inequality.

Connected nodes are in some sense equivalent (if one “sits” on one of them it is nevertheless clear
how the other one can be reached). In a maximal equivalence class every node is connected with
every other node inside the class but with no outside node. Such a class is called a component of
the graph. If there is only one component, the graph is called connected.

Definition 5. (Connected graph). A graph G is connected if any two vertices V,V' € v[G] are
connected.

Definition 6. (Component). A component is a mazimal connected subgraph of a graph.

In later sections we will deal with scenarios in which the nodes of a graph are sampled with some
probability. One outcome of such an experiment yields some subset of v[G]. The structure of the
original graph may be transferred to this subset in the following way:

Definition 7. (Induced subgraph).A subgraph H is called an induced subgraph of a graph G
if, for any v,v' € H being extremities of an edge € € G, it follows that € € H.

That is, two nodes in the subset are joined by an edge if this edge is in e[G].

There is a special term for subgraphs which cover “nearly all” nodes of the underlying graph:
Definition 8. (Boundary). Let H be a finite graph. The boundary O v[G] of a subgraph G < H
consists of those vertices v € H \ G for which there exists (v,v") € e[H] such that v' € G.
Definition 9. (Dense graph). Let H be a finite graph. A subgraph G < H is called dense in H
if and only if the closure v[G] of G, v[G] U 8xv[G] is equal to v[H].

If an induced subgraph is dense, then there is no node in the underlying graph which not either is

part of the subgraph or is joined by an edge to a node in the subgraph.
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Figure 3: Hamming graphs of dimension 1 (A) and 2 (B). The graph of dimension n consists of |2| copies of that
of dimension n — 1 (X being the alphabet). The figure illustrates the strong interconectedness of the
graph already at small dimensions.

2.3.Fixed Sequence Length: Hamming Graphs

A Hamming graph [41](also called generalized hypercube or sequence space [20]) is defined for
a particular string length and a particular alphabet . Its node set consists of all |Z|" possible
strings (sequences).

Two sequences are connected by an edge if they differ by a single symbol (base) exchange (see
figure 3). Biologically speaking, point mutation is assumed to be the only mutational operator.
The number of substi-tutions by which two sequences differ is a metric distance measure (Hamming

distance). It is the canonical metric on the Hamming graph.
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A generalized Hamming graph [87] is the direct product of several sequence spaces, each of which
has its own sequence length and alphabet. By means of this extension the concept of Hamming
space can be carried over to the case of strings with position specific symbol sets: each subspace
corresponds to those positions which accept symbols from the same set. We will see below that
in the case of RNA sequences, it is natural to distinguish between unpaired positions (at which
bases can be exchanged independently of the remaining sequence) and paired positions, which are
so highly correlated that both partners are effectively substituted in a single step. The distance
between two vertices of a generalized Hamming graph is the sum of the Hamming distances within

each of the subspaces.

2.4. When the Sequence Length Is not Fixed

2.4.1. Structure of the Underlying Space

For a given base alphabet there are infinitely many possible Hamming spaces, one for each sequence
length n, n = 1,00. These graphs can be combined into a single graph (of infinite size) by
introducing insertion and deletion of single bases as additional mutational operators.

Definition 10. (Levenshtein Graph). The Levenshtein graph is that graph on the infinite set
of strings over a given alphabet in which two strings are neighbours if they either differ by a symbol
exchange, or by the insertion of a single symbol, or by a single symbol deletion.

The graph, named after V.I. Levenshtein [58], is made up of “layers”, each corresponding to
a sequence space of fixed length. It is obviously not regular: each Q7 has its characteristic
outdegree, equal to (a — 1)n. But there is a second source of heterogenity, pertaining to the edges

which connect layers: the number of deletion neighbours depends on the sequence. For each run
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aAAU AaAU AAaU AAAu

AAU AAA

Figure 4: 1-deletion neighbours of the sequence “AAAU”. A lowercase letter indicates that this position is to be
deleted. There are as many deletion neighbous as there are runs, this is, contiguous stretches of sequence
which are made up of one symbol only. The example contains two such runs, namely, “AAA” and “U”,
so it has two deletion neighbours. In the general case a sequence has at least one deletion neighbour (if
the whole sequence consists of one long run) and at most length such neighbours (if any two adjacent
symbols are different).

AU au Au
[CAU [GAU UAU CAAU aCu aGu alu AuA AuG AuC
aAU AuU

Figure 5: l-insertion neighbours of the sequence “AU”. There are length 4+ 1 places to insert a symbol: after
positions 1 ... length, and before position 1. Insertion before position 1 can be regarded as insertion
after a hypothetical position 0, which is marked as an asterisk in the figure. The position after which to
insert is shown in lowercase, except if it is position 0. In contrast to the case with deletion neighbours,
all sequences of a given length have the same number of 1-insertion neighbours. This number is equal
to nsymbols X (length + 1) — length: Any pair of adjacent positions (of which there are length pairs,
including position zero) generates one redundant neighbour (the redundant neighbour is the one in which
the symbol which occupies position 7 + 1 is inserted after position ¢. This leads to a run of length two.
The same run is generated if this symbol is inserted after position 7 + 1.

(a substring which is made up of one type of symbol only) there is but one distinguishable deletion
neighbour, irrespective of the length of the run. In contrast, the number of insertion neighbours
depends only on n, although on first glance there is also an effect related to indistinguishable runs.
Assume position ¢ is occupied by symbol s;, and position ¢ + 1 by symbol s;+1. Inserting symbol
s;+1 after position ¢ and after position ¢ + 1 then results in the same string. For every pair of

neighbouring positions, irrespective of the symbol assignments, there is however exactly one such
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redundant neighbour, all other insertion neighbours being distinguishable (see Fig. 5). Therefore
the number of different insertion neighbours of a string of length n over an alphabet of size « is
a(n + 1) — n. Insertion of a symbol before position 1 is modelled as insertion after a hypothetical
position 0, so that there are n + 1 positions in total, including n pairs of neighbouring positions.
Then from the a(n + 1) ways to insert a symbol after a position, n are redundant, and the formula

follows.

2.4.2. Distance Measures For Variable Sequence Length

The canonical metric on the Levenshtein graph is the so called modified Levenshtein distance, which
is equal to the minimum number of substitutions, insertions, and deletions needed to transform two
strings into each other (plain Levenshtein distance amounts to the minimal number of insertions
and deletions needed for a transformation). The modified Levenshtein distance is equivalent to
the Sellers metric, which in turn, with an appropriate choice of parameters, is equivalent to the
negative of the Needleman-Wunsch similarity measure [85]. The latter two measures are routinely

applied when comparing biological sequences of unequal length.

2.5.Landscapes

A landscape consists of a set of configurations (e.g all strings of a given length over a given alphabet)
together with two mappings: first, an equivalence relation indicating which pairs of configurations
are neighbours. For biosequences, those strings are neighbours which can be interconverted by
one of the mutational operators. Second, a mapping from the domain of configurations into the
domain of real numbers, which associates some fitness with each configura-tion.

The term “landscape” goes back to Sewall Wright [103, 104]. The idea is that in searching for

- 21 —



CONFIGURATION SPACES

Figure 6: Evolution as hill climbing in an adaptive landscape. The role of neutrality.

the fittest configuration, an evolving system encouters problems which are similar to those of a
wanderer seeking the highest point in an unknown natural landscape. Without further information,
he will probably try the steepest ascent among all available directions. Whether or not this will lead
him to his destination depends on features of the landscape as well as on his own ability to perceive
and evaluate these features. In a smooth landcape, which possesses only one or a few maxima,
he will most likely be successful even if he cannot do better than recording the relative heights of
the most nearby places and choosing the one which is highest to go next. The more rugged the

“myoptic” approach.

landscape is, this is, the more maxima it contains, the less promising is the
It will sooner or later lead to a suboptimal maximum (see figure 6). One way to escape from such
a trap is by using information from other points besides the immediate surroundings (a human
wanderer could for example detect a distant height with a field glass). If this is not an option, it
might still be possible to find the global maximum given one prerequisite is fulfilled: there must

not be a suboptimal maximum which, in its immediate neighbourhood, does not contain a point

which is at the same height (this is, maxima must not be single points but rather ridges). The
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wanderer would then, if he cannot gain height on any of the currently nearest points, randomly
follow a direction which does not descent. Travelling along the ridge, he might encounter ascending
directions, which he then will choose. In order for him to finally be successful, the global optimum
must either directly abut on the current ridge, or else there must be a series of ridges ry,72 .. .74,
such that r; adjoins to the current ridge, r;+1 adjoins to r;, and from 7, the global optimum can
be reached. It depends on the landscape whether or not such a series exists.

The human wanderer is a special case of the abstract task to find the best configuration while
evaluating only nearest neighbours. “Nearest neighbours” are those configurations which, in
the underlying configuration space, share an edge with the current configuration. The best
configuration is the one at which the fitness function reaches its maximum value. In both natural
and algorithmic applications of gradient searches in a configuration space, the search is normally
not performed by a single agent but by a whole population of current configurations. The same
configuration may occur several times. The agents do not literally move, but rather undergo
Darwinian evolution: they make errorneous copies of themselves which are differentially retained
in the population according to the values the fitness function takes on them. (Normaly, fitness
determines the probability of survival rather than survival itself. If this is the case, then the
individual agents can accept descending steps, although with low probability. The width of the
valley to be crossed, much more than its depth, determines whether or not this can contribute to
escapes from local optima [91].) It depends on the mutational operators which mutant configurations
can emerge as offspring of a single replication. Over time this process will make the center of gravity
of the population move in the direction of fitter configurations. The search task is parallelized in
such a scenario and thereby speeded up. Nevertheless the problem of local optima remains, as well
as the importance of fitness neutral paths which may connect different optima. In a configuration
space, the induced subgraph of those configurations which have the same fitness is called the neutral

network of this fitness value. The neutral network of the currently highest fitness in a population
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is of special importance: except for a possible constraint on the total population size, the whole
network may be freely populated. Dependent on the graph structure of the network, this can lead
to a greatly enhanced diversity of the current configurations, which is not counterselected. More
diversity means a higher parallelization of the search for an even fitter neighbouring configuration.

The process of unselected spread over a neutral network is called drift.

2.6. Neutral Networks of RNA Secondary Structures

2.6.1. Landscapes Based on Sequence Structure Mapping

One way to define a landscape over the elements of a sequence space is to equate some aspect
of their structure with fitness. Such aspects may be the exact secondary or tertiary structure,
the coarse grained secondary or tertiary structure, or the presence of some secondary or tertiary
structural motif somewhere in the sequence.

Although structure is most relevant in proteins, it is not currently feasible to reliably “fold” a
protein sequence in silico. The minimum free energy secondary (not tertiary) structures of RNA
molecules, in contrast, can be quite reliably predicted, at least for short chains [45]. Indeed it is
RNA for which a landscape based on the sequence structure mapping makes most sense: RNA can
be genetically active, so that the configurations (sequences) directly undergo and inherit mutations,
as required in the landscape model. This is not true for proteins. At the same time, the structure
of an RNA molecule can be important for its function, and thus has impact on its fitness.

In the following, we will consider the sequence secondary structure mapping in RNA. This is an
extremly redundant mapping: there are nsymbols™ sequences, which are mapped to approximately

1.4848 x n~ % (1.8488)™ structures [79, 47] For a fitness function which measures similarity to some
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reference secondary structure, one therefore expects a high degree of neutrality. This will further
increase if only the presence of a certain substructure element is required, rather than an exact

match of the secondary structural states of all positions to a target structure.

2.6.2. The Underlying Configuration Space

2.6.2.1. Fixed Sequence Length

The necessary condition for an RNA sequence to adopt some given structure is that it is compatible
with the structure, that is, that it contains two bases capable of forming a pair at any two positions
that are paired in the target structure. With this in mind, there are two different ways to define
the configuration space underlying the folding landscape.

The straightforward approach borrows the graph structure from the Hamming graph Q7% ;5 ¢
by defining the space of compatibles to be the respective induced subgraph. This assumes that
sequences are interconverted by successive point mutations. Whether or not this graph is connected
depends on the alphabet and the pairing rules: assume there are p groups of valid base pairs, such
that any two pairs in the same group can be interconverted by point mutations (like AU <—>
GU). The graph of compatibles decomposes into p™ components, where n,, is equal to the number
of base pairs in the reference structure. Because p > 1 in all alphabets based on the natural
pairing rules (be it {G,C}, {A,U}, {A,U, G, C}, the latter with or without GU pairs permitted),
this approach generally leads to a disconnected space of compatibles. If the number of point
neighbours is different for different base pairs, it is in addition not regular. Lack of regularity and
connectivity is mainly a technical problem: were these conditions fulfilled, random graph theory
would permit to estimate global properties of a neutral network (which itself is an induced subgraph
in the space of compatibles).

If therefore the focus is on the topology of a single network, rather than on the entire landscape, it
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U U @ u

C
G

>c(/\>)o
CO\C/OZDID

c
> CcC OO0
C OO

CG

incompatible mutation (destroys base pair)

Figure 7: A single mutation in a base pair leads to a sequence which cannot fold into the secondary structure
of the original sequence. If the base pair is exchanged as a whole, or else the point mutation hits an
unpaired position, then the mutant remains compatible with the original structure (all required base
pairs can be formed). Depending on the conditions the actual structure of the mutant may nevertheless
be different.

is conventional to represent the compatible sequences as a generalized Hamming graph of the form
Ny Np . . .y .
Qui'v.e,.c X Qv vave.co,cu,cas Where n, is the number of unpaired positions in the structure

and n,, is the number of paired ones. The two subspaces are called the unpaired fiber and the paired
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fiber, respectively. By treating a pair of paired positions as one “position”, which is occupied by
one of the valid base pairs, it is ensured that all neighbours of a compatible sequence are again
compatible. Furthermore, the dependency of the probability to be neutral of a mutation in a base
pair upon the pairing partner is removed by this construction. A strong objection which can be
raised against this approach is the fact that “base pair mutations” do not exist in nature. Yet,
paired positions indeed tend to mutate in a correlated manner. This is due to the fact that any
primary mutation is likely to create a mismatch, in which case any compensatory mutation which

restores the correct pairing will have a very strong positive effect, and will be selected for [43].

2.6.2.2. Variable Sequence Length

From artificial selection experiments [53] it is known that function is very often due to the presence
of some substructure somewhere in the sequence, rather than dependent on the exact structural
state of all positions [90, 76, 75, 74, 64]. Thus a constant sequence length is not required.

So far there is no established approach to modelling the space of compatible sequences of a
substructure. As with full length structures, one can either ignore the correlations due to the
base pairing (the space of compatibles is a subgraph of the Levenshtein graph in this case) or
resolve the correlations by mutating pairs of paired positions in a single step. With full length
structures, a strong case could be made for the latter alternative, because in contrast to the former,
it produced a connected regular graph. The case is less clear with substructures. First, it is at
least theoretically possible (in practice depending on the substructure under consideration and
the additional sequence length) that the subgraph induced in the Levenshtein graph by the set
of compatibles is indeed connected (even if there are base pairs in the substructure !). It is not
regular, but neither is a graph which incorporates base pair mutations (see below). It is much less
straightforward to include such mutations than it is with full length structures. The fact has to be

taken into account that a subsequence which is compatible with the substructure may occur at any
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GaAauA

Figure 8: Neutrality with respect to a substructure. If fitness hinges on the presence of a certain substructure, a
lot more variability is introduced into the neutral set. The amount and nature of additional sequence to
the left and to the right of the substructure is completely free. In the region of the substructure itself,
permissible sequences are defined by the compatibility rules.

relative offset to position one, so that it is not possible any more to talk about the unique pairing
partner of a position in an elongated sequence. We show in chapter 5 how this difficulty can be
overcome. In this construction pairs of positions are mutated as a whole if both partners belong
to a compatible subsequence. If there is more than a single compatible subsequence in a given full
length sequence, it may happen that one and the same position is paired with different partners
in each of them. Consequently it has as many pair neighbours as there are different partners, and
the resulting graph, although connected, is generally not regular.

The whole issue of neutrality with respect to a substructure will be discussed much more in-depth

in chapter 5.
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2.6.3. Generic Properties of Neutral Networks of RNA Secondary Structures
A given RNA sequence usually is compatible with many different secondary structures. Its
minimum free energy structure by definition has to be one of them, the others being the suboptimal
structures of the sequence (which sometimes can be triggered by suitable environmental conditions
to be adopted instead of the minimum free energy structure). Thus folding into the actual
structure may be viewed as choosing from a list of candidate structures. It is known that different
algorithms for RNA secondary structure do not always yield the same result on a given sequence,
yet nevertheless global statistical features of RNA folding landscapes are largely independent of the
folding algorithm [88, 89]. This can be understood by the following argument. Varying predictions
mean that we do not fully know how the actual structure is choosen from the candidates. The
best we can do is assign some probability to be choosen to each of the candidates. Simple ways to
do this is either assume there is an uniform probability for all possible structures, or else there is
a fixed probability A for a given candidate structure s of interest, all remaining structures being
lumped into the event “not s” of probability 1 — A. Such a probabilistic view is not only a way
to deal with lack of accurate structure predictions. At the same time it provides an algorithm
independent model of how certain features of RNA folding landscapes come about, and it is these
features which indeed are robust across different folding algorithms.
The main generic features are [12]
(i)  There are few frequent and many rare structures. Almost all sequences fold into frequent or
“common” structures.
(ii)  Sequences which fold into “common” structures are distributed nearly uniformly in sequence
space.
(iii) Almost all “common” structures can be found close to any point in sequence space. This
property is called shape space covering.

(iv) A sequence folding into a “common” structure has a large number of neutral neighbours
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(folding into the same structure) and a large number of neighbouring sequences folding into
very different structures.

(v)  Neutral paths percolate sequence space along which all sequences fold into the same structure.
In fact, there are extended neutral networks of sequences folding into the same “common”

structure.

2.6.3.1. Zipt’s law(s)

From massive statistical investigations of RNA secondary structures (e.g [89]) as well as from
exhaustive folding of sequence spaces over binary alphabets [37, 38] it is known that structures
behave like words in a natural language : there are a few common ones and many rare ones. A
relationship of this type is known as Zipf’s law after [107]. In its simplest form it states that the
frequency of a word times its rank (in an ordering according to decreasing frequency) is equal to a

constant, that is, (frequency, rank) pairs will come to lie on a line with slope -1 in a log-log plot.

const

Zipf1 flr)=

r
There are several generalized versions of the law. One which is highly tunable takes the form

Zipf2 £0) = A x (o)

The scaling parameter A is the count of the most frequent word. In a double-log plot, the function
is very slowly decreasing up to about rank B, and then gradually changes into a line of slope —~.
Words with ranks less or equal than B, the abundance of which is more or less independent of their
rank, are called common words. Mandelbrot [61] showed that Zipf2 holds for the word counts
in a text which is generated by randomly stringing together the symbols of some alphabet and a

space character, followed by splitting into words at the space characters.!

I1n his original paper George Kingsley Zipf gave a sophisticated explanation for the appearance of the law in natural
languages: he argued that a speaker has to invest a minimal effort for conveying a given message if there are a few
words which make up the scaffold of any message (such as articles and pronouns). Those then can be stored in a
“fast access” region of the brain. The specific contents of the message is conveyed by only a small fraction of it,
consisting of relatively rare words, which typically are also longer than the high frequency words. This explanation
started an argument with Mandelbrot, who advocated the position that the law will necessarily hold for any random
text.
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Zipf2 is rewritten as

Zipf2' F(r) = A x (1+%)—7.

In general, the law describes a scenario in which the combinatorial complexity of the most probable
events is low (it is likely that a space occurs “relatively soon”, resulting in a short word, yet there
are only a few different short words) while the one of the unlikely events is high (there are infinitely
many words which are “longer than short words”, and if the alphabet size exceeds 1, there are more
different words of a given length n if n grows). In terms of RNA minimum free energy secondary
structures, two factors determine whether a structure is “probable”: first, because by definition the
free energy is minimized, stable structures are the likely outcome of folding. Second, a structure can
only be realized on a sequence which is compatible with it, so that the most “probable” structures
are those which both have a large set of compatibles and are comparably stable. With increasing
chain length, the ratio of the number of these preferred structures to the number of all structures
becomes increasingly small, resulting in a Zipf distribution of the frequencies of realized structures.
Another example of a Zipf-like relationship in the context of RNA structure landscapes is the

distribution of intersection sizes (see section 3.3.3).

2.6.3.2. A Random Graph Model for Neutral Networks

Assume we model folding into a reference structure as choosing the structure from the candidate
list of the sequence, with the above mentioned probability A. Assume further A is constant for
all compatible sequences of the reference structure. (This is certainly never true in detail, be it
only because the candidate lists are of different size for different sequences. However the model
does not aim at a detailed prediction of whether or not a single sequence folds, but rather at a
prediction of global properties of the network. Ifit holds that there is no clustering of sequences
with an exceedingly high or low true probability of folding, then the distribution in sequence space

and the expected number of selected sequences (although not the exact identity of the sequences)
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will be the same if the choosing is done with the average value of the true As (which is constant),
or with the per-sequence As themselves. Thus in this case it is admissible to assume a constant \.)
We have seen above that for fixed length structures the set of compatible sequences is best organized
into a (connected and regular) generalized Hamming graph of the form Q7+ x QZ”, 1, and n,, being
the number of unpaired and paired bases in the sequences, and a and f the alphabets of bases
and valid base pairs, respectively. Those sequences which actually fold induce a subgraph in the
generalized Hamming graph — by inheriting the graph structure, the neutral set becomes a neutral
“network”.

The compatible sequences which are selected in a single realization of choosing with probability
A induce a subgraph in the generalized Hamming graph, too. For the reasons mentioned above
it is not expected to be point by point identical with the “true” neutral network of the reference
structure. The true network is however one out of all possible realizations, and if the assumptions
about independence of individual folding probabilities are met, it is a typical one. The important
point is now that there is a whole body of theory (percolation, random graphs) which, for a random
process which selects nodes of a regular graph with some constant probability, predicts average
global properties of the resultant induced subgraphs. Therefore if the model is applicable, it is
possible to estimate properties like connectivity or denseness of a neutral network from the average
folding probability alone, without a need to fold the individual sequences.

The following model has been used bei Christian Reidys [71]:

By the structure of the generalized Hamming graph, a compatible sequence is split into two objects:
an unpaired part v, which is in Q2*, and a paired part v, in QZ”. There is a distinct choosing
probability for each of these parts: it is called A, for v, and A, for v,. One instance of the random
process is generated by first selecting sets o, C v[Q"*] and o, C v[Qa’] using the appropriate

choosing probabilities, and then defining the set of selected compatibles to be equal to the cartesian

- 32 -



CONFIGURATION SPACES

product o, X o,. Christian Reidys showed that there are two threshold probabilities

M =1 YT
and
N = 1= "/A7TA

such that if both A, > A" and A, > X," it holds for the induced subgraph T', in Qp* x Qp:

lim {T", is dense and connected} = 1.
n—oQ

Note that for short chain lengths n the relation is not assured to hold. Exhaustive enumerations
of minimum free energy neutral networks of binary sequences [37, 38] have however shown that
the threshold probabilities often do lead to useful predictions for n < 30. In chapter 2 we will

investigate the case of a sequence space of length n = 16 over the natural alphabet {A,U,G,C}.
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3 Sequence Space and Shape Space of 9§ .,

3.1.Introduction

The random graph model introduced in the preceding chapter will, if the appropriate preconditions
are met, predict global properties of neutral networks. In cases in which it is impossible to access
more detailed information (because the chain length is too long to determine the minimum free
energy secondary structure of all sequences in reasonable time, or because neutrality is defined with
respect to a quality which cannot be reliably predicted from the sequences) this provides a most
valuable hint. One thing which it obviously cannot do is to determine which neutral networks exist
in a landscape in the first place. In addition it needs an average choosing probability as input,
which means that more than a single member of the network needs to be found beforehand in
order to provide a reliable estimate. For RNA secondary structures it has been shown [31] that
the networks of rare structures are very hard to find if the landscape is statistically sampled. Thus
finding the rare networks is one reason for exhaustively determining the fitness values of an entire
landscape, in case this is possible. Another reason is that the details of the graph topological
structure of a network which by definition are not predicted by the model can well be of interest
in their own right. Last not least, detailed information on a landscape may be used to test the
model — this is especially important for short chain lengths for which the mathematical theory
itself labels the predictions as unreliable.

In this chapter we provide data on the minimum free energy secondary structures of all RNA
sequences of length 16 over the natural alphabet {A4,U,G,C}. These are about 4 billions of

sequences, which fold into as few as 274 different secondary structures. The landscape has one
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outstanding peculiarity: 63% of all sequences “fold” into the open structure, i.e. they form no
base pairs at all. This is because the sequences are too short to permit long stacks to form,
and the entropy gain by not folding at all most of the time exceeds the energy gain associated
with the formation of a short stack. The frequent instability of base pairs leads to a violation of
the assumptions of the random graph model: oftentimes the formation of a pair depends on the
sequence context. Because of the abundance of the open structure and the frequent confinement of
the remaining networks to only a few dimensions of the entire space (which provide a permissible
context) the networks of Q1% . are less dense than predicted by the model, but more connected.

Obviously a chain length of 16 does not suffice in order to apply the model.

3.2. Methods

3.2.1. Why Length 16 ?

There are two reasons for choosing the rather “unbiologically short” sequence length of 16. First,
it is the maximal length that allows a sequence to be mapped onto a unique value of a basic type of
the C programming language. By coding a given base by the configuration of two adjacent bits, a
sequence of length 16 can be coded for by the value of an unsigned long integer ( 32 bits ). Second,
and more importantly, a sequence length of 16 takes us to the limits of affordable computation time
and storage resources. The time needed for exhaustive folding of the entire space is dramatically
increasing with sequence length : it is 16 hours for Q10 ., 8 days for Q'2, . and about one and a
half year for Q%55 (on an Indigo2 XL). So for lengths greater than 16 it is expected to reach the
order of decades with current computer technology. During the folding of Q15 .. 10 Gigabytes of

data were produced.
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One case can be made in favor of a rather short sequence length: The shorter the chain, the
less likely it will be kinetically trapped in a structure which is far from its minimum free energy
structure. This is, the computed minimum free energy secondary structures are likely not to be

too far off from reality.

3.2.2. Algorithm for Determination of the Sequence Of Components

To determine the sequence of components of an undirected graph is a standard problem in graph
theory. One common solution is breadth first traversal of the nodes of the graph (cf. Fig. 9). The
name refers to the fact that the algorithm processes all immediate neighbours of a node before any
remaining nodes are processed.

The basic operation during a graph traversal consists of finding the neighbours of the current node.
In a general graph setting, this requires adjacency information to be stored in some way. Data
structures which do this have a space complexity of O(|v[G]|?), which is completely infeasible with
networks which are of size 5 x 107. Fortunately, neutral networks of RNA secondary structures
have a property by which one can do without this information. Namely, we know that no two
sequences can be neighbours in a neutral network unless they are neighbours in the underlying
graph of compatibles. Because a sequence completely determines its set of compatible neighbours
there is no need to store them: at the price of a little more time they can be constructed from the
sequence if needed. In order to determine the actual neighbours in the neutral network, each of
the candidate neighbours then has to be looked up in the set of nodes of the network.

For the algorithm in the above form to work, all nodes of the networks have to be accomodated on
a random access device, either in working memory or in a database system on disk. Alternatively,
one can modify the algorithm so that the network is processed segment by segment, which is what
we have done.

The algorithm proceeds in two steps. In the first step, one segment at a time is read into working
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Figure 9: Breadth First Traversal of an undirected graph. At every step, there is a current component number,
a set of nodes not yet assigned to any component, and a set of nodes which are known to belong to the
current component but are not fully processed yet. In the beginning, the second set, which is represented
as a linked list, is initialized to nil, and the set of unassigned nodes is equal to all nodes of the graph. The
initial component number is zero. Whenever the list of nodes known to belong to the current component
is empty ( as it is at the start ) one of two actions is taken: if the set of unassigned nodes is empty,
too, the algorithm stops. Else an arbitrary node out of the unassigned nodes is choosen, removed from
the set, and entered into the list. The component number is incremented by one. Then the following
steps are repeated until the list is empty again: the head of the list is removed and reported as the next
member of the current component. Those neighbours of this node which are unassigned yet are removed
from the set of unassigned nodes and appended to the tail of the list.

memory and a standard component decomposition is done on the subgraph it induces in the graph

of compatibles. At the end of the first stage the component structure of all subgraphs induced
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by the segments is known. Now we observe that two such components which belong to different
segments may be connected in the component structure of the complete network. Assume we can
find out which is connected to which. The problem then can again be formulated as a graph, this
time on the smaller node set of components of the segments — two components being joined by an
edge if they are connected. Let us call the graph T'. The second stage of the algorithm now consists
of a component decomposition of I" (in practice, it is implemented as a bottom up clustering instead
of a graph traversal). Joining the sets of sequences which are in the same component of I then
yields the component structure of the complete network.

The modified algorithm solves the memory problem. (It is still necessary that two segments at a
time fit into working memory. This however can always be achieved by adjusting the segment size).
Whether or not it is feasible in terms of time complexity depends on the time it takes to determine
whether or not two segment components are connected. Let us call the two sets ¢; and ¢;, and let
us assume |¢;| < |¢;|. Both sets are read into working memory and are stored in a data structure
which permit lookups in O(log n) time (we use AVL trees [2] as implemented by Kendall Bennett
and adapted by Walter Fontana). Then ¢; is traversed, and for each element the set of candidate
neighbours is constructed. Each candidate is looked up in ¢;. As soon as an edge is found, we
know that the two sets are connected and the algorithm stops. The worst case occurs if they are
not connected, in which case ¢; is completeley traversed and the time complexity is O(|c;|log(|c;]))
(¢; is choosen to be the smaller component in order to keep the number of candidate neighbours
which have to be looked up in the worst case small).

Table 1 summarizes the algorithm.

The algorithm takes about 2 weeks on an Indigo2 XL for a connected network of size 31720954
( rank 11 ). MAXFILL was set to 1000000 in this run. The initial decomposition, taking only

about 1 day, resulted in 93 partial components.
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Read (MAXFILL) ; # max. number of sequences in working
# memory

count := Size ; # total number of sequences

nsocs := 0 ;

while ( count > 0 )
n := max(MAXFILL, count) ;

ReadSeqs(n) ; # Store n sequences in an AVL tree
count := count - n ;
nsocs := nsocs - 1 ;
S0C[nsocs] = # Find Sequence 0f Components for

H+

BreadthFirstTraversal(n) ; sequences just read

end while ;

for i=1 ... nsocs
for ii=1 ... ncomps[i]
ReadComp (comp[iil) ;

for j=1 ... nsocs
next if (i ==3j) ;

for jj=1 ... ncomps[j]
ReadComp(comp[jjl) ;

# Is there a connection between
# subgraphs comp[ii] and comp[jj] ?
# If so, merge them in output
# Sequence of Components

if ( Connected(comp[iil, comp[jjl) )

Join(comp[ii], comp[jjl);
end if ;
end for ;
end for ;
end for ;
end for ;

Table 1: Algorithm for finding the Sequence Of Components
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3.2.3. How to Handle Random Access to Large Data Files

The problem of the entire networks not fitting into working memory recurs at every stage of
analysis. Even if only a statistical sample of all sequences of the network is used, one cannot be
sure to get a realistic distance distribution when just using a single consecutive part of a listing of
the network.

A B-tree is a multiway search tree which is normally used to externally implement a dictionary
data type ( a set with the operations “insert”, “delete”, and “find” defined on it ). A multiway
search tree is a generalization of the concept of a binary search tree. A node normally holds more
than one key, this is, data item. To the left and to the right of each data item there are links
pointing to sub-multiway trees. Data items are sorted within a given node. A subtree which is
pointed to by a link which is bounded by data items ¢ and j is constrained to obey ¢ < k < j for
each data item k on any of its nodes. The structure of the tree reduces search time by the reduced
height.

In an external implementation of a dictionary, a node is equal to a page in memory.

We have used the Btree methods of Berkeley DB (version 2.4.14) [1] to organize the Size unsigned
long integers representing the sequences of a network into a database on disk, which can be accessed
from within a C program. A very serious drawback is the fact that the database file is about two
orders of magnitude larger than the the plain data file ( for a network of size 31738681 the database

file is about 1.3 Gigabyte in size ). For this reason only 220 out of 274 networks have been indexed.
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3.3. Which Structures Are Realized in QLGUGC ?

The 4% sequences in Q! .. were folded into their minimum free energy secondary structures
by the algorithm of Zuker and Stiegler [109, 108] as implemented by Ivo Hofacker et al. in the
Vienna RNA Package version 1.03 [46, 45]. During the course of the folding the neutral sets of
the landscape, each consisting of all sequences which fold into a particular structure, were built
up. In a second step the sequence of components was determined for each of these sets by the
algorithm given in table 1. As a first approach to the sequene structure mapping in QY,5- we
will in this section entirely ignore the fine grained composition of the neutral sets and just ask the
question how many of them occur and what are the distinguishing features of their corresponding
structures.

According to [79] the relation between chain length n and the number of different RNA secondary
structures takes the form of s(n) = 1.4848n~21.8488". Thus one would expect s(16) =431 different
networks in Q%%; . The number which is actually observed is much lower: it is only equal to 274.
The basic element of the structures is a single stack of length 2 to 6. Assuming a minimal loop
length of 3, there are 2112;2” 16 — (2n + 1) + 1 different structures which consist of a single stack
of length n (the variable [ is the loop length). For stack lengths of 3 to 6, all of them are realized,
which amounts to a total of 70 structures. There is an upper limit of 7 to the loop length in
2-stacks, which is why they contribute only 40 more structures (instead of 55). The remaining
164 structures consist of one of the simple stacks plus some additional base pairs. These pairs
may form in the loop and/or in unpaired terminal stretches. Although the two possibilities are
combinatorically equivalent, they are not from a thermodynamic point of view: a pair in the loop
means less of an additional sterical constraint (and therefore reduction of entropy) then one which
involves the terminal regions. That such an effect is in operation is clear from the fact that isolated

additional base pairs are quite frequent in long loops, while they never occur outside. The more
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stable the underlying simple stack, the less favored are additional pairs in the terminal regions (for
example the derivative “((((((...)))).))” of the stack “..((((...))))...” does not occur). The effect
surely contributes to the relatively low number of observed structures. Accordingly this number is
likely to change if the energy parameters of the folding algorithm were changed. In fact this is the
case with the above example: in version 1.31 of the Vienna RNA package, a sequence which adopts
the structure “((((((...)))).))” is readily found by inverse folding (e.g. GGGCCUGGCAGGCACC).
When folded with version 1.03, the terminal base pairs are not formed. Indeed there was a change
of energy parameters between the two versions (from the parameter set of Freier et al. (1986) [34]
to that of Walter et al. (1994) [99]).

Although the number of structures in Q5. is lower than expected, it is high compared to the
number of structures in Q15; and Qf%,. There are only 4 structures in Q5 (the open structure
plus the 3 possible simple stacks of length 6). QLS. consists of 195 structures. The 79 structures
which are in QY but not in QY. are featured by tetraloop hairpins with a stack of length 1 or
2 and/or isolated base pairs. They contain all but two of the 44 disconnected networks in Q% ;¢
There are tetraloop structures in Qf5, albeit with longer stacks. The natural alphabet permits the
formation of certain subsequences which are preferred in tetraloops [57] (these preferences are build
into the folding algorithm), leading to loops which are inherently stable. In the binary alphabets,
a corresponding stabilization has to be provided by the stack. Isolated base pairs occur more easily
in the natural alphabet for combinatorial and energetical reasons: because of the reduced stickiness
of the alphabet [28] it is more likely that a lonely pair is the only option for a position (besides
not pairing at all). Especially if it is a GC pair, it may actually form, because GC pairs constitute

an above average energy gain in this alphabet.
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Figure 10: The mean number of bases at unpaired positions (left) and the number of base pairs which can be
formed at paired positions, given the mean number of bases at the constituent postions (right). The
ordering is according to absolute network size. Small (high ranking) networks tend to be those in which
less than the maximal number of bases (pairs) is realized. This means that they are confined to certain
dimensions in sequence space.

3.4. Global Properties of Networks

A neutral network, like any graph, is made up of a set of nodes together with a binary relation
which defines the edges. The simplest characteristics of a network only assume the set property:
for example the size of the network, and how this relates to the sizes of certain supersets, subsets,
and intersections. Global averages of per-sequence properties are also independent of the graph
structure. One such measure which, without making use of any distance information, tells already
a lot about the relative location of the network in sequence space, is the profile of per-position

base frequencies.

3.4.1. Profiles of Base Frequencies
For all networks except the open structure, the distribution of the bases s € {4,U, G, C}, which
we will call count(i, s), has been determined for each position ¢ in the reference structure. A simple

measure which assigns but one value to a given structure is derived from this distribution as follows.
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First, for each position the number of bases which occur at all is determined. These numbers are
then averaged either over all positions or over some subset thereof, resulting in a coarse measure of
equidistribution of the network (at the respective positions) over all dimensions in sequence space.
If the subset is that of the paired positions, it is sensible to give the mean number of occuring
pairs (assuming that the network is represented as a generalized Hamming graph). This number
has not been determined directly, but it can be approximated by the number of possible pairs,
which is equal to the number of valid base pairs which can be formed from the symbols which
occur at the interacting positions. The numbers of possible pairs are then averaged over all base
pairs in the structure. Figure 10 graphs the measure for unpaired and paired positions separately
(the ordering of the structures is according to decreasing network size). Larger networks tend to
be more equidistributed, with the exception of a group of structures around rank 100. We will see
below that these consist of a single stack of length 2. Obviously, the formation of this unstable
stack does not only strongly depend on its constituent base pairs, but also, to a lesser extent, on
the unpaired context (not all symbols are permitted in the unpaired subsequences, t00).

In the appendix, a conservation profile has been derived from these counts for each structure: the
conservation at position i, ¢;, is defined as

maXse(A,v,q,c} count(i, s) — mingega,u,q,0} count(i, s)
> se{au,g,c) count(i, s)

C; =

This measure is zero in the case of a completely uniform distribution and it takes the value of 1.0
if only a single base is permitted at this position. We see that even if the large networks do cover
all dimensions of both Q7+ and QZP, the distribution is never completely uniform, at least in the
paired fiber. The nonuniformities observed are too regular to be entirely explained by sampling
fluctuations of an otherwise uniform random process: stacks are the more conserved the shorter
(less stable) they are, unpaired positions are conserved in the vicinity of unstable stacks, and they
indeed show a near-uniform distribution if far away from those stacks. Thus the assumptions of

the random graph model do not hold (exactly) for the networks of Q'9 ... Still the model may be

— 44 —



16
THE SPACE Q ycce

10
10° © 1
10" A ]
10° | : N .
S g X
8 . 210 \
107 = O \ il
4 10° \
1S
z 2 / { \
100 £ ¥10 } E
© { \ A\
B \
1 0
3 1 101 201
10" ¢ rank 3
102 L L L TR L L L T Ll L L L L
1 10 100 1000

rank

Figure 11: A fit of the rank ordered absolute network sizes to f = A((1 + r/B)7),A = 4.46157e¢ + 07,B =
127892, v = 3369.76 ( the open structure is not displayed ). Circles corresponds to observed data points,
the continuous line to the fitted function. In the insert the product of rank and count is plotted, which
should be constant according to a simple Zipf’s law. Obviously this is not the case.

a useful approximation, at least for the large networks.

3.4.2. Absolute Size Distribution

The absolute size of a minimum free energy neutral network is jointly determined by the number
of compatible sequences (which sets an upper boundary to the size) and the mean energy gain
by preferring a structure over other structures which the sequences may be compatible with. We
have argued in section 2.6.3.1 that a Zipf distribution of the sizes will result if the number of

energetically favorable structures with large compatible sets is small compared to all structures.
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Fig. 11 plots the absolute network sizes versus the rank in the size distribution, on a double
logarithmic scale. Note that the figure does not include the open structure. The networks fall into
three classes: First, there is the open structure which is about 50 times as frequent as the structure
which is second in the rank order. With a count of 2709569048 it comprises about 63% of the
entire space ( 416 = 4294967296 ). The counts of the remaining structures are best fit by two lines
intersecting at about rank 70. One has a very shallow slope and comprises those structures which
can be termed common. The other one, with a steep slope, corresponds to the rare structures. The
boundary between the two regimes is more discontinuous than predicted by Zipf2. In addition,
the counts of the rare structures fall off more rapidly than in the Zipf relationship.

Accordingly there is no very good fit to Zipf’s law ( formulated as Zipf2' ). The parameters
assigned by a nonlinear fit function are A = 4.46157e + 07, B = 127892,y = 3369.76. A is of
the same order of magnitude as the size of the biggest network involved ( rank 2, with a size of
52505831 ), but B obviously has no meaning as a rank which separates common and rare structures.
Other criteria which have been used to locate the boundary between common and rare structures
are the mean redundancy of the sequence to structure mapping [81] or a fixed cutoff of 25% of the
rank 1 network [54]. According to the first criterion, the boundary would be located at rank 39,
because with a count of 16018755 this network just exceeds |QL ;o |/#structures = 4'6/274 =
15675063. If the rank 1 network is included when applying the 25% criterion then this network is
the only common one in the space: 25% of rank 1 is still about twice the size of the rank 2. Not
including it (so that the cutoff is 25% of rank 2) results in a boundary separating rank 58 and 59
( of the full list ).

Combining these various definitions, the boundary between common and rare seems to be smeared

out over a rank range from about 40 to about 70.
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Figure 12: The fraction ncompatibles/Size as a function of rank is shown as a bold line using the left y and the
lower x axis. The right y axis and upper x axis span an upside-down plot of the number of compatible
sequences versus rank. The lengths of the longest stack of the respective structures are indicated by big
circles, and the total numbers of base pairs by small diamonds.

3.4.3. Normalized Size Distribution

The size of a network is bounded from above by the number of compatible sequences of the reference
structure. This hidden dependency is factored out by dividing the network size by the number
of compatibles. The resultant ratio, which we will call the coverage of compatibles, is a folding
probability per compatible sequence (and can be used as such in the random graph model). Taken
times some constant IV, it gives the expected network size in case the compatible sets were of a
constant size N for all structures. Fig. 12 shows the coverage of compatibles versus the rank in
the absolute size distribution, along with the number of compatible sequences and the length of

the longest stack per structure. The ambivalent effect of base pairing on the size of a minimum
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free energy neutral network is evident: less pair constraints lead to a higher number of compatible
sequences, yet the longer a stack, the higher the coverage. The coverage values decay according
to (a) power law(s), which may be best fit by different exponents for different stack lengths. The
decay within a length class is caused by an increase in loop size, different relative locations of the
stack and/or less base pairs in additional structural elements. There are two broad regimes of
coverage, which are separated at about rank 70 of the absolute size distribution. The first region,
with a mean coverage of 0.25, includes the highest coverages of length classes 3 and 4 as well as
all of classes 5 and 6. The end of the region is conspicuously punctuated by the structures ranked
65 and 66, with a coverage of 0.9 each (both have a stack of length 6). Immediately afterwards,
coverage drops below 0.1 and stays below this figure for the remaining ranks (mean 0.06). The
number of compatible sequences of the structures in this second regime is no different from that
of the first one — between ranks 71 and 80 it is even exceptionally high (these structures have
only two base pairs). This means that the absolute size of a network is mainly determined by the
folding probability. That the boundary between high and low coverage is located at about rank
70 confirmes once more that this rank constitutes a sensible point of separation between common
and rare structures.

The ordering in figure 9 was according to the rank in the absolute size distribution. One can
also do a direct rank ordering of the coverage values themselves. This is also a size distribution:
namely, the expected sizes of the networks if the number of compatibles were equal to 1 for all
structures. (A realistic value for N would not change the shape of the distribution, only its relative
location.) Therefore it makes sense to ask for a fit to Zipf’s law. The result is shown in figure
13 : the coverage values, which in an ordering according to absolute network size seem to fall onto
different analytic curves, do form a common distribution. Note that the open structure is included
in this case (it occurs at rank 6 in the distribution). The fit to Zipf2 is clearly better than with

the absolute sizes. The assigned parameters are A = 0.927399, B = 89.9916,v = 5.30659. A is a
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Figure 13: A fit of the rank ordered coverage of compatibles to f = A((1+r/B)7), A = 0.927399, B = 89.9916,v =
5.30659.

reasonable scaling parameter (the rank 1 coverage (rank 65 of the absolute sizes) is equal to 0.905).
B is at least a crude estimate of the rank which separates the shallow from the steep regime of the
curve. This boundary is located somewhere between ranks 40 and 70, quite like in the case of the
absolute sizes. Yet although many of the structures which are common according to absolute size
do show up at ranks less than 70 in the coverage ordered distribution, the two criteria do not pick
identical sets of structures. Structures which rank less or equal to 70 according to both criteria
are ranks 1 to 56 and 59 to 69 of the absolute size distribution. One could propose to define a

common structure by membership in this intersection.
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Figure 14: Distributions of intersection sizes and “visibility”. The columns correspond to the 3 reference structures
ranked 6, 14, and 150 in the absolute size distribution. The plots in the upper row show count
distributions on a double logarithmic scale: |I[s1, s;]| (uppermost curve), A(s1,s;) (middle curve), and
B(s1,s;) (lowermost curve). In the second row, |I[s1, s;]| is again displayed, this time on a linear scale
(which shows more clearly how the distributions are made up of discrete values). In the third row,
A(s1,s;) and B(s1,s;) have been scaled by the respective network sizes to yield “visibilities” A’(s1,s;)
(dark, upper curve) and B’(s1,s;) (light, lower curve). Note that there are several orders of magnitude
less on the y scale in the plots of row 3 than in row 1, which is why the tails of A’(s1,s;) seems to fall off
more rapidly than that of A(s1,s;). On equal scales, the shapes of the two distributions are identical.

3.4.4. Intersections
The intersection or overlap I[s;, s3] of two RNA secondary structures s; and ss is defined to consist
of those sequences which are simultaneously compatible with both structures [100]. Focusing on

one structure, both the neutral network of the structure and the overlap are subsets of the set
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of compatibles. The set theoretical relation of the two subsets may be anything between the two
extremes of an empty intersection and complete inclusion of the neutral network in the overlap.
Being both in I[sq, s2] and in one of the neutral networks means that the sequence may directly
switch structure under suitable conditions. In a static landscape like the one discussed here this
is ignored, yet the number of sequences with this property still is a measure of accessibility of one
structure from the other, in the following sense. As discussed in chapter 2, the 1-neighbourhood
of an RNA sequence is usually defined with respect to its structure, exchanging paired positions
in a single step. Under this assumption it follows that any neighbour of a sequence on the neutral
network of sy is compatible with sy, whether or not it is a neutral neighbour. Any sequence on
the network of so which can be reached by a 1-move from the network of sy thus is in I[sy, s2].
Therefore the cardinality of the intersection of I[s, s2] and the network of s is an upper limit to
the number of sequences which fold into s; and are in the boundary of the network of s;. If it is
zero, it is clear that the boundary does not contain s,, without further inspection.

In the following a reference structure s; is fixed and for all structures s; # s; we determine three
basic distributions: a) |I[s1,s;]| (by means of the algorithm given by [100]), b) the number of
sequences which fold into structure s; and at the same time are compatible with structure s; (in
the following referred to as distribution A), and c¢) the number of sequences which fold into s;,
being compatible with s; (distribution B). Together with two derived distributions which will be
discussed below, they are displayed in figure 14.

A single count in the distribution of |I[s1,s;]| means that s; appears in the list of candidate
structures of a compatible sequence of s;. Structures with a high count are those which are in
many lists. A structure is the more likely to be in an arbitrary list the less constraints are put on
a sequence by the requirement to be compatible with the reference structure, too. The best case,
in which there are no additional constraints, occurs when the set of base pairs of s; is a subset of

those of s1. The number of structures which fulfill this criterion (or the weaker criterion that there
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are no long orbits with the reference structure (cf. chapter 5) is small compared to the number of
structures which do not fulfill it. By the arguments given in chapter 2, this points to a Zipf like
distribution.

The relationship is certainly exponential (cf. figure 14). The linear plots show how the curve is
put together from building blocks on two scales: first the intersection sizes come in certain discrete
values each of which is the result of some combination of orbit lengths. When plotted in rank
order, some of the discrete sizes are so similar that they join into near-constant steps, which are
separated from other such steps by large jumps. These higher-order steps are the most conspicuous
feature of the distributions. The overall exponential distribution comes about by an approximate
bisection of the sizes in subsequent steps. (This indicates that one constraint of some sort is
added per step. Roughly but not exactly it is the number of base pairs in s; which determines the
step to which s; belongs (data not shown)). Averaging over the steps, the distribution looks very
much like a Zipf2 curve. Note that the rank order according to the intersection size with some
reference structure is mostly very different from the rank order according to absolute network size
(the correlation between the ranks according to the two criteria is (0.12, 0.215, 0.13) for the three
reference structures).

More relevant for the topology of the landscape than the intersection sizes themselves is the
distribution of sequences in the intersection which actually fold into one of the shapes. It constitutes
a limit distribution for the boundaries of the landscape’s neutral networks (see section 3.5.3.4). In
contrast to the boundaries themselves, it can be determined without additional folding once the
networks are known (by traversing the reference network and testing the sequences for compatibility
with the structure s; of interest, a test which needs linear time in the sequence length).

In distribution A, only one neutral network is involved (that of the reference structure). The set of
sequences which are compatible with some s; is a subset of the reference network, and it is sampled

from I[s1, s;], which is a subset of the compatibles of the reference structure. Thus in the most ideal
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case, distribution A is derived from the distribution of intersection sizes by a multiplication by the
average folding probability of the reference structure. In practice, I[s1, s;] is not a uniform subset
of the compatibles, which is why the folding probability on this set may differ from the average.
(Imagine s; = “....((((--)))).7, s; = “...(((((---)))))”. The folding probability for s; of sequences in
the intersection is certainly below average, because it is energetically more favourable to choose
s; instead of s1.) Nevertheless, distribution A is essentially a shifted copy of the distribution of
intersection sizes in all three cases.

In distribution B, the sampling from I[s;, s;] is with respect to a different neutral network for each
s;, so that the folding probability is not even in theory assumed to be constant. We have seen
above that the average folding probability of a compatible sequence, which is equal to the coverage
of compatibles, is distributed over the structures in a “Zipfian” manner and correlates with the
absolute size of the network. Distribution B shares both features. The steps in the underlying
distribution have become completely blurred and the curves are more markedly bending downwards
with increasing rank in a log-log plot. The correlation of rank order in distribution B and rank
with respect to absolute network size is (0.82, 0.73, 0.70) for reference structures (6, 14, 150), while
it is only (0.07, 0.10, -0.01) in case of distribution A.

If B(s1,s;) is divided by the network size of s;, a measure results which can be termed a visibility
of structure s; from network s1: a value of 1.0 means that all sequences in the network of s; can
potentially be in the boundary of s;. If the value is small, then it depends very much on the
relative location on network s; whether or not structure s; is accessible (and therefore it may not
be very meaningful to talk about “the” accessibility of one structure from the other). The rank
orders of B(s1,s;) and visibility need of course not coincide (and they do not), but rank ordered
visibility, too, exhibits a Zipf-like distribution, with a tail which falls off even more rapidly than
in distribution B. On the high frequency end, the curves are bend upwards, resulting in an overall

sigmoidal shape. These “overly visible” structures either exactly contain the pairing pattern of s;
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(so that the neutral network is a subset of I[s1,s;] and the visibility is 1.0) or at least have only
few additional constraints.
The visibility of structure s; from network s; is identical with distribution A, except for a scaling

by the size of network s;.

3.5. Graph Topological Features

3.5.1. Distance Distributions

Size, coverage of compatibles, and cardinality of the intersection are single numbers associated with

one or two networks. The next step towards a more refined view is to investigate the distribution

of ( Hamming ) distances between pairs of sequences of the network. This gives an idea of how the

network is located in sequence space, while still ignoring the graph structure.

The observed distance distribution may be tested against several hypotheses. In the order of

increasing constraints on the sequences, these are :

(1)  Is the network a random sample from QY%,5c ¢

(2)  If not so, is the network a random sample from its compatibles ?

(3)  If not so, is this caused by position specific probabilities only or are there additional correlations
in the sequences ?

In a “random” sample from a sequence space, symbols occur with uniform probability at each

position, and the symbol assignments at any two positions are independent. In such a setting,

(nsymbols—1)
nsymbols

pairwise distances are distributed as B(nsymbols, ) (B(n,p) from here on will denote
the binomial distribution with n trials and probability of success p) : for every pair of sequences, the

Hamming distance is equal to the number of mismatches observed in length trials. It is clear that

— 54 —



16
THE SPACE Q ycce

no network ( with the exception of the open structure ) can ever be exactly distributed like this,
because the base pairs introduce correlations into the sequences. Nevertheless it is interesting to
ask how close the distance distribution comes to B(16, %), because this is the reference distribution
for “no clumping in sequence space”. The range of sequence variation which can be covered by a
population of sequences while retaining their structure is largest if the network of the structure is
approximately “randomly” distributed.

In contrast to condition (1), condition (2) can in principle be met by the members of a network.
To test it, one deletes the positions which correspond to the upstream partners of the base pairs,
resulting in a sample of sequences of length length —n,p, and compares this to B(16 —ny, %) Stable
stacks result in a good to perfect fit to this distribution ( see below ). There are however many
networks which do not fit it, hence are not uniformly distributed in their compatibles.

In many networks the reason for a lack of fit to B(16 —ny, 3) is immediately evident from looking
at the profile of per-position base frequencies (see section 3.4.1): often, these frequencies are very
different for different symbols to the extent that one or more symbols are never found at a given
position ( a very common case of this sort are A-U or G-U pairs in unstable stacks ).

The expected distance distribution under the hypothesis of complete independence of the positions
(but taking account of position specific base frequencies) is constructed from the frequencies as
follows:

The probability of a mismatch at position i is

nsymbolsi] nsymbols[i]
pmi@)= > fulil D fulil,
Jji=1 Je=1,j2#j1

where nsymbols[i] is the number of bases which are permitted at position ¢ and f;[¢] is the frequency
of the jth base (at position 7).

Accordingly, a match has probability

pma(i) =10- pmi(i)'
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Next, all possible subsets of the set of positions are enumerated by succesively incrementing a
counter N from 0 to 2™P°® — 1, at each step converting N to the vector of zeros and ones which
corresponds to its binary representation. Let d be the sum of entries of the vector. If a one is
thought of as representing a mismatch in a pair of sequences, and a zero as representing a match,
then d is equal to the Hamming distance of two sequences. This particular constellation of matches
and mismatches adds
Ap(d) = [ [ (w(@) X pmi(i) + (1 + v(d)) mod 2) X prmali))
i

to the total probability p(d) of distance d which at the beginning had been initialized to zero for
all d. Here, v is the above mentioned binary vector. Dependent on (i), either the mismatch
probability or the match probability is selected as the ith factor.

Intermediate between a plain B(16 —np, 3) and the detailed distribution above is the idea to break
a sequence into subsequences according to the number of different symbols which can occur ( so
that this number is constant for each subsequence ). Let ms, be the number of symbols which
can occur in subsequence s;. Then the number of mismatches at positions which belong to s;
is assumed to be binomially distributed with p,;, = % and n = length(s;). Let ds, be the

distance of the positions of set s; in a pair of sequences. The total distance d of the pair obviously

is equal to ) d;. Then a given constellation of (dy,) contributes
i

Ap(d) = HpB (length(s;),ps,;, d;)

k3

to the total probability of d ( where pg(n,p, k) is the probability of k successes given that successes
are distributed as B(n,p) ).
A common method for testing whether observed per-bin counts match the number of counts which

are expected from some distribution is the y-square test. The y-square statistics is defined as

(1) 2} (Vi ;ni)2

. %
%
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where N; is the number of events in bin ¢ which are observed, and n; is the expected number.
Q(x?|v), the probability that a correct model will produce a distribution with x%., > x?, can
be calculated in closed form as an incomplete gamma funcion [69] ( v is the number of degrees of
freedom in the model ).

From (1) it is apparent that the absolute values of x? are dependent on the order of magnitude
of the observed and expected counts (the squared numerator is increasing faster than the linear
denominator). In the following comparison of observed distance distributions versus the various
expected distributions which have been discussed above, observed and expected counts are divided
by the maximum value of the observed counts. The resulting probabilities (which are quite different
from the ones obtained without normalizing !) have been found to reflect the “intuitive” similarities
of the distributions well: a value of 0.9 means that the distributions nearly coincide, while values
near zero means that we are dealing with two different distributions, normally with a considerable
relative shift. Yet one has to keep in mind that this “probability” is a heuristic variable, not
Q(x?|v) as it would have resulted from the non normalized counts.

Testing the full length distance distributions versus a B(16, 2), the probability is zero to 6 decimal
places for all networks of Q}fugc — full length sequences as expected can never be completely
“dispersed” over the space. The absolute x? values however span a range of several orders of
magnitude and in overall tendency increase exponentially with the rank of the network ( cf.
Fig. 15 ). Networks up to about rank 60 can be thought of as approximately uniformly distributed.
Note that the threshold separating common from rare structures had above been located somewhere
between rank 40 and 70.

Regarding the degree of fit of the distance distributions of the shortened sequences to the simple
binomial, piecewise binomial, and resolved expected distributions, the structures of Q5. can
be partitioned into 3 classes. First, there are the common structures, which exclusively ( up to

rank 57 ) consist of single hairpins made of three or more base pairs. Among these structues are
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Figure 15: x» distance of the observed distance distributions to B(16, %) Both observed and expected values
are divided by their respective maximum before comparing the distributions. Although there is not a
single very good fit, it is possible to distinguish 3 classes of networks. The distributions of the common
structures, up to rank 70, are closest to B(16, %), despite the presence of base pairs. Intermediate x2
values characterize structures between ranks 70 and 200, while the distance distributions of structures
beyond rank 200 have nothing whatsoever to do any more with B(16, % .

the only networks which show a near-perfect fit to the simple binomial distribution, that is, which
are approximately uniformly distributed over the set of compatibles. Rank 10 is an example.

Fig. 16 shows the distance distribution for full length sequences (solid line) and for shortened
sequences (dashed line) compared to B(16,2) (solid fat line line) and B(13,2) (dashed fat line).
(The rank 10 reference structure contains 3 base pairs). In the full length sequences, there is
a considerable underrepresentation of intermediate distances and an overrepresentation of short

ones. In this case this is entirely due to the nonindependence of paired positions: the network is
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Figure 16: Distance distribution of 500 full length sequences from the rank 10 network ( continues light line )
compared to B(16, %) ( continues fat line ), the distance distribution of the same sequences with the
upstream partner positions of the base pairs deleted ( light dashed line ), and the expected distribution
for the shortened sequences, B(13, %) (fat dashed line ). In the full length sequences, there is considerable
buffering ( overrepresentation of small distances ) and an underrepresentation of intermediate distances,
compared to B(16, %) But these effects can be nearly completely be accounted for by the coupling
of paired positions: the distance distribution of the shortened sequences nearly coincides with its
expectation.

uniformly distributed over its compatibles.

There is another class of structures besides the common ones the distance distributions of which are
easy to explain. Those are the structures with two base pairs only. In the rank list, their “realm”
is located between the common structures and those rare structures which contain subelements,
approximately from range 70 to range 120. The two base pairs are always adjacent, so these

structures contain a single structural element, a 2-stack. The distances do not fit a simple binomial
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distribution, because there are sequence constraints on the stack (normally G — C only, sometimes
restricted to a particular orientation ). In some structures, the stack is completely conserved as
5 GC...GC 3, this being the only sequence constraint. Accordingly the distances of the shortened
sequences fit the piecewise binomial distribution well to perfectly ( dependent on the degree of
uniformity of the base composition of the remaining positions ). In some other networks, there are
more pronounced position specific base inhomogenities. But in these cases, too, the positions seem
to be independent, as judged from the fact that there is a perfect fit of their distance distributions
to the resolved distributions. The only n, = 2 networks the distance distribution of which cannot
be reproduced in this way correspond to 9 structures which contain a tetraloop. All of these 9
networks decompose into two components each, each with a characteristic pattern of nucleotides in
the region of the tetraloop ( which in part can be considered an artifact of RNAfold, which gives
a built-in bonus to certain preferred patterns ).

What remains is the class of non-hairpin structures. They commonly show major deviations from
a uniform base composition at many positions, which is why the fit to the piecewise binomial
distribution is generally bad ( as well as the fit to B(length — n,,3) ). Networks of structures
in the rank range from about 100 to about 200 mostly fit the resolved distribution very well,
while most of those beyond rank 200 do not. In the latter ones, seemingly not all positions are
independent. This explains why these structures are at the very end of the rank list: like in a base
pair, mutating one out of a set of non-independent positions will most likely not result in a neutral

neighbour, resulting in low neutrality and density of the structure.

3.5.2. Overall Connectivity
The Sequence Of Components decomposition described in section 3.2.2 was carried out for all
networks in the landscape except for that of the open structure (the latter was omitted not only

because it would have taken too much time to process this huge network, but also because for
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Figure 17: Degree of fit of the observed distance distribution to a) B(16 — np, %) ( upper left ), b) a piecewise
binomial distribution based on the number of symbols which can occur at the different positions ( upper
right ), and c) expected distribution with position specific mismatch probabilities ( computed from the
observed per-position frequencies of the symbols ), but assuming that positions are independent ( lower ),
for np =2 and ny = 3.
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structures with 4 base pairs

Figure 18:

Same as Fig. 7, for np, =4 and np = 5.
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reasons discussed below there are already strong hints that it is dense and connected).

Of the 273 networks analyzed, 229 are connected graphs. The first disconnected network occurs at
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Figure 19: Same as Fig. 7, for np = 6.

rank 93. Of the 44 disconnected networks, 42 share a common feature: the underlying structure
contains a tetraloop with an unstable stack ( size of stack 1 or 2 ) and each component shows a
characteristic pattern of nucleotides in the region of the tetraloop. The two remaining disconnected
networks correspond to structures which contain 5-loops with a stack size of two. Having an
unstable 4- or 5-loop is not a sufficient condition for a network to be disconnected. Ranks 163 to
166, for example, correspond to structures which contain tetraloops, yet they are connected. The

probable cause is the presence of additional ( stabilizing ) base pairs outside the 2-stack.
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Figure 20: Upper two plots: mean fractions of neutral neighbours of a random compatible point ( for 220 network
of Q}fugcv 1000 points per structure ). Lower plot: coverage of compatibles of the same networks. p,
and p, are quite similar to each other as well as to the coverage values.

3.5.3. Distribution of Shapes in the Vicinity of a Sequence

3.5.3.1. Lambda Values

An induced subgraph generated by sampling vertices from a generalized Hamming space Q7+ x QZ"
is expected to be dense and connected if the choosing probabilities for the paired and unpaired
fiber fulfill the relations p, >1— “Va~! and p, > 1 — #=3/f=1 (cf. section 2.6.3.2). In the case
of 98,60, @ = 4 and B = 6, leading to the values of p}= 0.37 and pp= 0.30 for the threshold
probabilities.

It is known from previous studies [37, 38] that the folding probabilities in minimum free energy
neutral networks often depend on whether the average is taken over all compatibles or else only
those compatibles are considered which are 1-neighbours of a folding sequence. The reason for this

is the fact that the sets of candidate structures of two sequences which differ by a single mutation
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(point or pair exchange) are expected to be more similar than the sets of two random compatible
sequences. If the reference structure is the energetically most preferred one in one of the lists,
then it is more likely that this is the case in its immediate neighbour, too, than in an unrelated
compatible sequence. In order to catch this effect, the choosing probability is usually estimated
not by direct testing for membership in the network of a sample of compatibles, but by recording
the fraction of neighbours of a compatible sequence which are on the network. This is actually
the reason why neighbourhood information is required for determining this probability. In the
following we will call the estimated probability p if the set of reference compatible sequences is
uniformly sampled from all compatibles. If the sampling is from folding sequences only, it is called
A, while ¢ refers to a nonfolding set of reference compatibles. For all three probabilities, there are
two separate values which pertain to unpaired and paired neighbours of the reference sequence,
rsp. They are distinguished by the subscripts » and p.

Fig. 20 shows the distribution of the estimated p; values, ¢ € u,p, for the 220 networks which
have been indexed. The two distributions are very similar to each other and, consequently, to the
coverage of compatibles (p, + pp, — pup, estimates the coverage). p; values above the respective
connectivity thresholds are confined to ranks less or equal to 50 ( with the exception of rank 65,
which has an unusually high coverage ). From this one would conclude that most of the networks
are neither dense nor connected. As far as density is concerned, this is true ( see below ). Yet
most of the networks are connected graphs.

This can be partly understood by observing that \;, ¢ € u,p, is much higher than p; in this
landscape. Accordingly, d;, ¢ € u,p, is lower (the three measures are related as p; = \; + 9;)-

Fig. 21 shows the distributions of A and 6. A, which is about linearily decreasing with rank,
drops below the connectivity threshold only from about rank 250 on ( with a few outliers at higher
ranks ). The values of A, are generally smaller than the corresponding A, values, with a similar

negative correlation with rank. ( There are some outliers around rank 100 with A, = 0. These
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Figure 21: Mean fractions of neutral neighbours for 214 network of Qifugc- The upper two plots show the
fraction of neutral point ( pair, rsp. ) neighbours for sequences which are on the network ( sample size
per network 5000, except for ranks 10, 83-100, 104, 106-114, with a sample size of 500 ). The lower two
plots depict the same fractions for sequences which are not on the network. The horizontal lines mark
the threshold values above which the respective fiber is expected to be dense and connected, if it were
constructed by the random graph model of [71]. It is evident that it makes a big difference whether or
not the reference sequence is on the network, a fact which is not in agreement with the random graph
model.

are 2-stacks in which 5'GC...GC3' is the only acceptible occupancy of the stack. ) A regression
line would cross the connectivity threshold at about rank 120. The Aps of the common structures
all exceed the threshold. The distribution of § for the unpaired and paired fiber resembles the
distribution of coverage of compatibles, with a general shift towards smaller values.

For most other networks than the common ones, the condition A\, > 1 — “Va~1 and )\, >
1-° ‘\l/ﬂTl still does not hold. Two possible reasons come to mind why many of them nevertheless
are connected. Both explanations constitute deviations from the random graph model. First, we
have seen that in many structures with unstable elements there are sequence constraints. This
means that some dimensions of sequence space are not populated by the network, so that the

observed network is but one component of a graph which would have arisen as the result of a
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random process sampling all dimensions. Secondly we observe that very small values of A, often
are associated with a small number of base pairs. The 2-stacks close to rank 100 are an example.
The smaller the number of base pairs, the larger the unpaired fiber (obviously). In the random
graph model introduced in chapter 2, the number of possible contexts does not matter (the unpaired
and paired subsequences v, v, are choosen independently with the probabilities Ay, A, and only
afterwards combined). It is however known that the formation of poorly stabilized base pairs in
minimum free energy structures is certainly context dependent [28, 97] (we have seen this above in
section 3.4.1). Choosing (folding) in such a situation would be more appropriately described by a
distinct probability for each context, finally accepting a paired subsequence if it has been selected
in at least one context. The number of contexts then would play an important role (as well as the
distribution of probabilities among them). The more contexts, the more likely it would be that for
each pair mutation there is at least one which accepts it with a high probability. Then the network
is connected if the unpaired fiber itself is connected, which probably is the case given the mostly

high A, values.

3.5.3.2. Variance of Qutdegrees

If the folding probability is constant, then the number of neighbours on the network per compatible
sequence will be binomially distributed. A non constant probability distribution can lead to either
overdispersion or underdispersion relative to the binomial expectation [67, 102, 68]. Overdispersion
results if each experiment (consisting of n trials of which the successes are counted) has its own
parameter p;, which however is fixed across the n replications. The equivalent in the case of neutral
networks is a constant folding probability for all 1-neighbours of a given compatible sequence,
taking a different value for each neighbourhood. Of course the latter two conditions can never
fully hold simultaneously (if all neighbours take exactly the same probability, then it is constant

on all compatibles), but the fact that A >> ¢ points to a considerable correlation between the
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Figure 22: The ratio of the observed variance of the outdegree of network members to the expected variance
according to a binomial distribution (filled circles). The number of replications n in the assumed binomial
distribution has been set to the mean number of symbols (bases or base pairs) which are actually observed
in the respective networks, rather than to the maximum number according to the alphabet. The number
of neighbourhoods on which the observed distribution is based is marked by a plus sign for each network.

folding probabilities of neighbouring compatibles. Among-neighbourhood variation of the folding
probability amounts to context dependent folding. Underdispersion on the other hand is caused
by a variation of the parameter within the n replicates of a given experiment [67]. The acceptance
of mutations in this case depends not on the context but on the mutated position itself.

Rather than in the distribution of outdegrees over all compatibles, we are interested in that over
the sequences on the neutral network. How different the two are depends on how different the
distribution of folding probabilities on the folding sequences is from the full distribution. Naturally
high probabilities will be overrepresented in the former. If the latter is bimodal, it can happen
that the low probability mode is not at all represented in the former, resulting in a much more
uniform distribution on the network. If the probabilities correlate with sequence features, then
such a situation will manifest itself as exclusion of certain dimensions of sequence space in the
members of the network, as has indeed been observed in some of the profiles. Yet the distribution
of outdegrees may be close to its binomial expectation (taking into account the reduced number

of trials n (dimensions sampled)). A more smooth full distribution on the other hand will be
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more uniformly sampled by the network, and it will then again depend on the degree of within-
neighbourhood correlation of the folding probabilities whether or not this will cause overdispersion
or underdispersion.

For each of the 220 networks indexed, we have sampled 500 reference sequences on the network
and have determined their respective number of neutral neighbours. In figure 22, the variance of
the resulting (observed) distributions is compared to the variance of B(n;, A;),¢ € {u,p}. The \;
are estimated in the same run from 5000 sequences different from the ones which make up the
distributions. n; is the mean number of bases at unpaired positions in the network, respectively
the mean number of possible base pairs, as introduced in section 3.4.1. Note that the maximum
sample sizes are not reached any more from rank 234 on, as indicated in the figure by + signs.
The networks in this rank range are so small that it has not been possible to find 5500 different
sequences by random selection within reasonable time.

The ratio of observed and expected variance at unpaired positions has a mean of 1.35 over all
networks. Surprisingly, it is the small networks for which the observed variance is less than the
expected one. These are structures in which there are often constraints on individual unpaired
positions (see the conservation profiles in the appendix), so that it may actually be the case that
the position specific within-neighbourhood variation of folding probability is more influential than
the among-neighbourhood variation. Underdispersion would then be expected. Between ranks
70 and 220, most ratios cluster near 1.0, outlier at ratios > 1.0 being more frequent than those
below that figure. The distinction of the common structures (rank less or equal than 70) as a
separate regime is partly an optical illusion due to the fact that on many of these networks there
is no data (they have not been indexed because they are too big). Yet it is true that some of
these networks have very high ratios. The only distinguishing features of these structures is that
they contain tetraloops (ranks 16, 17, 32, 33, 50). Unlike the tetraloop structures at higher ranks,

these networks are connected, so there must be neutral paths from one of the preferred tetraloop
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constellations to the other. It might be the case that there are long range variations in folding
probability according to the distance from a stable tetraloop configuration.

For the paired fiber, the ratio of the variances exceeds 1.0 for all but 9 structures (mean 2.86).
Again there are some high ratios among the common structures. These are actually the most stable
ones among the structures analyzed (the ones with the longest stacks). Because of the cooperative
stabilization, the distributions of numbers of neutral neighbours peak at the maximum number,
while the expected peak is at a smaller number. The high variance is caused by the fact that a
broad range of numbers below the maximum is populated, too. In contrast to the unpaired fiber,
the highest ratios of the paired fiber occur in the smallest networks. The mostly small average
number of possible pairs in these structures (cf. Fig. 8) leads to very small expected variances, so
that the absolute values of the observed variances need not be very high in order to produce these
ratios. From the enhanced variance we conclude that even the formation of the few permitted
pairs is context dependent, which is supported by the fact that there are sequence constraints
on the unpaired contexts (leading to reduced observed variances in the unpaired fibers of these

structures).

3.5.3.3. Density

In chapter 2 an induced subgraph has been defined to be dense if there is no node in the underlying
graph which not either is part of the subgraph or is joined by an edge to a node in the subgraph.
According to this definition, subgraphs with any number of isolated nonselected nodes are equally
termed not dense. In practice the number of isolated nodes may however make a difference. In the
case of a neutral network (viewed as a subgraph of a generalized Hamming graph) nonfolding nodes
which have a folding neighbour can play a role in the dynamics of a population on the network
(they become populated by off mutations, and, if they have more than a single folding neighbour,

they might contribute a new sequence on the network by an on mutation). It is the number of
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Figure 23: Statistical density values of 220 networks of 9,14614 ge- The statistical density is the fraction of compatible
sequences not on the network which have at least one neighbour which is on the network, out of 2500
compatible sequences not on the network per structure. In the lower plot the densities of the paired and
unpaired fiber are combined into a joint density ( the probability of a sequence not on the network to
be either in the boundary of the paired fiber or in the boundary of the unpaired fiber ). For all tested
networks from rank 40 on, less than half of the non folding compatible sequences are in the boundary.

such nodes which, together with the population parameters, determines the strength of this effect.
Therefore it makes sense to view density as a continous measure on the interval [0,1], rather than
as the boolean property which it is according to the graph theoretical definition. In the following,
sample density will refer to the fraction of nodes in a sample of nonfolding sequences which have
a neighbour on the network (in the hypothetical case in which there is no nonfolding sequence, it
is set to 1.0).

Sample density depends on whether or not the event “no neighbour is on the network” is likely
for a nonfolding sequence, given the probability ¢ of a neighbour to fold. For most of the common
networks (up to rank 70) the expected number of neighbours exceeds 1 for both the unpaired and

the paired fiber. Accordingly, sample density takes the highest values in this regime (see figure 23).
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Not distinguishing between unpaired and paired neighbours (lower panel of the figure), the first
structure for which less than 50% of all tested nonfolding sequences are in the boundary occurs
at rank 50 (the individual sample densities of the unpaired and paired fiber are lower). It is the
common structures for which the condition A, > 1 — “Va=1 and A, > 1 — *{/B~1 is true. The
random graph model predicts them to be dense in the graph theoretical sense, which equals a
sample density of 1.0. Obviously this does not hold, despite of the relatively high sample densities.
The finite chain length is one possible reason. It can also be argued that no network of Q15 can
be truely dense, because the overwhelming count of the open structure has to be accommodated
somewhere. In fact the open structure is represented in nearly all tested 1-neighbourhoods of
sequences of most structures (see below). Of course the prediction of the model strictly applies
only for infinite sequence length. Between ranks 70 and 200, the sample densities decay to values
less or equal than 0.02. The structures fall into five groups according to their number of base pairs,
each of which shows a characteristic course of the decay (densities of structures with more base
pairs being shifted to higher values). Beyond rank 200, densities have come very close to zero.

These networks constitute small, isolated islands in sequence space.

3.5.3.4. Boundaries

In the presence of neutrality, the sequence structure mapping is from an “extended point” in
sequence space (the neutral network) to a single point in shape space. The benefits of neutrality
are to be found both in the increased volume of the “extended point” (increased stability of
phenotypes against mutations in the genotypes) and in its increased surface (compared to a single
point). The latter is called the boundary of the neutral network and consists of those structures
which are realized by nonfolding 1-neighbours of the network’s members. If there is selection on a
change of structure, it is the boundary which can be directly reached (larger boundaries therefore

mean more evolutionary plasticity). Walter Fontana and Peter Schuster [31] have proposed to base
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a topology on shape space on this relation of accessibily in sequence space: structure A is considered
to be the more close to structure B the more frequently A is found in the 1-neighbourhoods of
sequences on network B.

If all structures in the landscape were contained in the boundary of any structure, the discrete
topology would result (all shapes are neighbours to each other). This constitutes an extreme of the
generic property “shape space covering” of folding landscapes (see section 2.6.3). The proposition
that it is true has been called the adjacency conjecture by the above authors. It means that on
a path from any random genotype to any desired structure only a single change of structure is
required (of course the path may include drift on the network of the initial phenotype and therefore
may be longer than a single step). The authors find that in the space Q% the conjecture holds
for coarse grained structures but not for fine grained ones.

We have estimated the one point mutation boundaries of 199 networks of Q1% .~ as well as the
boundaries with respect to a single compatible move (point or pair mutation) for 190 networks
of said landscape, by explicitely folding the neighbourhoods of 1000 sequences on each of the
networks. In both cases two measures of closeness of a reference structure « to a structure 8 in the
boundary have been computed in accordance with [31]: The number of neighbourhoods in which
B is represented at least once, N(8,a), as well as the total number of occurrences of § across all
neighbourhoods, N¢(8, a).

Fig. 24 presents the distributions Ny(3,a) (upper panel) and N (5, «) (lower panel) for the three
reference shapes ranked 6, 18, and 220 according to network size. Each distribution is given for
the point mutation boundary (filled circles) as well as for the single compatible move boundary
(open circles). Two points can be made regarding these examples. First, the sigmoidal shape of
the distributions on a double logarithmic scale resembles that of the “visibility” B(s1,s;) defined in
section 3.4.4. Thus the latter is not only a limit distribution for the boundary, but it also predicts

some of its global features. Second, from the examples one would conclude that there are at least
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Figure 24: Columns Reference shapes. From left to right: ..(((...)))..... (rank 6 according to network size),
L(GD)))) (rank 18), ...((.(--.-).)). (rank 220). First row N¢(B,a). Filled circles: point neighbours.
Open circles: compatible move neighbours. Second row N(B,a). The two definitions of neighbour-
hood are marked as in the upper panel. N¢(8,«a) is very similar to N(3,a) in these examples. Both
contain some overrepresented neighbours as well as a tail of rare neighbours. Structure #18, with 5 base
pairs, shows a noticeable offset of the point and compatible move distributions.

as many structures in the point boundaries as there are in the compatible move boundaries. This
is consistent with the fact that a given sequence has more single point neighbours than single
compatible move neighbours, the difference being the more pronounced the more base pairs there
are in the structure. Indeed the offset is largest for structure # 18, which contains 5 base pairs.

Tables 2 to 4 compile information on the cardinality of the point mutation boundaries (simply
called “boundaries” from here on) and the size of the intersection of pairs of boundaries, for 30
selected networks (lack of space precludes a listing of all pairwise intersections). Of the sample
networks, 15 belong to the common structures, while the remaining 15 fall into the medium to
small size range. Tables 2 and 3 are within group comparisons for the common and rare sets of

structures. There are three different kinds of information in these tables. The diagonal consists of
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pairs of numbers z : y, where y is the cardinality of the boundary and z is the number of common
structures contained in it (a common structure being defined as one whose rank according to
network size is less or equal than 70). The upper half matrix lists the intersection sizes for the full
boundaries of two shapes i, j. In the lower half matrix, the number of shared common structures is
given. Table 4 presents a cross-comparison of the two groups. The matrix is not symmetric in this
case, so that both the number of common structures in the intersection and the cardinality of the
full intersection need to be given for each entry. The two measures are again separated by a colon.
The entries m; ; of all tables have to be put into the perspective of the diagonal elements m; ; and
m;,;, which they cannot exceed. The relative intersection sizes m; j/m;;,i # j are summarized at
the bottom of each table by their range and mean.

On average there are 154 structures in in the boundaries of the sample common structures. The
boundary sizes do not correlate with the rank according to network size. We will see below
that it is not so much the size but the composition which is different in rare structures. These
show a markedly reduced cardinality of the boundary only from rank 200 on (mean 109 for the
10 structures beyond this rank). The estimated boundary sizes of all sample structures are much
smaller than the number of structures in the space (274). If we had indeed enumerated all structures
in the boundaries (rather than testing a small sample of neighbourhoods, as we did) this result
would already imply that the adjacency conjecture in its most comprehensive form is false in
this landscape. The counts of rare structures in the boundaries are most sensitive to sampling
fluctuations. Thus one can expect to get a more robust result if they are neglected (lower half
matrices of tables 2 and 3). Common and rare networks behave differently in this respect: in the
boundaries of common networks, nearly all common shapes are found (between 65 and 70 of 70,
with a mean of 67.9) and nearly all of them are shared by all pairs of boundaries (mean percentage
shared 97%). Thus the adjacency conjecture is true for common shapes. Rare networks are still

adjacent to 54.7 common shapes on average, the mean percentage shared between boundaries being
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equal to 82%. Although these are quite high figures, they are low enough to suggest that some
of the common structures are genuinely inaccessible from networks of rare structures (rather than
just having been missed in the samples). The picture is different if all neighbouring shapes are
considered (with the reservations mentioned above). The mean percentage shared is now 82%
for common networks and only 63% for rare ones. Thus the differences between boundaries are
due to “endemic” rare neighbouring shapes, and this is more pronouncedly true in rare networks.
The total boundary size of such a network need not be reduced: with a count of 153 it is even
unusually high in structure #190, but nevertheless the average number of common structures in
an intersection with any other boundary in this group is only 47 (73 if all structures are counted),
very different from the situation with common reference shapes.

Table 4 lists the number of structures shared by the intersections of the boundary of a common
network and that of a rare one. They are dominated by properties of the rare partner: it determines
the number of common shapes in the intersection (the common partner mostly posses all of them
anyhow) and, depending on how special its rare neighbouring shapes are, also the total size of the
intersection. The result is a wide range of percentages of shared structures: network ¢ shares close
to 100% of its common (and often also rare) neighbours with network j if ¢ is the rare partner, but
only about half of them if it is the common one.

Concluding this section on boundaries, we have a look at the open structure, which is special
because of the huge size of its network. The rank of this structure in both N(8,a) and N¢(5, a)
is sharply bimodal: for most networks it is present in nearly all neighbourhoods examined and
reaches a total count close to or even exceeding the count of the reference structure itself, while
in 16 networks it is never encountered in the boundary samples. The picture is the same whether
point or compatible move boundaries are considered. Surprising as this bimodality is at first glance,
it makes sense if the identity of the 16 structures is taken into account: these are exactly those

structures which contain more than a single structural element (of the ones on which there are
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boundary data). Any mutation will affect only one of the elements. Retaining the other (which is
located towards the end of the chain and on unfolding leaves an relatively long contiguous unpaired
fragment, favorable in terms of entropy) seems to be preferred over total unfolding in all cases (this
can be seen from the fact that the neighbouring shapes which rank highest according to N (3, a)
and N¢(B,a) are those in which one of the structural elements is deleted, the other one being
either exactly retained or slightly modified — data not shown). In the networks in which the open
structure is represented in the neighbourhoods, it ranks slightly higher according to N¢(8, @) than
according to N (S, a), which means that if it occurs in a neighbourhood then there is more than
a single instance of it. For both measures it ranks higher in point boundaries than in compatible
move boundaries, this difference being more pronounced in the case of Ny(8,a). Recall that the
result of a compatible mutation by definition is able to adopt the reference structure, while a point
mutation in a base pair can produce a sequence which for combinatorial reasons is unable to form
a stable structure. Therefore complete unfolding is expected to result more often from mutations

of the latter type.
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6 11 14 16 18 23 27 30 34 37 40 50 60 63 70
6 67:157 110 128 132 125 140 137 142 121 125 117 133 132 134 127
11 62 65:133 115 116 113 118 121 119 109 108 116 119 116 116 111
14 65 63 68:150 135 129 132 132 133 114 124 116 130 130 128 124
16 67 65 68 70:161 130 140 138 142 115 125 122 138 136 134 130
18 66 64 67 69 69:143 129 131 129 113 118 115 130 127 123 121
23 66 64 67 69 68 69:164 146 144 123 126 123 144 134 136 135
27 67 65 68 70 69 69 70:164 141 125 130 119 140 135 140 135
30 66 64 67 69 68 68 69 69:171 124 128 126 138 137 139 136
34 64 62 65 67 66 66 67 66 67:140 111 108 122 118 119 115
37 62 60 63 65 64 64 65 64 63 65:147 115 122 124 125 119
40 64 65 65 67 66 66 67 66 64 62 67:136 120 118 119 114
50 66 64 67 69 68 68 69 68 66 64 66 69:164 136 136 129
60 64 62 65 67 66 66 67 66 64 62 64 66 67:163 132 129
63 64 62 65 67 66 66 67 66 64 62 64 66 64 67:164 136
70 66 64 67 69 68 68 69 68 66 64 66 68 66 66 69:159

minimum (at) mean maximum (at)
all 0.69 (11,30) 0.82 0.93 (30,40
common | 0.92 (11,37) 0.97 1.00 (6,16)

Table 2: Intersections of point mutation boundaries. Common vs. common structures. Italic labels on rows and

columns denote the ranks according to network size of the structures which are compared. Upper half
matrix: total size of the intersection. Lower half matrix: number of structures in the rank range [1..70]
which are in the intersection. Diagonal: in a pair of numbers z : y, x denotes the number of common
structures which are in the boundary of this rank, while y is the full cardinality of the boundary. The
small table below gives the range and mean of the relative sizes of the intersections, m; j /m; ;,i # j.
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150 160 170 180 190 200 210 220 230 240 250 252 253 254 255

150 63142 101 116 86 98 88 76 93 73 76 82 105 73 58 7

160 57 64:149 101 95 108 96 84 96 78 74 89 90 82 71 72

170 59 55 61:144 86 98 89 76 94 7 76 84 100 77 60 83

180 55 56 53 62:128 93 75 78 88 58 68 79 76 73 56 65

190 52 57 52 51 58:153 92 78 97 66 83 85 83 86 69 80

200 52 57 52 52 53 58:115 71 81 63 69 73 77 66 60 66

210 46 47 47 53 44 46 53:116 91 59 51 78 69 75 57 73

220 51 53 51 51 50 49 48 57:132 67 63 84 82 82 64 89

230 49 51 49 44 47 45 36 43 52: 89 42 57 64 53 47 57

240 38 38 39 35 37 37 30 34 33 39: 97 61 64 55 50 52

250 52 53 52 56 49 49 50 52 42 33 59:110 70 80 59 70

252 56 51 55 48 47 46 41 46 45 37 46 56:122 62 51 64

253 42 46 42 45 41 43 42 43 36 28 46 36 49:111 53 80

254 37 41 38 38 38 39 35 39 34 28 39 35 31 41: 84 52

255 45 45 45 43 42 43 42 48 37 28 44 40 41 32 49:110

minimum (at) mean maximum (at)
all 0.41(150,254) 0.63 0.88(160,230)
common | 0.56(240,250) 0.82 1.00(150,252)

Table 3: Intersections of point mutation boundaries. Rare vs. rare structures. The structure of the matrix and
the summary table are the same as in table 2.
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150 160 170 180 190 200 210 220 230
6 60:112 61:121 58:115 509:104 55:114 55: 91 50: 92 54108 52: 83
11 58:103 59:104 56: 99 62:106 53: 93 55: 86 53:86 52: 96 47: 69
14 61:109 62:118 59:111 60:104 56:106 56: 90 51: 91 55:105 50: 76
16 63:116 64:123 61:118 62:108 58:116 58: 95 53: 97 57:108 52: 80
18 62:110 63:114 60:114 61:107 57:103 57: 92 52: 87 56:105 51: 75
23 62:120 63:124 60:116 61:112 57:114 57: 94 52: 98 56:112 51: 80
27 63:123 64:125 61:120 62:107 58:116 58: 96 53: 98 57:114 52: 82
30 62117 63123 60:116 61:111 57:122 57: 96 52: 93 56:113 51: 77
34 60:106 63:114 58:108 59: 94 56: 93 56: 85 50: 81 54: 96 51: 81
37 58:105 64:125 56:106 57: 96 58:113 58:100 48: 83 54:103 51: 78
40 60:102 61:111 58: 99 62:107 55:102 56: 91 53: 85 54:100 49: 72
50 62:118 63:121 60:115 61:113 57:109 57: 95 52: 92 56:109 51: 79
60 60:114 61:123 58:120 59:109 56:116 55: 98 50: 92 54:106 50: 75
63  60:114 61:126 58:111 60:106 56:111 55: 96 52:103 57:115 49: 78
70 62:114 63:118 60:111 61:104 57:110 57: 87 52: 94 56:107 51: 78
minimum (at) mean maximum (at)
all 0.40(60,254) 0.71 0.93(6,230)
common 0.55(18,240) 0.88 1.00(6,230)
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Table 4: Intersections of point mutation boundaries. Common vs. rare structures.
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3.6. Energy Landscapes

In a static folding landcape, each sequence is uniquely assigned to a shape. Once this assignment
is done, it is the shapes (phenotypes) which are evaluated by the fitness function. Sequences which
fold into the same shape have the same fitness by definition.

Minimum free energy folding selects the most stable one among the possible structures of a
sequence. The exact energy of this “best” structure may well be very different for different
sequences. There is no a priori reason to expect that members of the same neutral network
are more similar in this respect than random sequences.

In an energy landscape over a sequence space, fitness is directly equated with free energy, without
explicit reference to shapes [27, 6]. The focus in studies on energy landscapes is less on neutrality
but on the degree of ruggedness of the landcape, which determines whether or not very stably
folding sequences, given they exist, can be found in reasonable time from a random starting point.
One way to characterize ruggedness is by way of the autocorrelation of the energies found on
a random walk. In complete sequence spaces, autocorrelation p(d) has been found to decay
exponentially with distance d [80]. The distance [ at which it holds p(I) = 1/e is called the
characteristic length of the landscape.

In the following we combine the two approaches by asking for the distribution of minimum free
energies within a neutral network defined by a shape. The degree of ruggedness of such a per-
network landscape determines how easy it is to optimize the stability of a structure without having
to pass through intermediates with a different structure. We have probed the landscapes of the
220 indexed networks by 5 self avoiding random walks of 2000 attempted steps each. Each walk
was characterized by its mean energy and variance, as well as by the autocorrelation at offsets 1
to 6, and the distribution of runs. A run consists of a series of contiguous steps during which the

binned energy values are constant (that is, the raw values are confined to a window of the bin size).
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Figure 25: The means (data points) and standard errors (error bars) of the free energy on self avoiding random
walks. Data on 5 random walks per network are averaged. The average lengths of the 5 walks are plotted
in the insert: up to rank 235, the maximum length of 2000 steps is nearly always reached. The lengths
decrease rapidly (and linearily) for smaller networks.

3.6.1. Mean and Variance of Energies

Fig. 25 presents the means and standard errors of free energies encountered on a random walk of
maximal length 2000. The data are averaged from 5 random walks per network. Not all walks
reach the maximum number of steps: the mean number of actual steps in the 5 instances is
displayed in the insert of the figure. Overall there is a tendency for big networks to have the larger
absolute values of free energy, but this is far from being a lawlike relation. The standard errors
of the energies do not correlate at all with size, but rather with the free energy itself, such that
more stable structures show the larger variation. This is counterintuitive at first, but it can be
understood by the following line of reasoning: if the typical free energy is already very small (in
absolute terms), then outliers in the direction of even smaller energies are very unlikely (they will
probably switch structure instead). From a baseline at a large (absolute) value of free energies

outliers may occur in both directions, doubling the possible variance.
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Why is there such a poor correlation between free energy and size of the network ? We have
argued above that it is the folding probability rather than the number of compatible sequences
which dominates the observed size in the networks of Q% .. The folding probability of a sequence
for a structure of course depends on how much energy is gained by “choosing” the structure. But,
and this is the reason why a correlation of the mean free energy and the folding probability is
not a priori to be expected, the crucial measure is the energy gained relative to other structures
with which the sequence is compatible. In order to fold with a high probability, a sequence must
not be compatible with other structures which are even more stable. The very highest ranking
structures in Q9. combine three advantageous properties: they are not too unstable (no very
small absolute free energies), nevertheless they do not have too many base pairs (which would
restrict the number of compatibles), and, for reasons of the relative location in the structure, their

stacks cannot be extended (reducing the competition by more stable structures).
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Figure 26: Correlation structures of sample per-network energy landscapes. Neither the type (exponential or
other) nor the steepness of the descent with distance correlate with the rank of the network according
to size (see labels on the curves).

3.6.2. Autocorrelation

The autocorrelation of a walk at offset d, p(d), has been measured as Pearson’s correlation
coefficient of the series (w;,w;t1q),? = 1...n — d, where n is the number of steps. It has been
determined for offsets 1 to 6.

The networks Q5. differ very much with respect to autocorreation and the derived measures
characteristic length (that ! with p(l) = 1/e). Many of them show the expected exponential decay
of the autocorrelation, albeit with very different slopes (see figure 26). In others the autocorrelation
goes on a plateau already at a distance of less or equal than 4. The background autocorrelation need
not be equal to zero: it will be the higher the less different energy values there are. Fig. 26 gives
examples of landscapes of both types. The curves are labelled by the rank of the respective network
according to size: again this parameter does not correlate with the slopes. Thus, among both large
and small networks there are those in which optimization of stability is easy and those in which it
is not.

Fig. 27 displays the distribution of the characteristic lengths for all 220 networks. The majority of
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Figure 27: Distribution of characteristic lengths of the energy landscapes of 220 networks. The majority of the
characteristic lengths exceed 6. It cannot be decided whether this peak is due to a second mode at longer
lengths or whether the individually small frequencies in the right tail add up to it. If the latter is true,
then the most frequent individual length is actually short (2).

the networks show quite smooth energy landscapes (characteristic length greater than 6), yet there
are also very rugged ones. Thus there is indeed information gained by examining the per-network

landscapes instead of averaging over the entire sequence space.

3.6.3. Run Lengths

Landscapes with a high autocorrelation will also show long runs in random walks. A run is a
contiguous sequence of steps during which the free energy does not leave a certain window. While
autocorrelation is a single number associated with a random walk or an entire landscape, the
distribution of run lengths encountered on a walk gives a more resolved picture of long range
variation of ruggedness. By tuning the window size, one can examine ruggedness on different

scales.
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Figure 28: Distribution of runlengths encountered on a random walk in the energy landscapes of the networks
ranked 6 (upper panel) and 10 (lower panel) according to network size. Left: window size 0.1 kcal/mol.
Right: window size 0.5 kcal/mol.

The very fact that a whole distribution is associated with each network precludes a comprehensive
presentation of all of them. Instead we will discuss some examples.

The first example deals with the pair of structures ’..(((...)))..... and ’..(((...))).....", respectively,
which are ranked 6 and 10 according to network size. Both structures are part of the neutral
network of the substructure ’(((...)))’, the “simple hairpin” discussed in chapter 5. The autocorrela-
tion of the free energy decays exponentially for both networks, the characteristic length exceeding
6 in both cases (data not shown). Yet it is already evident from the autocorrelation data that
the two landscapes are not identical: p(6) = 0.42 for structure #6, while p(6) = 0.7 for structure
#10. The distributions of run lengths (see figure 28) not only confirm this difference, but allow to
describe it in more detail. The most probable run length is shorter for network #6 than for #10 (2

and 4 for the two window sizes, versus 5 and 7), as expected from the autocorrelation data. What
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Figure 29: Distribution of runlengths encountered on a random walk in the energy landscapes of the structures
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is not implicit in the autocorrelation is the fact that the higher variability of free energy values in
network #6 to a good deal is due to small fluctuations, leading to noticeably longer runs when the
window size is changed from 0.1 to 0.5 kcal/mol. In network #10, enlarging the window size has a
much smaller effect. Thus in this case the runs at the smaller window size must have already been
separated by relatively large jumps in energy. Another distinguishing feature of network #10 is the
bimodality of the distribution (at both window sizes). This landscape seems to contain a separate
regime in which the probability for longer runs is high. One feature is shared by both networks:
network #6 at 0.5 kcal/mol, as well as network #10 at both window sizes, show an extended tail
of long runs. It is possible (although not likely from a random starting point) to stay on a neutral
path with respect to energy for up to 40 steps.

The differences between the landscapes of networks #6 and #10 are surprising because these
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structures are so similar. Yet they are actually small compared to the differences between the
landcapes of other networks. We conclude this section with four extreme examples (see figure 29).
The window size is 0.5 kcal/mol in all cases.

Structures #30 and #31, respectively, constitute another case of “similar structure but (very)
different energy landscapes”. These structures are mirror images of each other. The runs encounter-
ed on a random walk of length 2000 in the energy landscape of #30 are of extremely variable length,
most individual lengths occuring only a single time. The spectrum of run lengths ranges from one
to 150. In the landscape of #31, on the other hand, nearly all runs are of length one. This very
rugged landscape contrasts with that of #82, which is nearly completely flat (there are only two
runs in the entire walk of length 2000). Structure #82 is one of the 2-stacks with strong constraints
on the sequence level. With a fixed sequence composition of the stack, one would indeed expect
similar free energies. Yet structure #97, which also consists of a 2-stack, behaves again differently:
the most probable run length is 2, runs of length 6 being already extremely rare. In this case
the difference can be explained: structure #97 possesses a tetraloop, with corresponding sequence
constraints in the loop region (see conservation profile in the appendix). Whenever adjacent steps
in the walk differ by a mutation in the loop, free energy is likely to change.

Summarizing, there is unexpected diversity among the energy landscapes of the networks of
08 - The neutral networks are definitely not random samples from the entire space with respect
to their energy distributions. Yet the network specific energy landcapes are not always especially
suited for optimization of stability by a gradient search. Depending on the relative importance
of retaining a structure and stable folding, detours via other networks may be preferred by an

evolving population in the space.
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4 Probing Large Neutral Networks

4.1.Introduction

We have noticed in the preceding chapter that a sequence length of 16 is about the upper limit for
an exhaustive enumeration of the entire sequence space, using the natural alphabet. Thus, for any
biologically meaningful structure, the length of which probably will far exceed 16, there will be no
complete information on global properties of its neutral network.

Global properties can both affect evolutionary processes on the network and can in principle be
exploited by such processes, if the system is able to perceive them. While natural populations are
quite blind in this respect, a human experimenter doing irrational design of sequences could adjust
parameters like mutation rate and population size to, for example, the degree of connectivity and
denseness of the network, would he know them.

We present an algorithm, which, given a network conforms to the random graph model presented
in chapter 2, enables us to estimate whether it is a connected graph, using only a small sample
of sequences from the network. The actual test for the existence of a connection between two
sequences is linear in time in the sequence length (the entire algorithm in its present form is
not, for reasons discussed below). The test presupposes a certain property of networks which
are outcomes of the random graph process described in section 2.6.3.2 at superthreshold choosing
probabilities, namely, local connectivity. It is not clear from the beginning that minimum free
energy networks of finite length sequences will have this property. We show however that it holds
well enough for networks in the space Q% of RNA sequences of length 30 over the alphabet

{G,C?} in order to indeed predict connectivity from small sample sizes. In addition we propose a
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method which can aid the decision in less well locally connected networks and discuss the relation
of features of the underlying RNA secondary structure and the degree of local connectivity of the
network (which can possibly be exploited for deciding beforehand how well the algoritm is going

to work on a network).

4.2, Algorithm

4.2.1. Basic Idea

A graph is defined to be connected if there exists a connecting path between all pairs of its
nodes (see sect. 2.2). Thus the number of components can in principle be estimated from a
statistical sample of all pairs of nodes. In a general graph this is however precluded by the fact
that adjacency information on all nodes is needed in order to determine whether a given pair is
connected. Christian Reidys proved that in the limit of infinite sequence length n a subgraph which
is randomly induced in Q7 with a choosing probability A > 1 — =={/1/a possesses the following
property:

Definition 11. (Locally connected graph). A graph G is called locally connected if for any
two vertices v,v' € v[G] there exists at least one path fulfilling the following criteria: the path starts
at o vertex v1 € Bi(v) and ends in v{ € B1(v') (B(v) being the set of neighbours of v) and it is
completely contained in a cylinder of radius 1 with azis endpoints at v1 and vi. (For a formal
definition see Reidys et al. (1997) [71].)

The property is preserved if the underlying graph is a generalized Hamming graph QP+ x QZ”
(because it holds both in Q7 and in QZF [70]) which means that neutral networks of RNA

secondary structures are expected to be locally connected according to random graph theory. Thus
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it should be feasible to estimate connectivity in the absence of complete sequence information on

a neutral network.

4.2.2. Implementation

A pseudocode description of the connectivity test is given in table 5. It tries to connect neutral
neighbours of two reference sequences v1, v2 by a simple backtrack algorithm with stopping points
at the ndiff positions at which the neighbours (nl, n2) differ. They are visited from left to right.
The following information is available to the algorithm at each such point: first, the sequence
of intermediates (n21,n22,...,n2(;_1),n1l;;nl(q1y,- -, nl(naig—1)),¢ = 0,ndiff, second, a current
sequence string which is on the network and either is identical with the current intermediate or
differs from it by a single compatible mutation, third, that stopping point at which the additional
compatible mutation has been introduced, in case there is one (laststop), and fourth, a table of
additional mutations which have already been tried out at each intermediate. The basic action
is to flip the ith position of difference to the state which is observed in n2. If the result is not
neutral, one of two actions is taken: if the current sequence does not contain an additional mutation
(“bypass”), single mutations are randomly introduced into the current intermediate until either one
is found which is both neutral and allows a flip of state without loosing the structure (in this case
the algorithm proceeds to the next stopping point) or all possible mutations are exhausted and it
stops. If however a bypass is already present, it “backtracks” to the stopping point laststop at which
this mutation has been introduced, setting the current sequence to the laststopth intermediate. The
mutation tables of points nstop > laststop are not reinitialized on such a backtrack, because it is
already known that paths which pass through these mutations will not be successful.

The time complexity for testing the connectivity of a single pair of sequences (nl, n2) of length n
at a fixed distance d is O(n). This can be understood as follows: At every stopping point ¢ there is

only one current sequence for which there is more than a single possibility to elongate the current
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path to the right, namely, the ith intermediate. This sequence can give rise to O(n) different
elongations. Of these, a single one is equal to the i + 1th intermediate and is again free to vary,
while the remaining ones are fixed. Therefore with a constant number of intermediates (fixed d)
there are O(n) different paths in the search space. Because the algorithm guarantees that no path
is exactly repeated, it is enough to consider this upper limit (no need to exactly track the partial
repetitions of paths by the backtracking). The same sequence may appear in different paths, but
because the length of the paths itself is O(d), which is a constant, the number of operations on
sequences is still O(n).

During the execution of the algorithm the function fold(string), which maps the sequence
string to its structure, is called over and over again. The time complexity of this function is O(n?)
if it is implemented as an actual minimum free energy folding of the sequence[26], so that the entire

algorithm cannot be linear in time in the sequence length.

4.2.3. Delaying the Decision — Simultaneous Neutral Walks

In a network in which one has reason to expect that local connectivity at high pair distances (which
are best suited for detecting multiple components) is bad, we propose the following extension of
the connectivity algorithm:

Start with a pair at a long distance. If it is not connected, choose a pair of neutral neighbors of the
initial pair, and try to connect these. If the distance of the neighbours is forced to decrease, the
probability of finding a connection (if one exists) will increase (see the data on the dependence of
local connectivity on pair distance below). By this rule two simultanous neutral walks in sequence
space are constructed (see figure 30). They terminate for one of three reasons: a connection may
be found, it may not be possible to find an elongation which meets the distance criteria, or the walk
length reaches a predefined maximal length. For a connected initial pair, there is a probability

to terminate the path by successful connection at every step, which should lead to shorter paths
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connected = 0
for(ni=1 ... nneighbours(vl)) # all neutral neighbours of node vl
for(n2=1 ... nneighbours(v2)) # all neutral neighbours of node v2
intermediates[0] = ni
for ( nstop = 1 ... ndiff) # differences between nl and n2
intermediates[nstop] = intermediates[nstop-1]
substr(intermediates[nstop],pos[nstop]l,1) = substr(n2,pos[nstop]l,1)
end for
string = nl; nstop = laststop = 0; state = GROUNDSTATE
while (nstop < ndiff)
position = pos[nstopl # position of nstop’th difference
# between nl and n2, from left to right
if ( (state == BYPASS) && UndoBypass(string)) then
state = GROUNDSTATE
endif
# repair "nstop'th difference
substr(string,nstop,1) = substr(n2,nstop,1)
if (fold(string)) then

++nstop
else
if ( STATE == BYPASS ) then
nstop = laststop # return to the intermediate

# at which the bypass was introduced
string = intermediates[laststop]
else
if ( FindBypass(string)) then
laststop = nstop; ++nstop
state = BYPASS

else
connected = 0 # pair (nl, n2) is not connected
break # next pair of sequences
endif
endif
endif
end while # nstop < ndiff
connected = 1; STOP
end for # n2 loop
end for # nl loop

Table 5: Algorithm for testing for a local connection between sequences vl and v2. Substr(s,i,j) returns the
substring of string s which starts at position i and consists of j consecutive characters.
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Figure 30: Sketch of a simultaneous walk of a pair of neutral sequences in sequence space: Dark grey balls denote
neutral sequences, light grey ones indicate sequences which are not neutral and hence fold in structures
different from the corresponding structure of the pair. Arrows show the initial pair. Open circles refer
to their single error-class. If connection is not successful by a simultaneous neutral walk a new pair is
chosen. This pair is again checked for connectivity.

on average. It is possible to classify the networks as connected (disconnected) by discriminant

analysis if the length distribution of the paths is used as the feature vector.

4.3.Local Connectivity in Minimum Free Energy Neutral Networks of Q2.

4.3.1. The Role of the Connectivity Algorithm in Implementing a Test

What can be measured in an unknown network is the number of locally connected pairs, nconn,
among the total number of pairs in the sample, N. Whether or not such a result can be meaningfully
interpreted in terms of connectivity of the graph depends on how nconn/N relates to the ratio
of the number nconn to the number of arbitrarily connected pairs, nsame. These fractions are

expected to be network specific and are not known in advance (but they relate to observable
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Figure 31: Distributions of the fractions nconn/N (black bars) and nconn/nsame (light bars) for test sets A and
B, at different distances of the to be connected sequence pairs (for set A only nconn/N is displayed,
because in this set nsame = N). The number of networks in the set which show a fraction in a given
bin is plotted on the y axis, while the x axis gives the fractions in bins of size 0.1. A label z at a bin
denotes the interval ]z,z + 0.1].
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Figure 32: Distributions of the fractions nconn/N (black bars) and nconn/nsame (light bars) for test sets C.
Upper plot: complete set. Lower plot: networks which contain only a single big component are omitted.
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properties of the reference secondary structures, see below). Assume they have been determined
for a large enough number of networks so that the essentials of the distribution are most likely
captured. An observed value nconn/total is then interpreted with respect to this distribution: it
indicates true disconnectedness with a statistical significance p which is equal to the area under
the distribution’s curve to the left of it (in the direction of smaller fractions). We have not pursued
a rigorous treatment of this idea, but rather used an empirical threshold on nconn/total in order

to classify networks as connected or not (see below).

4.3.2. Test Sets

We have used three different sets of networks from the space Q2% which has been exhaustively
folded by Walter Griiner et al. (1996) [37, 38]. Set A consists of 361 connected networks with
ranks according to network size in the range between 203 and 2595. The 499 networks of set B
decompose into two components of about equal size. Their ranks cover the range from 149 to 2687.
Set C finally is a random sample of size 401 from the rank range [417 ... 2103], containing both
completely connected and very fragmented networks. All three sets are drawn from the common
structures of Q2, which comprise ranks 1 to 4907 [54].

The space 92, has been choosen because its neutral networks have already been determined by
exhaustive folding [37, 38]. Thus fold(string) in this case can be realized as a lookup in the
output of this analysis, which because of a special data structure for storing the sequences of a

network, tries, takes only O(n) time [38].

4.3.3. Results: Simple Local Connectivity
Figures 32 and 32 summarize the rates of local connectivity in the test sets. The number of
sequence pairs tested per network was 100 and 500 for sets A and B. For set C, the sample size

had been adjusted so that each sample contained 250 truely connected pairs.
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The figure shows two conflicting trends: sequence pairs at small distances (3 or 4) are very
well locally connected (nconn/nsame €]0.9,1.0]). At these distances however the distributions
nconn /N and nconn/nsame practically coincide: nearly all sampled pairs are in the same component
even if the graph contains more than a single one, and thus do not yield information about the
graph structure. The distribution nconn/nsame spreads out slowly with increasing distance of
the pairs, this behaviour being qualitatively identical in all three sets (the slightly larger spread
in set A is probably due to the small sample size). Yet the peak of the distribution remains at
the interval ]0.9,1.0] in all sets up to a pair distance of 12. The peak of nconn/N, in contrast,
quickly moves away from that interval with increasing distance if the set contains disconnected
networks. It is located at ]0.5,0.6] at a distance of 12 in both set B and set C. The distributions
of nconn/N and nconn/nsame are well separated at this distance both in set B and set C (in set
C there is a slight overlap of the tails). If a value of 0.75 of the observable measure nconn/N is
used as a threshold for prediction (labelling networks with a degree of connectivity less or equal
to the threshold value as disconnected, and others as connected) the following distribution of false

negatives, false positives, and success rate results for the three sets:

false+ false- percent correct
A 0 29 92
B 1 0 99
C 19 34 87

Thus in most networks it is possible to tell from a small sample of pairs of sequences whether
the network as a whole is connected. What is not possible is to exactly determine the number of
components. In figure 33 the fraction nconn/N at a distance of 12 in the networks of set C is
graphed against the number of components which are of size greater or equal than one third of

the size of the biggest component (smaller ones are expected to be neither visible to the sampling
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Figure 33: The fraction of locally connected pairs at a distance of 12 versus the number of big components in the
networks of set C.

process nor to be of much importance for evolutionary processes on the network). We see that
networks with 2, 4, and 8 big components show comparable values of nconn/N (from about 0.4 to
about 0.6). This means that in networks with more than two components even at a distance of 12
it is not completely equiprobable to hit any of them (otherwise the fraction should be 0.25 for a

network with 4 components).

4.3.4. Results: Simultaneous Neutral Walks
The result of applying the method of simultaneous neutral walks to the networks of set C is shown
in figure 34. Predicting networks on which the discriminant function takes values less or equal

than 65.0 as disconnected, and others as connected, the following success rates result:
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Figure 34: The fraction of locally connected pairs at a distance of 12 versus a linear discriminant function trained
to distinguish between connected and disconnected networks.

false+ false- percent correct
C 12 30 89

In terms of the power to discriminate between connected networks and arbitrarily disconnected
ones this is not much improvement over the simple test for local connectivity (which is much faster).
There is however a slightly better correlation between the value of the discriminant function and
the actual number of big components than is the case with simple connectivity. Perhaps one
could pursue this fact in order to develop an algorithm which actually estimates the number of

components.
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Figure 35: The networks of structures with long stacks exhibit high fractions of nconn/nsame in all three test sets.
For structures other than the most stable ones, the degree of local connectivity (and thus the expected
performance of the connectivity test) is however not easy to predict.

4.3.5. Relation Between the Degree of Local Connectivity and Other Variables

The underlying secondary structure of a neutral network itself gives a hint to the reliablity of
the algorithm: the longest uninterrupted stacks are associated with high values of nconn/nsame
(see figure 35). Accordingly, these networks exhibit the highest absolute values of minimum free
energies and the best well-definedness [50]. Prediction by these measures is however not better

than by the much simpler to determine stack length (data not shown).
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4.4.0Outlook: Analyzing Large Sequence Spaces Over the Natural Alphabet

4.4.1. Performance Analysis

As first step towards assessing the feasibily of analyzing large sequence spaces by means of the
connectivity test, we have studied the relation between the number of instructions spent in the test
and the chain length, using the spaces Q% cc, Qo Qveer Qvaer Qee, and QY qo-
The piece of code analyzed corresponds to the pseudocode in table 5 between the labels 1: and
2:. It tests a single pair of points in sequence space (neighbours of the to be connected pair of
sequences) for the existence of a path. (Due to a bug in the program, sometimes more than a
single pair was tested. Although the scaled measure instructions/call is not affected by this, the
chance of hitting a “difficult” pair is enhanced if there are more pairs.) The number of calls and
the number of instructions spent in the function (from here on called “the test”) were recorded by
the UNIX utiliy programs pixie and prof.

The basic experiment consisted of selecting a random network from the space, determining two
pairs of folding sequences at each of the distances 3, 4, and 5, and running the test on each of the
6 pairs.

Figure 36 presents the results. According to our above argument, it should scale linearily in time
with the chain length. It turns out that the average behaviour of the test on the different spaces
is quite similar (at all chain lengths the peak of the distribution is in the bin of [1500 ... 2000]
instructions per call), but the number of outliers in the righthand tail is increasing with chain
length. These are the cases in which backtracking has to be done and the chain length dependent
cardinality of the search space comes into play. The means of the distributions indeed increase very

roughly linearily. In an actual application however the occasional outliers pose a serious problem.
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Figure 36: Performance of the connectivity test (code in table 5 between the labels 1 and 2) on QiOUGC, Q3AOU coo
Q4A0UGC7 Q,540Ucc= QZOUGC, and QLOUGC. At the length of 50, the distribution contains a single
additional count at 47033 instructions/call, which is not displayed.

4.4.2. Preliminary Data On Connectivity
In order to get a more realistic impression on the degree of connectivity in the six spaces, we
ran the full algorithm given in table 5 on 125 sequence pairs from each of them. The pairs were

required to have a (Hamming) distance in the range of 3 to 7 (due to the big cardinality of the
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shape space in large sequence spaces over the natural alphabet it takes too long to find a fixed

number of pairs on a given neutral network at a given exact distance).

The following values for nconn/N were observed:

sequence length d=3(#) d=4(#) d=5(#) d=6(#) d=7(#) seconds
20 1.00(11) | 1.00(19) | 0.96(28) | 1.00(39) | 1.00(28) | 308

30 1.00(12) | 1.00(8) 1.00(27) | 1.00(35) | 1.00(43) | 516

40 1.00(11) | 1.00(15) | 1.00(30) | 1.00(36) | 1.00(33) | 5259

50 1.00(11) | 1.0020) | 1.00(34) | 1.0033) | 1.00027) | 2377

60, run 1 1.00(10) | 1.0018) | 1.00(20) | 1.00(39) | 1.00(38) | 4961

60, run 2 1.00(10) | 1.00(12) | 1.00(26) | 1.00(31) | 1.00(46) | 5714

60, run 3 ? ? ? ? ? > 163262
70 1.0017) | 1.0028) | 1.0031) | 1.0025) | 1.00(24) | 1616

The data refer to the networks of the following structures:

sequence length structure

20| (((...)))-

30 I ((((E(EB)B)))) Fes

40 R (((E(Em)B)))) I ()

50 BN (((E(ED)B)))) B ({9 ) ) I

60 | (CCCCCC- MM (o (Connn)) ) DD)))

70 BN (C((E(ER)B)))) B ((C9N) ) I ((E9)) )

Again, the execution time depends much more on the individual network than on the sequence

length. In all networks on which there are data all 125 pairs could be connected, with a single

exception in Q%) ;. There are however reasons to suspect that the network which was probed

in Q% ;¢ is not fully (locally) connected. The third run was aborted without output after 2

days, when only a total of 77 pairs had been tested. Most of this time had been spent with only

three different pairs. These pairs might be truely disconnected. From such cases it is evident that

performance would greatly benefit if instead of testing all neighbours of a poorly connected pair,

one would already decide after a fixed number of attempts that the pair is not connected. It is

however unclear how many true connections would be missed this way.
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5 Neutrality With Respect To A Substructure

5.1.Introduction

The typical outcome of artificial selection of RNA molecules for a binding function is a family of
sequences which share some common structural feature (e.g. a hairpin of a certain length ), but
which neither have completely identical structures nor usually the same sequence length. They are
members of the substructure neutral network of the feature in question, as discussed in chapter 2.
One can speculate that sequences at early stages of the origin of life had properties similar to those
observed in today’s selection experiments, which is one more reason to be interested in neutral sets
of this sort.

In order to compare such a more loose concept of neutrality with the results by Reidys et al.
[71] on neutral networks of completely defined secondary structures, one needs to consider two
points. The first is the graph structure of the space of compatible sequences, which provides upper
limits for the total size of a neutral network, the number of neutral neighbours per sequence, and
the degree of connectivity. (Note that if the space of compatibles is not connected, no network
embedded in it can ever be. That is the case with the compatibles of a fully defined structure
viewed as a subspace of a simple Hamming space, as discussed in chapter 2.) The second point to
be to considered is the folding probability. While the number of compatibles grows very fast with
the difference between total length L and substructure length I, the probability of a compatible
sequence to actually adopt the substructure often decreases with total length (dependent on the
extent to which the formation of the substructure is context sensitive). The evolutionary fate of

sequences which are longer than the substructure will depend on which of the two aspects prevails.
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5.2. Definitions and Abbreviations

In the sequel the following definitions and abbreviations are used:

l

L

frame

nsymbols
npairs

TNy

The length of the substructure under consideration.

The total sequence length.

L-1

The set of sequences at additional length ¢ which are compatible with the substructure.
The number of sequences at additional length ¢ which are compatible with the substruc-
ture.

A subsequence of length [. The kth frame spans positions k... %k 4+ [ — 1. There are
1+ 1 frames in a sequence. A compatible frame is a subsequence which is in Cg.

A word of length ¢ + 1 over the alphabet {*,1}. Every position corresponds to one
frame. A 1 means that this frame is compatible with the substructure. No statement
is made concerning frames which are marked by an *.

A word of length i + 1 over the alphabet {0,1}. A 0 at position k means that the kth
frame is not compatible with the substructure. A 1 means that it is.

The set of sequences of additional length ¢ which show the compatibility pattern
z (z € {p,q}) - The C; 4 constitute a partition of C;, which is not true for the C; p.
The cardinality of C; .

The number of bases in the alphabet.

The number of base pairs in the alphabet.

The number of unpaired positions in an RNA secondary structure or in a substructure
thereof.

The number of base pairs in a structure or substructure.
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5.3. The Compatible Sequences of a Substructure

5.3.1. Estimating the Number of Compatibles

A completely defined RNA secondary structure can be interpreted as a substructure at additional
length zero, hence Cy = npairs™ x nsymbols™ . It would be nice if the C;, i > 0 could be
estimated from easy to access quantities like n,,,n,. In the following we give an estimation formula
which works well if sequences which are compatible in more than one frame are very rare (that is,
the C; , constitute essentially a partition of C;). It breaks down if this is not the case.

Every sequence in Cy is mapped to at least nsymbols sequences in Cy, by appending one of the
possible symbols in turn. The result is C; 14+ = Cq,7107 U C1 711 The only constellations which
cannot be reached this way are those in C;7g1». These sequences, which are compatible in the
last frame only, can only be generated by prepending a symbol to a sequence of Cq. All remaining
outcomes of the prepend operation have already been generated by means of appending.

Thus C; is related to C;_; by
C; = nsymbols x C;_1 + Cz',”OO...Ol” . (1)

Ci00...017 depends on the substructure under consideration. If [ is large and the substructure is
complex, then the probability of more than one frame being compatible is small and Cj igo...01]

can be approximated by Cj i x...«177, the number of sequences which are compatible at least in the

nutL=l — 0y x nsymbols'. Thus

last frame. This is equal to npairs™ x nsymbols
C; ~ nsymbols x C;_1 + (Cy x nsymbols®) (2)

which nonrecursively simply reads as

Ci ~ (i +1) x Cy x nsymbols. (2"
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5.3.2. The Exact Number of Compatibles

With short, simple substructures (e.g. short hairpins), sequences with more than one compatible
frame cannot be neglected.

Ideally, one would like to know the Cj, for all ¢ at the additional length i in question. Then
not only C; would follow as - Cjq, but one could also derive more detailed information like for
example the proportion of all compatible sequences with exactly n compatible frames.

In the following we give a method for computing the C; ,, which however applies only to binary

alphabets.

5.3.2.1. The Dependency Graph of a Set of Frames

Previous work on the relation between the compatible sequences of two completely defined secondary
structures [100] has emphasised the importance of the multiple dependencies which are introduced
into a sequence if it is to satisfy the pairing patterns of more than one secondary structure. With
a single pairing pattern to be fulfilled, the maximal covarying sets of positions are of size two,
namely, the base pairs. Two patterns are already enough to build up large chains of dependencies,
in the following way: imagine two positions pi, ps which form a base pair in the first structure.
Depending on the structures involved, p» now may form a base pair with a different position ps in
the second structure. This position in turn may be paired with yet another position p, in structure
number one, and so on. Jacqueline Weber in [100] describes these chains of dependent positions
by means of group theory. A single completely definded secondary structure is uniquely mapped
onto a permutation, in which two positions are equivalent if they form a base pair. The orbits of
the product of the permutations of two structures are exactly the chains of dependent positions
which arise in sequences which have to fulfill the pairing patterns of both structures. From the
orbit decomposition it is possible to compute the number of sequences which fulfill both patterns.

These sequences have been called the intersection or the overlap of the two structures [100].
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o

posk pos k+l-1 kth frame

Figure 37: The pseudostructure which is associated witt the kth compatible frame at a given total sequence length.
If a sequence is compatible with the pseudostructure (according to the usual definition of compatibility
for full length structures) then it is also compatible with the substructure in the kth frame. At positions
outside the frame, its actual full length secondary structure may exhibit an arbitrary pairing pattern.

Substructure neutral networks can be vieved as a special case and an extension of the concept of the
intersection of the compatibles of two completeley defined structures. A sequence is compatible with
the substructure in the kth frame if it is compatible with that full length structure which adopts
the substructure beginning at position %k, and is unpaired otherwise (cf. Fig. 37). Because the
unpaired state outside the substructure is merely an ambiguos symbol which replaces the irrelevant
true state, one could call such a catch-all structure a “pseudostructure”. Sequences which are
simultanously compatible with two frames are members of the intersection of the pseudostructures
of the respective frames.

An important result concerning intersections, which was first stated by [70], is the following

Theorem 1. (Intersection Theorem) Let s and s’ be two arbitrary secondary structures. Then
Cls]NC[s'| # 0

where C[s] is the set of compatibles of structure s.
The group theoretical approach of [100] cannot be extended to the case of more than two structures.

As afirst step towards an alternative solution, we observe that the basic relation which is introduced
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by any compatiblity constraint is always pairwise, namely, “position i has to be able to form a pair
with position j”. A binary relation on a set of objects is equivalent to an undirected graph, with
the objects as nodes and an edge joining two nodes if the relation is true.

Definition 12. (Dependency Graph). Let 0 = {s1,52...} denote a set of RNA secondary
structures of length L, with an arbitrary number of elements. By the dependency graph D, of o,
we mean the following undirected simple graph on L nodes. The nodes are labelled 1,2,...,L and
correspond to the positions in the structures. There is an edge joining two positions i and j if these
positions are paired in at least one of the structures in o. In the special case in which the elements
of o are pseudostructures of a substructure at a given additional length i, the dependency graph is
also denoted D,. Here, q is a word of length i + 1 over {0,1}. The kth pseudostructure belongs to
o if the kth position in q is occupied by a “17.

From a simple property of D, one can now in a first step deduce whether the simultaneous
intersection of the structures in o is empty or not.

Theorem 2. Let D, be the dependency graph of the set o of RNA secondary structures. Let
further C[s;] denote the set of compatible sequences of structure s; € o. If D, is bipartite (i.e. its
nodes can be partitioned into two sets such that no edge joins nodes which are in the same set)?
then

N7 Clsi] # 0

Proof. This is just a reformulation of the compatibility constraint on sequences over a binary
alphabet. Let the alphabet be {A, B} and the valid base pairs {4 — B,B — A}. For a given
sequence over this alphabet, denote by a the set of positions which are occupied by “A”, and by

the set of the remaining positions (occupied by “B”). Now every edge in D, describes a base pair

2In practice a graph is tested for this property by arbitrarily assigning one node to one of the sets, then breadth first
traversing the graph starting from this node. At every node encountered, all neighbours must be either unassigned
or assigned to the complementary set of the node. As soon as a node is met for which this condition does not hold,
the graph is not bipartite.
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which has to be satisfied in a sequence which is compatible with all structures in ¢. Thus such
a sequence exists if there is a partition of the nodes of D, into two sets a and 8 such that every
edge joins an “A position” to a “B position”. g

From D, we can not only infer the (non)existence of simultaneously compatible sequences, but
also their exact number.

Corollary 1. Let D, be a bipartite dependency graph with n. components. Then

QLQIC[Si] = 27,

For in any component of a bipartite graph, the only way of changing assignments of the nodes to
the sets a and f is to flip the assignments of all nodes at once. Thus there are exactly two ways to
allocate the symbols “A” and “B” to the positions which correspond to the nodes of a component.
The allocations of different component are independent of each other. Therefore the total number
of compatible sequences is equal to the cardinality of the cartesian product of the per-component
allocations, 2.

In the context of the intersection theorem it is usually stated that it is unknown whether there
exists a number J for which it holds that for all j > J the intersection of the sets of compatibles
M!_,C[s;] = 0 [54]. Without being able to make a rigourous statement concerning this open
question, we can however observe the following: Imagine a substructure which consists of a single
stack with a loop of even length. The corresponding pseudostructures of length L have a nonempty
simultaneous intersection, because the alternating sequence is compatible with each of them. That
is true for every L = [...00. Therefore L — [ + 1, the number of pseudostructures at total length
L, is a lower bound for J. Because this lower bound is not constant for all lengths L, J might not
be constant, too.

It is not clear whether and how the dependency graph approach can be extended to non-binary

alphabets and/or the case in which there is more than one pairing partner for a symbol. There is
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certainly a connection to coloring problems in graph theory, which deal with the number of ways
in which the nodes of a graph can be colored so that no edge joins nodes of the same color. The
famous four-color theorem says that there is such a coloring with four colors for every planar graph
[3, 4]. With base pairing however, the constraint is not just “different colors”, but “complementary
bases”, which is most probably not always satisfiable. In addition, a dependency graph will usually

not be planar.

5.3.2.2. The Exact Number of Sequences Which Are Compatible In At Least One Frame
In terms of the notation introduced at the beginning of this chapter, | ﬂlj‘;ll C[s;]| = Cip, where o
is the set of those pseudostructures s; which correspond to the frames which are marked by “1” in
the word p over the alphabet {x,1}. Thus by the method described above we are able to compute
the Cj p. In this subsection we show how these can be used in order to find the C; 4, which are the
quantities we are really interested in.
Let us focus on a particular C; 4, for example C; n911007- One can arrive at an inclusion exclusion
type expression for Cj g1100~ in the C;p from two different starting points.
The first method is recursive and starts with observing that Cj 011007 = Ci,70110% — Ciro11017 :
a “0” in the last coordinate is that which remains if patterns with a “1” in that coordinate are
subtracted from those patterns with either a “0” or “1”. Now the index patterns on the right hand
side of that equation contain one less “0”. Applying the same rule (split on the rightmost “0” into
“*¥7 and “1”) recursively to the terms on the right hand side will eventually lead to an expression
in the Cjp :

Cirot1007 =

(Ciyro110+7 — Ciror101m) =

((Ci,”Oll**” - Ci,”Olll*”) - (C”i,Oll*l” - C”i,Ollll”)) =
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(((Ciprarrwnrr = Cipiriwsrr) = (Ciprsrnrsr — Cimrannan)) —
((Cirsrsar = Ciminrearn) — (Cirgrnnre — Cipnine))) =

Cirviienr — Ciiiten — Cisiiier — Cosarsrr + Cirnrsr + Ciansrr + Cirvanirr — Cirinine.
Simple as this is as an algorithm, it is difficult to state in a closed form. The rearranged last
line suggests however an alternative route to the same result. We see that the summands can
be grouped according to the number of “1”s. All summands in such a group have the same sign
and the signs alternate between groups. This is strongly reminiscent of the inclusion exclusion
principle, by which the cardinality of the union of sets with nonempty intersection is computed
[73]. And indeed the problem can be stated that way. In order to derive C; ro11007 from C; msq1sx,
those sequences have to be excluded which are compatible in one or more of the starred frames.
Assume there are ng zeros in the g for which we want to derive C; 4. Denote by p, that pattern
in which all zeros are replaced by xs, and by pg, (1) ...pg, (no) copies of py in which the first, ...,

noth * is flipped to a “1”. Then
Cig = Cip, = |U32; Cipp, (-

(Remember C means the set of sequences, and C' its cardinality.) The cardinality of the union on
the right hand side can be described by the inclusion exclusion principle, by which

[Ui<j<n Aj1 = Xicjicn [Ail = Xiciicinn A N Al + 221 i ciniscn 1A N Ajs N A=

()N Ay

for n sets Ai,..., An,. We observe that in the index patterns of the C; () N Cip,, Go)(1 <51 <
J2 < mg) two of the *s in p, are flipped to “1”, namely, the jist and the jond. In general, in
the intersection of k such sets, k£ of the xs are flipped in the index patterns. If we denote by
Po (DA <k <np,1 <1< (Tg’)) those copies of p, in which k *s are flipped, the inclusion exclusion

principle reads

|U?i1 Cirpg, ol = Z (—1)F+t Z Cipg, (1) = Cipy — Clig-
1 )

1<k<ngp SlS("kO

- 113 -



NEUTRALITY WITH RESPECT TO A SUBSTRUCTURE

2.0e+10

1.5e+10

1.0e+10

5.0e+09

number of compatibles

0.0e+00

2.0e+07

(-

A )

/ 1.5e+07

(@)}

\\\

/ 1.0e+07
/ i ]

5.0e+06

10

0.0e+00
15 5 10

additional length

Figure 38: The number of binary sequences which are compatible with a substructure in at least one frame,
estimated as C; ~ (i + 1) x Co x nsymbols® (thin line), and its exact value (fat line). In the case of
the long, complex substructure on the left side the estimation is very close to the true numbers. The
reason for this is the fact that sequences which are compatible with more than one frame are very rare.
If this condition is however not met, as in the case of the short hairpin on the right side, the estimation
formula becomes increasingly more inaccurate for longer total sequence lengths.

Thus the C; 4 can be computed from the know quantities Cj .

From the Cj 4, C; follows as 3> Ciq.

Fig. 38 compares the approximated cardinalities of the compatibles with the exact numbers, for

the cases of a simple hairpin and a complex substructure. For the hairpin, the match is quite bad,

as expected in a case in which it is not very unlikely to have more than one compatible frame in

the same sequence. Thus it is obviously worthwhile the effort to compute the exact numbers.

5.3.2.3. The Density of Compatibles

The elements of C; are a subset of the 2("«+2%+9) binary sequences of length L. The ratio of C;

to the size of the sequence space is a measure of the availability of the substructure to selection.

Of particular interest is its scaling with the additional length i, because an increased availability
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Figure 39: The density of compatibles Zq Ci,q/2"= T2 +9) a5 3 function of the additional length 4. In the case
of the complex substructure, the rise is essentially linear up to ¢ = 14, which is in agreement with the
fact that the estimation formula works well for that substructure up to that length. In the case of the
hairpin, the linear rise is clearly damped. Neverless an additional length of 14 is enough to take the
density close to 1.0.

is one possible benefit of increasing the total sequence length.
From the estimation formula C; ~ (i + 1) x Cy X nsymbols® it would follow for a binary alphabet

(nsymbols = 2):

(i + 1)2m2me2i 41
Anut+2np+i) T 9Ny

d; =

This is a simple linear function of ¢ which exceeds 1 for ¢ > 2™ . Of course a density cannot be
greater than 1, which means that the formula breaks down at latest at that value of ¢. In reality,
the linear rise is counteracted by the increasing prevalence of sequences which are compatible with
more than one frame. (A sequence which is compatible with k frames adds but a single count to C;,
instead of k counts which would be contributed by & independent sequences which are compatible
with a single frame each.)

Fig. 39 compares the complex substructure and the hairpin of Fig. 38 with respect to their densities
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of compatibles. Compatible sequences of the complex substructure are very rare at i = 0 (about 8
in 1000 random sequences), and their density rises very slowly but linearly to about 0.1 at ¢ = 14.
The linear rise suggests that we are in the regime in which the estimation formula still works,
which is confirmed by Fig. 38. In contrast, the density of compatibles of the hairpin is equal to
0.125 already at ¢ = 0, which exceeds the density of the complex substructure at i = 14. Its
rise is damped from the beginning, which means that sequences in the intersections of multiple
frames play a role already at small additional lengths. Nevertheless the hairpin reaches a density
of d;i = 0.86 at ¢+ = 14. It is readily available “if needed” by selection. We will see in section
5.4.3 how this affects the population structure of a population of sequences which are kept on the

substructure neutral network by selection for the hairpin.

5.3.2.4. The Probability Of Being Compatible In k£ Frames
From the Cj,’s one can also compute the probabilities pi,ps,...,pr_14+1 of a sequence to be

compatible with exactly 1,2,...L — [ + 1 frames:

Pr = Zq,q contains k '"1'"s Ci,q
k =
C;

These numbers are important if one were to describe a substructure neutral network by a random
process on the set of compatibles (which we are not going to do). Assume there is a constant
folding probability A, with which a compatible frame actually adopts the substructure. Then the
total folding probability of a sequence with k& compatible frames is equal to the probability of at
least one frame actually folding: A\ := Z;.“:l (';))\j (1 — X)*=9 A random process probably would
have to consist of two steps: the first “throw of the die” would decide about the actual folding
probability of the sequence, which would be equal to Ay with probability pg. In the second step it
would be decided whether the sequence belongs to the network, based on its folding probability.

Fig. 40 compares the p; of a long, complex substructure and a short hairpin. In the former,

p1 ~ 1.0 even at an additional length ¢ of 14. The network of this substructure could be modelled
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Figure 40: The probability to observe 1, 2, 3, or 4 compatible frames in a compatible sequence at different total
lengths. For the complex substructure on the left side, the probability of one frame is overwhelmingly
dominating. The only other probability which is not essentially zero is that of two frames, but this, too,
is small compared to p(1). With the simple hairpin on the right side the situation is very different. At
L — 1 =14, p(2) already exceeds p(1).

with a fixed A. In the hairpin in contrast, ps is quickly rising with 4, and has become the maximum
of the py distribution at i = 14.
5.3.3. On Possible Graph Structures on the Set of Compatibles

5.3.3.1. Point Mutation Only Or Pair Neighbours ?
The compatible sequences for a given total length L are a subset of the nsymbols” sequences which

make up the Hamming space over that length and alphabet. Using point mutation as the only
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mutational operator, the graph of compatibles would become a subgraph of the Hamming graph.
If in addition insertion and deletion of single symbols are considered, the compatible sequences of
different total lengths L are combined into a subgraph of the infinite Levenshtein graph defined
in chapter 2. This is a very parsimonious way to describe the relation between the sequences,
and it is close to biological reality. The possible objections against it are of technical nature:
modelling the relation between the average number of neutral neighbours of a sequence and the
likely connectedness and density of the whole network by random graph theory requires the graph
of compatibles to be connected and regular. The second property surely does not hold for the
above defined subgraph of the Levenshtein graph (let us call it graph A). It depends on the actual
substructure whether or not the first one is true.

An alternative approach starts out from the set of pseudostructures which is derived from a
substructure at some fixed total length L. There is a distinct pattern of base pairing for each
pseudostructure, and thus it makes sense to speak of point neighbours and pair neighbours of
a compatible sequence, quite like in the case of completely defined structures. The compatible
sequences of a given pseudostructure can accordingly be organized into a generalized Hamming
graph of the form QYp x Q% 5, (assuming we are dealing with a binary alphabet). If a
sequence is compatible in more than a single frame, it belongs to the intersection of the respective
pseudostructures (cf. above). In accordance with Jacqueline Weber [100], one can define the set of
neighbours of such a sequence to be the union of its neighbours in each of the generalized Hamming
spaces. Then, a given position has as many different pair neighbours as there are compatible frames
of the current sequence in which it is paired. In addition it has a single point neighbour if it is
unpaired in at least one of the compatible frames. Let us call the graph which is induced on C; by
this relation graph B.

In the following we will discuss properties of both graphs.
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5.3.3.2. Connectivity of the Space of Compatibles

C; is naturally partitioned into the sets C;,. Each such set is characterized by a unique set of
constraints on mutations, given by the base pairs of its active pseudostructures and described by
the dependency graph D,. The sequences of the set constitute the (multiple) intersection of the
pseudostructures (cf. above).

Based on this partition, it is possible to state the problem of the connectivity of C; under a given
set of move operators on a more abstract level than on the level of the sequences themselves.
Within a set C; 4, each component of D, constitutes one covarying group of positions. It depends
on the move operators whether or not sequences within the same set are connected by a path which
runs entirely within the set: A set C; ; decomposes into 2™ components, where m is the number of
components of Dy with more than 1 element (in the case of point mutation only) rsp. more than
2 elements (if pair exchanges are possible).

Sequences within the constituent components of the C; , are by definition connected. Thus the
basic objects for which connectivity has to be proven are these components themselves.

For the case of point and pair mutation, a similar scenario has been described by [100]. She
has shown that the sequences in the intersection of two completely defined secondary structures
decompose into islands which are connected by paths in the generalized hypercube of structure I
or II. These “islands” are the components of the set of intersection sequences, and the connecting
paths run via one or the other of the two sets which together with the intersection partition the
entire space: namely, those sequences which are compatible only with structure I or structure II,
rsp.

Thus if the graph structure on C; is that of graph B above (point and pair mutation), then
the components into which a single C; ; decomposes are connected by paths in the generalized
hypercubes of one or more of the active pseudostructures of the set. Therefore in this case it

is not even necessary to distinguish between the components. The relevant graph T'; is defined
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on the nonempty sets C; , themselves, and two such sets are joined by an undirected edge if the
intersection of its constituent pseudostructures is nonempty (for if this is the case, any sequence
in one set is connected with any sequence in the other set by a path in the generalized hypercube
of one of the shared pseudostructures). Sequences in sets which do not share pseudostructures
are connected if there is a path in T'; connecting the sets. This is however by the intersection
theorem is always possible: Imagine two sets of frames ¢, ¢’ which do not share an element. Then
the singletons ¢" = {z} and ¢""" = {y} exist for arbitrary z € ¢,y € ¢'. By the intersection theorem

" q" q) connecting the two sets of

¢"" = {z,y} is not empty. Therefore there is a path (¢q,4",q
frames. It follows that under point and pair mutation the graph of compatibles of a substructure is
connected.

The situation is more complicated if the move set consists of point mutation only. Now one has
to deal with the explicit components of the sets C; 4, because it is not guaranteed that connecting
detours exist. There is an edge between two components if there exists a sequence in one set
which by a point mutation is converted into an element of the other set. Verifying the existence of
an edge between specific components of different sets C; , requires detailed sequence information,

which is why it may indeed be easier in this case to do a component decomposition on the sequences

themselves.

5.3.3.3. On the Number of Compatible Neighbours

A mutation which “leads out of” C; 4 is not necessarily forbidden. This is only the case if the result
is incompatible in all frames. Qutcomes in which at least one compatible frame remains belong to
some different C; ,» C C;.

A mutation which results in an incompatible sequence surely has to destroy all current compatible
frames of a sequence. This can only happen if it hits a position which is paired in all frames.

The number of compatible point neighbours of a sequence in C; is at least equal to L minus the
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number of positions which are simultaneously paired in all compatible frames of the sequence.

The actual number of point neighbours may be larger, because formerly incompatible frames (if
they exist) may become compatible by the mutation, so that a compatible sequence may still result.
There is a threshold number ny=r+1 of compatible frames, so that for ny > n} the number of
simultaneously paired positions must zero, and the number of compatible point neighbours equals
L. Here, r is the length of the longest run of paired positions in the substructure.

The number of compatible neighbours in graph B is at least equal to L minus half the number
of simultaneously paired positions (and thus greater than the number of neighbours in graph A).
This is so because every position which is unpaired in one or more compatible frames has at least
one neighbour (in graph A, it has exactly one). At a simultaneously paired position, as many pair
exchanges are possible as there are frames, while such a position may not be mutated in graph
A. Of the pair exchanges, at most half are redundant (if both partners of a pair are in the set
of simultaneously paired positions, only one exchange counts). The actual number of compatible

neighbours depends on the active pseudostructures and can be much larger than this lower limit.

5.4. Substructure Neutral Networks

5.4.1. The Folding Probability of a Single Compatible Frame

Fig. 41 illustrates the following setup: n; different compatible sequences of length [ are choosen
for the respective substructure (hairpin or complex). Because there are only 64 compatibles of
the hairpin, n; = 64 in this case. For the complex substructure, no = 5000. Next for each of the
compatible sequences, ny random contexts of length ¢ = L —[ are choosen. In order to compensate

for the bad statistics with 64 compatible sequences only, n, = 100 for the hairpin (for values of i
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Figure 41: The probability of a compatible frame to actually adopt the substructure. Note the different scales of
the y axes.

which are too small to permit 100 different realizations, ns is set to the maximal number of different
contexts). In the complex substructure, no = 1. Each compatible sequence is inserted into each
of its random contexts in all possible frames, and the number of times the substructure is realized
in this frame is recorded. (The total sequence may by chance contain one or more additional
compatible frames, and the substructure may be adopted on one of those. Such an outcome counts
as negative.) Finally, the fraction of successes, pooled over all compatible sequences and all random
contexts, is reported for each frame. The average of this measure over all frames is an estimate of

the per-frame folding probability A; ;. It is this parameter on which it hinges whether or not the
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increased density of compatibles at i > 0 results in an increased density of neutral sequences or
not.

The two substructures behave very differently in several respects. At ¢ = 0, all of the compatible
sequences of the hairpin actually fold, while only less than 1/10 of those of the complex substructure
do. This is not due to a higher stability of the hairpin: with a <AG> of -2.4 kcal/mol, it is actually
less stable than the complex substructure (KAG> = -7.5 kcal/mol). The difference is in the extent
to which the two different substructures exploit the available length with respect to stability: the
hairpin is certainly the most stable possible structure of a sequence which is compatible with
it. That is not necessarily true for the complex substructure. The size of its longest stack, 4,
is small compared to a stack length of 10 which is possible at a sequence length of 23. Many
compatible sequences of this substructure are capable of forming longer stacks: an example is the
sequence “GGGGCCCCCCCGGGGGGGCCCCC”, the minimum free energy structure of which is
“CCLELHAC-=DDdMN 2, with a AG of -20.53 keal /mol. Note that the simple combinatorial argument
“the longer the length of the substructure, the more alternative structures it has to compete with”
does not hold. What counts is the average rank of the substructure in the list of suboptimal
structures of the compatible sequences (which we are not able to compute here).

Proceeding to i > 0, we observe the following. First, the average folding probability of a compatible
frame decreases with increasing i in both cases. The rate of this decrease is very different in the
two substructures: at ¢ = 1, the folding probability of the complex substructure is less than
one third of its initial value, while it is only reduced by about 6% in the hairpin. There are
several possible reasons for this. At ¢ = 1, the hairpin is still the energetically “best possible
use of a compatible sequence” [37]. At ¢ > 1, longer stacks are possible. Yet, the hairpin is a
substructure of all stacks with a 3-loop, so these longer stacks can still be substructure neutral.
The role of this effect is evident from the fact that the location of the compatible frame matters

a lot in the case of the hairpin: frames in the middle of the sequence have the highest folding
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probability. It is these frames that may be extended to the longest stacks. (In addition, the
contiguous stretches of random context are smallest if the frame is located in the middle of the
sequence. Longer such contiguous stretches are sterically more free to interact with positions in
the compatible frame, possibly resulting in an actual structure in which positions in the frame
are paired with outside positions.) The stacks of the complex substructure, in contrast, cannot
be bulge-free extended. With increasing i, the stability of the substructure will increasingly fall
behind the increased stability of competing long stacks. (An example is the compatible sequence
GGGGGGGGGGGGGCCCCCCCCCCCCCGGGC at ¢ = 7. Its minimum free energy structure
is ((CCCCCCCC-= D)., with a AG of -27.50 kcal/mol.) There is no pronounced difference
between terminal and middle frames in this case.

The folding probability of the complex substructure quickly approaches zero for all frames. Therefore
in a scenario in which there is selection for the substructure but the total length is allowed to vary,
one would expect that there is a big advantage in reducing the additional length to zero. We will
discuss such a scenario in section 5.4.3. The situation is different for the hairpin. After having
reached a minimum at ¢ = 9, the probability of the terminal frames slightly rises again and then
seems to rest at a plateau of about 0.1 (to be sure about the stability of the plateau, it would
be necessary to run the experiment for ¢ > 27). Probably this is the additional length at which
the context sequence is long enough to form a folding unit of its own (note that the length of the
hairpin is equal to 9). The average and middle frame probability are still decreasing at i = 27,
although very much more slowly so than in the case of complex substructure. The former is at
0.16 at i = 27, the latter at 0.26 (compare that with the average probability of 0.000042 in the

complex substructure at that additional length).

5.4.2. From );,1 to the Folding Probability of a Random Sequence

In the last subsection we have described );;, the average single frame folding probability at
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Figure 42: Upper panel: The average single frame folding probability A; ; (fat line), and the derived measures
A<i> (the probability of at least one compatible frame folding, dotted line), and A; , (folding probability
of a random sequence, light line). In computing A<;> , the probabilities of up to 6 frames were taken into
account. Lower panel: the expected number of neutral point neighbours, estimated as (i + 1) X A .
Longer sequences are advantageous for the hairpin, while ¢ = 0 is clearly the optimum for the complex
substructure.

additional length ¢. Together with the probabilty of k frames being compatible, p;; and the
density of compatible sequences, d;, it allows to compute the probability of folding of a random
sequence of length L = [+4. Of course this probability could have been determined experimentally
by folding a large number of random sequences, quite as \; ; has been. However by expressing it in
terms of p; , and d;, which need not be statistically determined but are exactly known, one gets a
better understanding of what causes the values to be in the range they are. In addition, one could

conceivably systematically study the influence of varying values of A; ; (which we have not done).

—125 -



NEUTRALITY WITH RESPECT TO A SUBSTRUCTURE

If there are k£ compatible frames in a compatible sequence, the total folding probability is equal
to Aig 1= 2?21 (’;) Xii? (1 = Xi1)* =9 the probability of at least one frame actually folding. The
expected folding probability of a random compatible sequence, considering up to n frames, is
A<i> = Y p_; Pk X Ai k- The probability of a random sequence to adopt the substructure is equal
to the product of the density of compatibles and the probability of folding: A;, := A<i> X d;.
It is this measure which determines whether or not it “pays” to elongate the sequences beyond
i = 0. The neutral network of a substructure is likely to be first found (under selection for a task
which can be carried out by the substructure) at this additional length ¢ for which A; , is maximal.
Once a population is on the network, the scaling of the number of neutral neighbours with 4 is
expected to be an important determinant of the growing or shrinking of the total sequence length.
As Martijn Huynen and Erik van Nimwegen [94] have shown, a population on a neutral network
accumulates at those nodes which have the most neutral neighbours (the so called buffering). A
simple approximation of the number of substructure neutral neighbours is given by (I +14) x A,
this considers only point neighbours, and assumes that each such neighbour behaves like a random
sequence.

Fig. 42 contrasts the different measures. As we have seen in the previous subsection, A;; of the
hairpin decreases monotonically on i € [0,14]. A<;s is clearly different from A;; already at ¢ = 1.
Between ¢ = 11 and ¢ = 14 it goes on a semi-plateau on which it shows only a minimal decrease
from 0.415 to 0.411. The decay of A<;> and the rise of d; combine into a A;, which, after an
initial rise from 0.125 to 0.33 (between ¢ = 0 and ¢ = 3) stays nearly constant. (There is a shallow
minimum between ¢ = 8 and ¢ = 10. From then on J; , is very slowly but monotonically increasing
again.)

The expected number of neutral point neighbours, estimated as (I 4+ 7) x A;r, is monotonically
increasing for the hairpin.

We have seen above that compatible sequences of the complex substructure with more than
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a single compatible frame are extremely rare. Consequently A<;> = X;1 (the two curves are
indistinguishable in Fig. 42). The very small total folding probability of a compatible sequence
renders the folding probability of a random sequence even smaller: A; , < 0.000649. The expected
number of neutral point neighbours is much less than 1 even at i = 0, and it is further decreasing
until 4 = 14. All these point into the same direction: this substructure is evolutionarily most stable

when it is a completely defined structure with no additional sequence portions.

5.4.3. A Population on a Substructure Neutral Network

5.4.3.1. Background

We have seen above that the density of compatibles and the folding probability of a substructure
vary (sometimes dramatically) with the additional sequence length i. Assume a population of
sequences is evolving under point mutation, 1-insertion, and 1-deletion according to the protocol
of Gillespie [36]. Sequences on the substructure neutral network have a constant fitness (irrespective
of their length and the number frames which may simultaneously fold). The fitness of sequences
off the network depends on the local string alignment score of the substructure to the complete
structure of the sequence (thus there is not only “on” and “off” the network, but also “close to”
and “far away”). If the population is seeded by M copies of a sequence with a single compatible
frame, it depends on the density of compatibles at a total length of 4 whether or not it is likely
that additional frames emerge in the random context. It is crucial for the genetic makeup of the
population whether or not they do: the emergence and selection of a new frame is equivalent to the
de novo creation of a sequence, independent of ancestors in the population. But new frames emerge
in the context of old frames, with which they remain joined in a single replicating unit. They do

not compete with frames in the same sequence, but jointly enhance the resistance of the sequence
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Figure 43: The average sequence length (upper panel) and the average number of compatible frames per sequence
(lower panel) in a population of size 250 which is drifting on the substructure neutral network under
point mutation, l-insertion, and 1-deletion. The one-digit mutation rates for the three operators are
0.001 (point mutation), 0.005 (1-insertion), and 0.005 (1-deletion).

to mutation. For if there are multiple compatible frames, and a mutation destroys one of them,
the substructure may still form on a different one, and the fitness of the sequence stay unchanged.
Like a pseudogene in a genome, a frame which has been rendered incompatible by a mutation is
further carried along, and has the chance to revert to compatibility by a compensatory mutation.
If however the de novo formation of a frame is very unlikely, then the initial compatible frame
will be the ancestor of a single true phylogeny. The role of the context reduces to its influence on
the folding probability of the frame. If the influence is negative, as with the complex substructure

described above, one expects that the additional length is reduced to zero.
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5.4.3.2. Setup

The experiment was run for the hairpin and the complex substructure discussed above. The initial
sequence length Lo was equal to 23 for the hairpin and equal to 30 for the complex substructure.
In both cases the population size was 250 and the sequence which seeded the population contained
a single compatible frame. The sequence of the hairpin did not adopt the substructure on this
frame, but the network was found already in the second generation. Because it turned out that the
network of the complex substructure would not be found in reasonable time if the initial sequence
did not fold (data not shown), in this case a folding sequence was deliberately selected.

The error rate of the mutational operators were set to 0.001 (point mutation), 0.005 (1-insertion),
and 0.005 (1-deletion). The reason for the higher rates of insertion and deletion was the fact that
we were interested in whether or not there were trends in the change of the total sequence length.
Higher rates of length-altering operators reduce the waiting time until a selectively favored length
mutant arises.

The fitness of a sequence was computed as 10(score/bestscore)  The scores in this formula refer to a
local alignment[84] of the substructure to the complete secondary structure of the sequence, using

the following symbol similarity table:

«C ) -
( 5 —2. 0.
) —2. 5. 0.
0. 0. 3.

bestscore is the score of an exact match. Thus the score of a sequence on the network is 10.0, and
sequences off the network have smaller, similarity dependent scores. The penalty for opening and

elongating a gap both were equal to 1.0.

5.4.3.3. Results
In the course of 100000 generations, the average sequence length of the hairpin population shows
big and often very rapid alterations (see Fig. 43). There seems to be no general trend towards

longer sequences, although a mean value of nearly twice the start length temporarily occured. The
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average number of frames per sequence is high (about 3 averaged over the entire run, but at times
equal to 8). It follows the mean sequence length: the density of compatible frames in the sequences
is not (markedly) increasing. What is true is that the average number of frames rises from 1 to
2 during the first 100 generations (during which the average sequence length is unchanged), and
that it never drops below 2 again except for very short time intervals.

In the complex substructure, there is a general trend towards a shorter length, as expected. In
contrast to the hairpin, length alterations are not easily accepted: there are long epochs [95, 96, 93,
92] of constant length. During the whole run, the average number of compatible frames is less or
equal to one. However in this case the density of frames is slightly increasing, due to the reduced

number of sequences in the population with zero compatible frames.

5.4.3.4. Interpretation of Results

In the hairpin, recurrent mutations which create compatible frames surely play a role, and probably
more so than the “ordinary” passage of genetic information from ancestor to offspring via replication.
That would explain why there is no preferred sequence length: the folding probability of a random
sequence is indeed length independent for the hairpin. The density of frames per sequence of > 2 is
in accordance with the fact that ps > p; from an additional length of 14 on (L = 23 corresponds
exactly to ¢ = 14). The fast acquirement of a second frame during the first 100 generations thus
may not be due to selection for the sheltering effect of multiple frames.

The epochs in the time evolution of the sequence length in the case of the complex substructure
point to a strong context dependency of the folding of the substructure: in most contexts a length
alteration is not permitted. For the same reason the length decreases only very slowly, sometimes

even increasing again for a short time.
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6 Discussion

That phenotypically neutral mutants of the genotype contribute to both robustness of the genotype-
phenotype map against mutations and to an enhanced search potential for better adaptations is
theoretically evident [48, 49, 78, 72, 96, 91]. It is also known that the secondary and tertiary
structures of biological macromolecules are often unchanged by extensive alterations to the primary
sequence [77, 39, 24]. What remains open is how the graph structure of the complete neutral
networks of the natural sequence structure mapping look like. That they contain large connected
components or that different components are at least close to each other (density) is a prerequisite
if neutrality is to have a major impact on search capacity at mutation rates which are low enough so
that the genotypes can form a single or a few stable quasispecies [80, 49, 78]. The existence of largely
connected (and sometimes dense) networks has been shown analytically and/or by simulation for
a variety of simplifications of the sequence structure mapping (random graph model [71], lattice
proteins [59, 7], RNA secondary structures over binary alphabets [37, 38]). In this thesis we have
further approached the natural situation from two directions: first, we have not only explicitly
determined the neutral networks with respect to secondary structure in an RNA sequence space
over the natural alphabet but also developed an algorithm which allows an estimation of whether
or not a network is connected from a statistical sample of its sequences and thus can be applied
to the networks in sequence spaces over the natural alphabet for sequence lengths which do not
permit exhaustive folding. Second, we have done the first steps in the direction of introducing
a new concept of structural neutrality, neutrality with respect to a substructure. This takes into
account the fact that the strength of functional selection pressure often is not the same everywhere

in the 2D or 3D structure of a biological macromolecule [90, 42]. Thus a mutation which alters the
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structure in a less relevant part may still be neutral with respect to the function of the molecule.
The most outstanding feature of the sequence structure map in the space Q15 .. of all RNA
sequences of length 16 over the alphabet {A,U, G, C} is the huge size of the neutral sets. With
416 = 4294967296 sequences which are mapped to only 274 structures the average size of a neutral
network is 15675063 sequences. The space is dominated by the set of the open structure, which
with a count of 2709569048 comprises about 63% of the entire space and occurs in the 1-mutation
boundaries of nearly all structures with high frequency. The sizes of the networks roughly follow
a generalized Zipf’s law if the open structure is excluded. In particular, the 70 highest ranking
sets are comparable in size and much bigger than most of the remaining ones, so that one can
distinguish between common and rare structures [81]. The networks of the common structures
exhibit the properties which are most advantageous both in terms of robustness against mutations
and of search capacity: they are large connected graphs and in their 1-mutation boundaries contain
nearly all common structures other than the reference structure [31]. The common structures
are also those which cover an appreciable amount of their compatible sequences (the compatible
sequences of most other structures do not actually adopt the structure) and which have neutral sets
which are approximately uniformly distributed over the entire sequence space. Yet also in these
structures the fraction of neutral neighbours of a sequence on the network is considerably different
from and much higher than the coverage of compatibles, indicating that there is a correlation of
the propensity to be on the network between neighbouring sequences and thus a random graph
model which independently chooses sequences cannot be fully appropriate. The random graph
model according to Reidys et al. (1997) [71] predicts the networks to be dense and connected up
about rank 125 and disconnected and not dense in their compatibles otherwise. In contrast to the
prediction, nearly all networks in the space are connected (229 out of 273, not counting the open
structure) but no network is dense in the sense that every compatible sequence which is not on

the network has at least one neighbour which is. The fraction of non neutral compatible sequences
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which have this property is correlated with the size of the network. The lack of full density even of
the common structures can be explained with the overwhelming count of the open structure in this
space, which displaces other networks. The larger than expected connectivity of the rare networks
in contrast may not be an artifact of the small chain length but a genuine property of rare networks
in general: rare structures in QY% .., and presumably in general, often show a dependency on a
special sequence context of the formation of certain structural elements. This leads to long range
correlations in sequence space of the folding probability for the structure, which in turn will cause
a concentration of the neutral network of the structure in regions of high folding probability. If
there is only a single such region, a fully connected, localized graph may result. In addition, the
small distances between elements of Qifugc may lead to a merging of components [82], which again
would be a sequence length dependent effect.

When talking about a neutral network of an RNA secondary structure one usually thinks of a
fitness landscape which takes a constant value on the sequences of the network and a much smaller,
but likewise constant value on the remaining sequences of the space [72]. It turned out that the
sequences of many networks of Q}fagc: differ greatly with respect to the free energy of folding into
the reference structure. The free energy of folding may well contribute to fitness, for example if the
sequence needs to unfold in order to be replicated [29] or else if an especially stable fold is required
in an extreme environment. Neither the mean free energy (or its variance) nor the topology of
the energy landscape over the sequences of a network (mostly showing an exponentially decreasing
autocorrelation function, yet with very different slopes in different networks) is correlated with the
size of the network. This underscores the fact that it is not the absolute energy gain on folding into
a particular structure which determines the folding probability of a particular sequence. Rather,
it is the differential gain compared to other structures with which the sequence is compatible, thus
introducing a combinatorial element into the sequence structure mapping. The energy landscapes

of very similar structures (such as those ranked 30 and 31, which are mirror images of each other)
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can be extremely different. While the latter has a mean free energy which is about twice that of the
former, its energy landscape contains more different values and has a much smaller autocorrelation.
Thus the two structures provide to selection two versions of the same tool (assuming that they
are basically equally well suited for any static intermolecular interaction) made of very different
material, each of which may be superior in some situation.

Sequence spaces for lengths greater than 16 over the natural alphabet cannot be exhaustively
folded in reasonable time. Longer sequences are however expected to better conform to the random
graph model of Reidys et al. (1997) [71] (this is inherent in the model itself, which makes strict
predictions only for infinite sequence lengths — but see Stephan Kopp on finite lengths [54]). One
prediction of the model, namely, the existence of a path between any two connected sequences in a
defined, small hypervolume in sequence space, is especially interesting in connection with the issue
of analyzing the graph structures of large neutral networks. If it holds for a network then the task
of testing whether a pair of sequences is connected is greatly simplified. Assuming that there is no
extreme clustering of components of the network in sequence space, total connectivity can then be
estimated from the number of connected pairs observed in a statistical sample of sequences. This
can not only be done for the natural alphabet in silico, but in principle also for natural sequences
and structures. (One is then not confronted with the infeasible task of determining the complete
neutral network of a natural structure, but needs only find comparatively few sequences which
adopt it. The idea of an inverse SELEX procedure, which would start from a single molecular
species which already has a desired function and aims at increasing molecular diversity while not
loosing the function (thus exploring part of its neutral network) has been pursued by Dr. Michael
Gebinoga (personal communication).)

Based on the above defined property, local conectivity, we were able to implement an algorithm
which can classify common networks of the space Q2 as connected or disconnected with a success

rate of > 89%. Preliminary data on larger spaces over the natural alphabet suggest a high degree
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of connectivity. Because of its implications for the evolvability of RNA sequences this definitely
deserves further investigation.

Neutral networks of RNA secondary structures have become a preferred object of study with respect
to the questions of neutral evolution because (a) the combinatorics of the sequence structure map
is comparatively simple and well understood [26] and (b) RNA sequences are probably close to the
root of life, and may indeed once have functioned as “naked replicators” [35]. In this case properties
of their neutral networks have of course been of utmost importance. The outcomes of artificial
selection experiments [90] suggest that with respect to many tasks of molecular recognition the
degree of neutrality in the sequence-task map may be even greater than that in the mapping of
sequences into secondary structures: oftentimes the presence of some substructure somewhere in
a sequence of variable length is enough to create a fully functional molecule [90, 76, 75, 74, 64,
42]. Such a loosening of the constraints on the structures, realistic as it may be, spoils some of the
most convenient aspects of the relation between RNA sequences and their secondary structures.
For example, a sequence is no longer either compatible with a structure or not: it can contain more
than a single subsequence which is compatible with the substructure, and, if such subsequences
do not overlap, it can even adopt the substructure more than a single time. Multiple compatible
subsequences (“frames”) constitute both a constraint and a shelter: if compatibility with all of
them is to be retained by a mutation, there might not be much freedom for change. We have
given a formula for computing the number of sequences at a given total length which contain
a particular constellation of compatible subsequences, using the newly introduced concept of a
dependency graph (which is related to the contact graph discussed in [82]). If it is however only
required that neutrality is retained (that is, a single compatible frame is kept), then the more
mutations can be tolerated in a sequence the more frames it contains. Indeed sequences with
a high number of frames temporarily occured during the simulated evolution of a population of

strings under point mutation, 1-insertion, and 1-deletion on the network of a simple substructure.
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Whether or not sequences which are longer than the relevant structure “pay” in evolution depends
on a) how well the substructure is able to autonomously fold in a large context of additional
sequence and b) how probable the actual formation of additional compatible frames is. The latter
question can be answered by the above formula, but on the former more extensive work needs to be
done. Stable substructures which are simple enough to allow for de novo formation of compatible
frames generated a broad spectrum of sequence lengths in a simulation. In nature this effect may
contribute to the evolution of complex structures, by first generating additional sequence portions
which then can be put to use by selection.

Another aspect which poses more difficulties in substructure neutral networks compared to full
length structures is the graph structure to be imposed on the set of compatible sequences. Although
we show that it is in principle possible for the set of compatible sequences of a substructure at a
given length to be connected under point mutation (in contrast to the compatibles of a full length
structure, which never are, except for the open structure), it seems to be preferable to take the
correlations due to the base pairs into account. In accordance with Dr. Jacqueline Weber [100] we
propose to mutate a pair of positions in a compatible sequence in a single step whenever they form
a base pair in one of the compatible frames of the sequence. This may result in a position having
more than a single pair exchange neighbour. The advantage of this construction is the fact that
the resultant graph is connected. Correspondingly, it should be possible to describe a substructure
neutral network as a random graph induced in the graph of compatibles. This will certainly be a

most promising task for the future.
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Appendix: SOCs of the Structures of AUGC_16

This appendix lists the structures which are realized by the sequences of Q%5 . Columns Rank,
Size, and Structure contain the position in the size ordered rank list of all structures, the number
of sequences which belong to the network, and the structure in bracket dot notation. Column SOC
contains the Sequence Of Comonents: for every component of the network, there is one line giving
the number of sequences it contains. Also for every component separately, column Conservation
Profile depicts the degree of sequence conservation at the individual sequence positions, as described
in section 3.4.1 of this work. The leftmost filled bar is a scale which marks complete conservation
(only one base permitted). The open bars correspond to the single positions in the structure.

For the structure ranked 3 the conservation profile is missing because due to a system failure
the sequence information on this network was lost. The component decomposition was already
completed at this time. For the open structure (rank 1) no component decomposition was done

because of the huge size of this network.

Rank Size Structure socC Conservation Profile
2 52505831 (@) 52505831 b

3 52376319 .. () 52376319

4 44544114 ... () 44544114 L e o

5 44273746 ()™ 44273746 e e

6 33131192 () 33131192 Lo e

7 32883686 ... ((...))) 32883686 Lo

8 32878614 ()" 32878614 Lo e

9 32800711 ... () 32800711 L o

10 31738681 (((...))) 31738681 Lo me
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Rank Size Structure soC Conservation Profile
11 31720954 (((..))) 31720954 Lo
12 27886795 ((((.))) 27886795 Lo e
13 27835512 ((((.))) 27835512 e o
14 27791612 (((-)))) 27791612 L e
15 27778147 () 27778147 L o
16 26952613 (((C.)) 26952613 L e e
17 26723146 ((((.)) 26723146 b o
18 24213789 () 24213789 S
19 24047941 @) 24047941 b e
20 23939940 ((((....))) 23939940 I
21 23718569 () 23718569 e e
22 23403940 .. () 23403940 L o
23 23381252 (). 23381252 b e
24 23298936 (o)) 23298936 Lo o
25 23090344 ((((.)))) 23090344 e o
26 22549750 ... (((.2)) 22549750 L oo
27 22392809 (). 22392809 b
28 20122591 ((((rnrn)))) 20122591 e o
29 20007293 () 20007293 boe o
30 19504439 (((er))) 19504439 Lo
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Rank Size Structure soC Conservation Profile
31 19317742 (((r))) 19317742 b e
32 17483821 () 17483821 Lo e
33 17350407 () 17350407 b oo
34 16835453 ((((..))) 16835453 Lo e
35 16820867 (@) 16820867 Lo e
36 16806328 ((((...)))) 16806328 o o
37 16302709 (& )) 16302709 boe o
38 16070603 () 16070603 Lo o
39 16018755 (((rinr))) 16018755 b o
40 15189906 () 15189906 N
11 15149248 () 15149248 S
42 14944802 (o)) 14944802 e e
43 14907515 ((((...)))) 14907515 e o
44 14618572 (((...))) 14618572 Leore cme
45 14571453 (o)) 14571453 Leoe o
46 14555798 (((...))) 14555798 Lo e
47 14481816 (((..2))) 14481816 Lo o
48 14470119 (((...)) 14470119 Lo o
49 14445167 (@™ 14445167 e o
50 14137170 (o)) 14137170 L
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Rank Size Structure socC Conservation Profile
51 14102958 () 14102958 Lrne e
52 13966925 (((...))) 13966925 Lo e
53 13955566 (((C)))) 13955566 Lo o
54 13940500 .. () 13940500 L e
55 13879652 (((())))) 13879652 I
56 13597429 (((...))) 13597429 | e
57 13387645 (@) 13387645 Hhfh
58 13312469 .. () 13312469 L dh.h
59 12148436 ((G)) 12148436 Lo
60 12039830 ((())) 12039830 b e
61 12010780 ((G)) 12010780 b
62 11984481 ((B9%)) 11984481 Lo e
63 11911783 (((......))) 11911783 Locoe e
64 10966289 (D)) 10966289 Lo o
65 10813722 (D)) 10813722 [
66 10775407 @aam) 10775407 R —
67 9910874 () 9910874 b o
68 9890910 () 9890910 Lo oo
69 8412124 (((C-))) 8412124 I
70 8240900 (R 8240900 bdh [he
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Rank Size Structure socC Conservation Profile
71 8233388 () 8233388 Ldh Jho
72 7926178 ... (). 7926178 L dhfh.
73 7913718 e, ((...)). 7913718 I dhJh
74 7871294 N((OR)) 7871294 Lo
75 7787794 () TT87794 Ldbh ...
76 7748154 ()} 7748154 b
7 T6TIT61 ... (). 7671761 L dhJh.
78 7550223 (o)) 7550223 b o
79 7429530 () 7429530 Ldh /b
80 TALT372 . (). 7417372 Ldh [h
81 6426309 (G ) 6426309 b
82 3757560 e ((-..) 3757560 L___h 40
83 3661228 (@) . 3661228 T
84 3360679 () 3360679 Mh A
85 3315282 .. (o)) 3315282 L {Th
86 2920428 D)) 2920428 Lecocrrn e
87 2907344 (@@ 2907344 bocroe e
88 2567934 .. () 2567934 L_Mh. . Al
89 2506239 () 2506239 [ -
90 2446866 (). 2446866 Lin Al
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Rank  Size Structure SOC Conservation Profile
91 2416639 ((r)) e 2416639 =]~
92 2350424 ... ((.).. 2359424 L_ih A
93 2329003 ... ((....)) 2034559 L ildh
204444 | dHI
94 2327028 () 2327028 Lin Al
95 2320403 () 2320403 L_n Al
96 2286335 ... ((.....)). 2286335 L_h Al
97 2254841 () 1906756 bidn.
348085 b
98 2247197 (o)) 2247197 LT AT
99 2183285 () 2183285 L Th AT
100 2147037 (o)) 2147037 U AT
101 2119422 (o)) 2119422 Lh AT
102 2035408 . (). 2035408 L Th AL
103 1930617 LG 1930617 Lo etk
104 1916748 (C(C-))). 1916748 oo oo
105 1724574 (o)) 1724574 LT
106 1687071 ()™ 1687071 LT ATh
107 1667250 (o)) 1667250 Lh AT
108 1596729 () 1596729 LT AL
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Rank Size Structure soC Conservation Profile
109 1459865 ((((.))) 1459865 L mrk
110 1442776 ((((.))) 1442776 b b
111 1392308 ... ((...)) 1214658 AN
177650 L HIh
112 1391908 ... ((...)).. 1208600 LA
183308 LT
113 1376823 (o). 1188621 Lidn.
188202 LT
114 1347136 (). 1160028 ]
187108 (Sl S—
115 1327087 (((((-)))) 1327087 b e
116 1314943 .. ((...)) 1139018 LA
175925 L HTTh
117 1310120 (R . 1130163 %] -
179957 L HT e
118 1279225 () 1104691 B I5] —
174534 | T
119 1188212 ((C(-))-))) 1188212 b Mo
120 1186672 (D)) 1186672 b e
121 1079078 @@ 1079078 bt e
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Rank Size Structure socC Conservation Profile
122 871125 () 871125 L e
123 870232 ((((.))) 870232 Lt mifh
124 643992 (((((.)))-) 643992 Hie omlh
125 628013 (((((-)))) 628013 Wb onlb
126 614810 ((((..)).) 614810 Lot A1k
127 610722 (((())) 610722 b
128 538933 (((())) 538933 Lo AT
129 527991 (((()).) 527991 b AT
130 520050 ((((ornr))2)) 520050 b T
131 513995 (((((..))-)) 513995 bodb e
132 506500 @) 506500 Lot Thns
133 499795 (((((..))-))) 499795 Lot O
134 498944 () 498944 boodt hn
135 402368 ((((-))) 402368 LT mih
136 397521 (((())-2) 397521 L. mnih
137 393097 () 393097 K b
138 391159 (((C.))) 391159 e mih
139 325629 (((())) 325629 LT AT
140 204304 (G () 294304 oo b b
141 279378 (((((.))--))) 279378 bodb e
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Rank Size Structure socC Conservation Profile
142 269206 (((())-) 269206 L b
143 261474 ((((-))-) 261474 Hie mih
144 257506 (C-IN() 257506 boe b Jh
145 254456 (D) 254456 Hb e e
146 242619 (((())) 242619 Ll mH b
147 239708 (((-)))) 239708 bonoe. e
148 239684 (((())-) 239684 LT T
149 228354 (@@ 228354 oo e
150 215088 () 215088 (B, ;1 N
151 214178 (@asm) 214178 S N
152 176046 (C(C)))) 176046 boodhodhm
153 170988 ((C())) 170988 bl e
154 164703 ((.(.))) 164703 Lol T
155 164508 (o)) 164434 Himh 41k
74 [T e [T
156 162629 (((()))) 162629 Wi AThih
157 162130 ((((())-)) 162130 bodh e
158 156076 ((((c)))) 156076 Lerorm o
159 150978 (((()2))) 150978 b e
160 142764 ((((C))) 123564 beeecd M b

— 145 —



APPENDIX

Rank Size Structure socC Conservation Profile
18455 (O 1 1.
745 b ITHT s
161 142052 (D)D) 125206 Lo b b
16363 Lo HT b
483 Lo ITHT T
162 138627 (((.())))- 121385 boeed b b
16695 e HT b
547 b [TH T T
163 132525 ((((2))2)) 132525 L b T ATH
164 130052 L)) 130052 LHT ATh Ik
165 128663 ((((-))2))- 128663 Hi T ATH
166 128370 (((())). 128370 HiTm ATh
167 121216 (@@oam 121216 boedb hne
168 111269 L)) 111269 e mn Tl
169 110554 (D)) 110554 Mo mnlll
170 104811 (((())))- 104811 Lol i
171 102696 ((()))- 102696 Lo
172 98232 @) 98232 Lod b (b
173 96753 (((())-) 96753 HiTh AThik
174 87295 ((C())). 76755 Lecred b b
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Rank Size Structure socC Conservation Profile
10222 L H e
318 Lo [THTT T e
175 80707 @ 80707 boedb [
176 80001 (@) 80001 L b [
177 79411 ((((2))) 79411 Hb - b
178 79167 (((())) 79167 Hhms mhdb
179 77950 (((((.)))) 77950 bodb (heen
180 73729 (((((..))) 73729 Lodb [hem
181 70180 ((((.))-) 70180 Lt b
182 69842 (o)) 69842 b s
183 68986 (. (())) 68986 Ldhdm. Mk
184 67770 (e (())) 67770 Hhom. mih
185 66447 () 66447 LT e [T1
186 65322 ((((..))-2)) 65322 HITe oAb
187 64397 () 64397 Mo (Il
188 57398 ((.))-((2) 57398 Hhh db.0h
189 49885 () 49885 Lo b e
190 47840 ((((.)))-2)) 47840 M en Tl
191 47610 (((((.))2)) 47610 L b Jherre
192 39277 ((.(.).) 39277 LTl
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Rank Size Structure socC Conservation Profile
193 36267 ((()) 34601 | ddbd b
1576 L_IHTHITHT
194 34175 ((.(..)2) 34175 Mol
195 33908 ((.(.)) 32055 Hidldhih,
1853 ETHTTHT.
196 32528 ((.))-((.) 32528 bbb [hdh Jh
197 31533 AN 31533 Lifh (b Jh
198 31429 (. ))-((.) 31429 Hb hdh b
199 30367 (D). 30367 Hh [
200 30025 () 29934 bocdb Abhm
91 [T o (T
201 29699 (((().))) 26991 L b b
2708 Leerrrd HT b
202 29428 (o)) 26777 b b,
2651 oo HT e
203 28217 (((())) 28217 bodb Ak
204 27475 () 27475 M1l
205 27045 (((.(...)-))) 24890 L b b
2135 Lo THT s
20 LT AT
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Rank Size Structure soC Conservation Profile
206 27012 (((())) 24891 b b b,
2102 b TH T e
19 [TITRATTITTTL
207 26436 (((())2) 26436 HihdTh Tk
208 25285 (((())) 23044 boeeed b b
2240 b HT s
1 T
209 24925 ((.(-.)2) 24925 LTl
210 24267 ((.(.).) 24267 LTt
211 24003 ((.()2) 24003 LTIl
212 23712 ((.(..).) 23712 LT
213 22954 (((((-)))) 22868 b
82 SIS
4 [THITI
214 22714 () 22714 Lt bk
215 22520 ((((-))))) 22438 L d Dbk
80 LA T AT
2 [ITHITIIII
216 22507 () 22507 Wi hh
217 22184 (((())-)) 22184 Hi b
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Rank Size Structure socC Conservation Profile
218 20205 ((()) 19165 L bbb
1040 LTHTTHTL
219 20203 ((((.))-) 20203 M Tl
220 20181 ((.(...).) 19217 L b b
964 L_THITHTL
221 19764 ((.(..))) 18733 b b b
1031 L THTTHTL
222 16211 ((((.))-)) 16211 LTHh [Tl
223 15048 (™)) 15048 A
224 14625 (@) 13968 Hb [Hh. 41
657 [THIT R AT]
225 14497 (D) 14497 bbb i
226 13308 (o ((2)))) 13308 Hb AT b
227 12436 () 12436 LT Tl
228 11647 ((((.))-)) 11647 HifT b
229 11518 ()G 10226 Hb 0 kA
1292 Kb hATHI T
230 11506 ((((-.))-)) 11506 HTH R Tl
231 10880 ((((.))-) 10880 L TH T TL
232 10781 (D) 10781 e T
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Rank Size Structure socC Conservation Profile
233 10726 (())-(() 8880 b0 b b
1846 HiHIhdh Ih
234 9955 (((((.)-))) 9955 b T T e
235 7784 NN 7784 LT Tk
236 7318 (D). 6590 b ik
728 Hb_ [ THT T
237 7099 () 7099 M T
238 6885 (D). 5822 LN dh 1h
1063 HiH T T
239 6739 LGN 6329 bdb [hikd T
217 H 1L TITHTTT
183 b [ THITh
10 HITHTITHHTH]
240 6662 ((((ern)))) 6662 M AT
241 6466 L)) 5423 bbb
1043 b TH b
242 5765 (o)) 5765 b e e
243 5510 (o ())) 5510 b AT s
244 5455 ((((..))-2)). 5455 M ATk
245 5314 ((((r)))-- 4432 M
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Rank Size Structure socC Conservation Profile
882 [THTHT TR T
246 5234 ((((..).))) 5234 b T Them
247 5171 ((((...))-)) 4415 LI AN AT
756 LITHTHTT e T]
248 4993 ((((-))) 4993 LT T
249 4953 ((((..-))-)) 4953 LTH D AT
250 4247 (L)) 3872 LM ot AR T
375 LTk THTTHT]
251 4003 (((-()-))) 2164 Lo T T
1839 L T T
252 3905 ((((-)-)) 1959 b TTH T e
1946 b T T
253 3830 ((.(.)) 3830 LT T
254 3767 () 3767 A T
255 3668 (((c)2) 3668 LA T
256 3468 ((((..))-)) 2910 LT N T
558 LTHTHT T TL
257 3370 ((()) 3370 IlsSalsal in i
258 3283 ((.(.).) 3283 (lnlsslnsline
259 3260 ((((C.)) 2003 1IN
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Rank Size Structure soC Conservation Profile
357 [T HTTHT L
260 3223 () 3223 U h AT
261 3149 L)) 3149 Lo T Them,
262 3052 (). 3052 i AHTL
263 2581 ((()) 2581 L0 T
264 2355 (( (o)) 2355 N
265 2309 (D)) 2309 LM THTL
266 2252 (). 2252 L T
267 2219 (). 2009 M od b T
210 W THTTHTL
268 2163 (o)) 2163 L i T T
269 2141 (o)) 2141 L T
270 1837 (N 1344 bl it
245 HiH T T
204 L b e TH T
a1 HIHITHATHTT
3 [THITTHTI]
271 1562 ((()2). 1562 L e T
272 795 ((((.)-2))). 795 [T Thed 1L
273 780 (((()-2))) 780 LT Thed ]
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274 246 (((()))) 244 o Eed b T
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