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Abstract

RNA pseudoknots represent a particularly interesting structural motif in func-

tional RNA molecules. They can be involved in translational and replicational

control, or are necessary to form reaction centers of certain ribozymes. The

conventional definition of RNA secondary structures excludes pseudoknots ex-

plicitly, mainly for computational reasons. In this thesis the RNA secondary

structure definition was extended to include the so called h-type pseudoknots.

H-type pseudoknots are the most abundant of all known pseudoknots, further-

more they are the only type of pseudoknot for which an energy model exists.

Consequently, the structural diversity of h-pseudoknots is restricted to the

domain of the energy model. Most of these restrictions are stereo-chemically

motivated and comprise almost all experimentally known h-pseudoknots.

As a result, dynamic programming becomes feasible in terms of time and

memory demand. A minimum free energy folding algorithm was implemented

which requires O(mn3) time and O(mn2) memory, where n is the length of the

molecule and m is a constant depending on the structural freedom approved

to the pseudoknot. Additionally the backtracking process was adapted as well,

to calculate all suboptimal structures within a given energy range above the

minimum free energy. However, kinetically determined phenomena are not

directly accessible with this approach but need sufficient knowledge about the

RNA energy landscape. Therefore an existing high resolution kinetic folding

algorithm was adopted which uses an elementary move set for the inter con-

version of RNA secondary structures, consisting of the closing and opening

of a single base pair. The pseudoknot-specific part of this algorithm pro-

duces a list of neighbors for any given structure, according to this move set.

Together with the suboptimal folding algorithm, the neighbor generating func-

tion is a prerequisite for another algorithm that provides detailed information

about the energy landscape, such as local minima and folding pathways. The

combination of all these methods provides a comprehensive tool to study the

implications of pseudoknot formation on the energy landscape.

RNA conformational switches are an ideal opportunity to apply the com-
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plete set of algorithms developed. They consist of two competing secondary

structures that show mutually exclusive base pair patterns but nearly equal

free energy. With the help of pseudoknots, the primarily high energy bar-

rier between the two conformations can be lowered significantly by providing

alternative folding paths.
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Zusammenfassung

RNA Pseudoknoten stellen ein besonders interessantes Strukturmotiv funk-

tioneller RNA Moleküle dar. Sie können an der Translations- und Replikations-

kontrolle beteiligt sein oder sind notwendig, um Reaktionszentren von Ri-

bozymen zu bilden. Die konventionelle Definition der RNA Sekundärstruktur

schließt Pseudoknoten explizit aus. In dieser Arbeit erweitern wir den Begriff

der RNA-Sekundärstruktur um die sogenannten h-typ Pseudoknoten. H-typ

Pseudoknoten sind bei weitem die häufigsten Pseudoknoten und zudem die

einzigen für die ein Energie-Modell existiert. Daher wurde die strukturelle

Vielfalt der h-typ Pseudoknoten auf den Wertebereich des Energie-Modells

eingeschränkt. Die meisten dieser Beschränkungen sind stereochemisch mo-

tiviert, umfassen dennoch fast alle experimentell bekannten h-typ Pseudo-

knoten.

Daraus resultierend ergeben sich “Dynamic Programming” Algorithmen

mit moderater Zeit- und Speicheranforderung. Es wurde ein Algorithmus zur

Vorhersage der stabilsten Sekundärstruktur implementiert der O(mn3) Zeit-

und O(mn2) Speicherabhängigkeit aufweist, wobei n die Kettenlänge ist und

m eine Konstante die von der Einschränkungen der strukturellen Vielfalt der

Pseudoknoten abhängt. Weiters wurde der “Backtracking”- Prozess dieses Al-

gorithmus modifiziert, um zusätzlich alle suboptimalen Sekundärstrukturen zu

generieren, die innerhalb eines bestimmten Energiebandes oberhalb der mini-

malen freien Energie liegen.

Dennoch sind kinetisch bestimmte Phänomene mit diesem Ansatz nicht

direkt zugänglich, sondern erfordern ein ausreichendes Wissen über die En-

ergielandschaft einer RNA Sequenz. Deshalb wurde ein hochauflösender kine-

tischer Faltungsalgorithmus adaptiert. Dieser verwendet elementare Transfor-

mationen, um Sekundärstrukturen ineinander umzuwandeln, wie zum Beispiel

das Öffnen und Schließen eines Basenpaares. Der pseudoknoten-spezifische

Teil dieses Algorithmus produziert, entsprechend dieser Transformationen, für

jede gegebene Sekundärstruktur eine Liste von Nachbarn. Zusammen mit den

“Dynamic Programming” Algorithmen ist diese Nachbar-generierende Funk-
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tion eine Voraussetzung für einen weiteren Algorithmus der detailierte Infor-

mationen über die Energielandschaft gibt, wie zum Beispiel lokale Minima

und Faltungspfade. Die Kombination aller Methoden ergibt ein umfassendes

Werkzeug um zu untersuchen, wie Pseudoknoten die Energielandschaft verändern.

Ein idealer Testfall um alle entwickelten Algorithmen anzuwenden, sind

RNA-Konformationsschalter. Diese bestehen aus zwei konkurrierenden Sekundär-

strukturen die sich gegenseitig ausschließende Basenpaar-Muster aufweisen,

aber fast die gleiche freie Energie haben. Es zeigt sich, dass Pseudoknoten al-

ternative Faltungswege ermöglichen, welche die ursprünglich hohe Energiebar-

riere zwischen den beiden Konformeren erheblich erniedrigen.
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1 Introduction

1.1 General Context

During the cause of evolution nature has developed the principle of hierar-

chical organization. In simple words, a confined set of smaller units is build

together to give a bigger unit. The resulting set of different bigger units might

also be confined and subsequently used as units to construct the next level

of organization. Every level shows novel and often unpredictable properties.

At the lowest level, organic molecules (monomers) are linked together by co-

valent bonds to yield biopolymers. Biopolymers might be linear or branched.

While the most abundant biopolymers in the bio-sphere are derived from car-

bohydrates (cellulose), the most essential are nucleic acids (DNA, RNA) and

proteins. All three of them are linear biopolymers, which is not a coincidence

because DNA is linear and there is a linear transformation from DNA to RNA

and the protein. This cascade is actually at the core of every living cell. The

DNAs task is to store genetic information (genotype), the proteins task is to

build and maintain the organism (phenotype). RNA molecules are all-rounder,

they can store genetic information (RNA-viruses), they are inevitable and ver-

satile intermediates between DNA and proteins (mRNA) and last but not least

they can act as enzymes (ribozymes) [6,19] . According to Spiegelman [59] the

phenotype of an RNA molecule can be defined as its spatial structure, there-

fore RNA is capable to carry genotype and phenotype in the same molecule.

This multi-functionality supports the idea that and RNA-world stood at an

early stage of life [17, 26–29].

The function of a biomolecule is closely linked to its spatial structure, thus

even in very different species, molecules with the same function exhibit very

similar structure. In fact this assumption justifies all types of sequence com-

parison and alignment, including the so called “phylogenetic” folding (chapter

10
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3) which gives very reliable structure predictions.

Obviously, when we speak about the spatial structure of a linear biopolymer,

we also have to consider the folding process that converts the one-dimensional

string into a three-dimensional structure. The process of folding is guided by

the molecules tendency to adopt the thermodynamically most stable structure.

In a cellular environment an RNA molecule tries to minimize the interactions

between the hydrophobic planar bases and the polar solvent. It does so by

folding back on itself to form pairs of bases which in turn are stacked on top

of each other. The pattern of base pairs is called secondary structure. To be

more precise, the fact that the RNA backbone is negatively charged, spoils

the tendency to form compact structures. Systems exhibiting such behavior

are considered to be energetically “frustrated”, in a sense that not all favor-

able interactions can be satisfied simultaneously. Fortunately the secondary

structure accounts for most of the stabilizing interactions, but it has to be

mentioned that also not paired bases can stack as well as they can interact

with already formed stacks

1.2 Secondary Structures with Pseudoknots

Since not all types of bases can form base pairs, the secondary structure

strongly depends on the sequence of bases. There are four types of bases

A (adenine), U (uracil), G (guanine), and C (cytosine). The hydrogen bonds

which mediate the pairing may be formed between the complementary Watson-

Crick pairs A-U, G-C and the slightly less stable G-U wobble pair. Secondary

structures are a useful coarse graining of the spatial structure for several rea-

sons:

• they cover most of the free energy of folding

• the secondary structure is conserved during evolution and has been used

successfully to interpret RNA function
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• they are computationally easy to handle because only discrete base pair

patterns (no coordinates) are considered

The common theoretical secondary structure model comprises only a very small

subset of all possible base pair patterns. The model excludes by definition all

overlapping base pair interactions, subsequently called pseudoknots, mainly for

computational reasons. It turns out that algorithms dealing with simple sec-

ondary structures can be implemented in a very elegant way, with the help of a

method called dynamic programming. In fact, dynamic programming was for

a long time considered incompatible with pseudoknots, at least until Rivas and

Eddy [51] published an algorithm capable to handle certain types of pseudo-

knots. However, this dynamic algorithm exhibits a rather prohibitive resource

demand ( O(n6) time and O(n4) memory) and neglects stereo-chemical con-

straints. The used energy model is very dynamic programming friendly but is

not known to reflect the real situation. In [51] an estimate of 130-140 bases is

mentioned as a rough upper limit for this algorithm.

1.3 Objectives of this Work

Nevertheless it would be desirable to handle longer sequence even at the ex-

pense of structural diversity. It is the purpose of this work to give reasonable

restrictions for the huge diversity of possible pseudoknots. We mainly concen-

trate on the so called hairpin- or h-type pseudoknot, for which we have at least

an approximate energy model [20], and give an outline how to include more

complex pseudoknots as well. This limitation allows us to manage sequences

of several thousand nucleotides in length within a reasonable time scale by

means of dynamic programming. To investigate how pseudoknots change the

folding process, it is necessary to include the pseudoknots in all algorithms used

to that end, such as the suboptimal folding, the kinetic folding and the bar-

rier algorithm. Suboptimal folding is concerned with calculating all structures

within a given energy range above the most stable structure that a specific
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sequence can adopt. It is a prerequisite for an algorithm which produces the

barrier tree. The barrier tree gives a notion of the folding process including

misfolded states, the most stable structure and folding pathways. The kinetic

folding algorithm simulates the progression of folding in time and is used to

measure folding or re-folding speed.

1.4 Functional Aspects of RNA Pseudoknots

Recent work has indicated that pseudoknots are only marginally more stable

than simple secondary structures (although thermodynamic data in this area

are still scarce [37, 48]). This observation suggests a role for pseudoknots

as conformational switches or control elements in several biological functions

[56]. In molecules that lack an overall three-dimensional fold, pseudoknots

fold locally and their positions along the sequence reflect their function [36].

For example, pseudoknots that are folded at the 5’-end of mRNAs tend to be

involved in translational control whereas those at the 3’-end maintain signals

for replication. In molecules with catalytic activities, pseudoknots are located

at the core of the tertiary fold and involve nucleotides that are far apart in the

sequence (RNAseP). The diversity of molecular biological functions performed

by pseudoknots can be subdivided into tree different groups:

(1) Translational control: 5’-end pseudoknots appear to adopt two roles in

the control of mRNA translation: either specific recognition of a pseudo-

knot by some protein is required for control, as described for the 5’-end

of mRNAs in some procaryotic systems [43, 56]; or, the presence of a

folded pseudoknot is necessary with no requirements on the nucleotide

sequence [4, 7, 62]. In several viruses, the expression of replicase is con-

trolled either by ribosomal frame shifting [4, 7, 8, 10, 62] or by in-frame

read-through of stop codons [69]. In both cases, pseudoknot formation is

necessary [4, 10, 62]. The requirements appear, however, more strict for

read-through than for frame shifting. Nevertheless, the correct position

of the pseudoknot in the 3’ direction with respect to the slip site in riboso-
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mal frame shifting, and with respect to the AUG codon in read-through

is an absolute requirement [4, 69]. The presence of three pseudoknots

in 16S rRNA has been suggested on the basis of comparative sequence

analyzes [44]. In general these pseudoknots are assumed to show strong

interactions with ribosomal proteins. One pseudoknot is known to be

important for the binding of tRNA to the ribosomal A site [40, 70], and

was shown to be essential for ribosomal function [47]. These observa-

tions are particularly interesting in view of the suggested conformational

switch that involves the other two pseudoknots.

(2) Core pseudoknots: are necessary to form the reaction center of ri-

bozymes. Most of the enzymatic RNAs with core pseudoknots are in-

volved in cleavage or self-cleavage reactions [5,14,21,39].(see figure 1.1)

(3) 3’-end pseudoknots: replication control is the common function of

tRNA-like motifs at the 3’-end of several groups of plant viral RNA

genomes [36]. This structural similarity is paralleled in biological func-

tion as the tRNA-like motifs are recognized by many tRNA-specific en-

zymes such as aminoacyl-tRNA synthetases, nucleotidyl transferase, or

RNAseP [36]. The tRNA-like structure has been shown to be necessary

for the initiation of replication [36]. A telomeric function of the tRNA-

like structure was also demonstrated [50] , in agreement with the genomic

tag model associated with such 3’-terminal tRNA-like motifs [68]. Re-

cently, the stretch of three pseudoknots preceding the tRNA-like struc-

ture in tobacco mosaic virus was shown to act as the functional equiva-

lent of a poly(A) tail, stabilizing a reporter mRNA and increasing gene

expression up to 100-fold [16].

1.5 Organisation of the Thesis

The first chapter introduces the concept of RNA secondary structures and its

structural diversity. Subsequently h-type pseudoknots are characterized as a
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Figure 1.1: RNAseP RNA is a well studied molecule which is found in all cells that carry

out tRNA synthesis. It is a processing endonuclease that specifically cleaves precursors of

tRNA. In bacteria it is associated with a small protein but is clearly the catalyst. It acts as

a true enzyme, in the sense that it reacts with multiple substrates.

strong restriction of the huge diversity of possible pseudoknot interactions.

Furthermore, stereo-chemical considerations, which are obligatory when we al-

low pseudoknots, are given and lead to the energy model. The energy model

concludes the chapter and explains in detail how to assign an energy to a base

pair pattern and which approximations are applied to deal with pseudoknots.

In chapter 3 we show how to solve several counting and optimization prob-
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lems, regarding pseudoknots, by means of dynamic programming. We start

with basic enumerations, proceed to maximum matching and finally get to

thermodynamic folding. The calculation of suboptimal structures is outlined

for the maximum matching as well as for the thermodynamic folding problem.

Chapter 4 discusses a high resolution kinetic folding algorithm that is used to

simulate the process of folding. The existing algorithm for secondary struc-

tures is extended to handle h-pseudoknots, additionally the canonic move-set

is introduced, which facilitates the folding simulation.

In chapter 5 we combine all pseudoknot algorithms and give examples how the

consideration of h-pseudoknots changes the RNA folding landscape. The so

called barrier trees are used to give a notion about the RNA folding landscape.



2 Basics

2.1 Basic Definitions

Definition 1 A [66] secondary structure S is a vertex-labeled graph on n

vertices with an adjacency matrix A fulfilling

1. ai,i+1 = 1 for 1 ≤ i < n

2. For each i there is at most a single k 6= i − 1, i + 1 such that ai,k = 1

3. If ai,j = ak,l = 1 and i < k < j then i < l < j.

We will call an edge (i, j), |i− j| 6= 1 a bond or base pair. A vertex i connected

only to i − 1 and i + 1 will be called unpaired.

A vertex i is said to be interior to the base pair (k, l) if k < i < l. If, in

addition, there is no base pair (p, q) k < p < q < l such that p < i < q we will

say that i is immediately interior to the base pair (k, l). A base pair (p, q) is

said to be (immediately) interior if p and q are (immediately) interior to (k, l).

Secondary Structure of a Sequence

Of course a given RNA-sequence cannot form all secondary structures, since

not all nucleotides form base pairs.

Definition 2 Let A be some finite alphabet of size κ, let Π be a symmetric

Boolean κ × κ-matrix and let Σ = [σ1...σn] be a string of length n over A. A

secondary structure is compatible with the sequence Σ if Πσp,σq
= 1 for all base

pairs (p, q).

Consequently the set of edges consists of two disjoint subsets. One ( defini-

tion 1.1 ) is common to every secondary structure and represents the covalent

17
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backbone connections while the second set ( definition 1.2 ) is sequence spe-

cific and represents hydrogen bonds between the bases.

Definition 3 A secondary structure consists of the following structure ele-

ments

1. A stack consists of subsequent base pairs (p−k, q +k), (p−k +1, q +k−

1), ..., (p, q) such that neither (p− k − 1, q + k + 1) nor (p + 1, q − 1) is a

base pair. (k + 1) is the length of the stack, (p− k, q + k) is the terminal

base pair of the stack. Isolated single base pairs are considered as stacks

(length = 1) as well.

2. A loop consists of all unpaired vertices which are immediately interior to

some base pair (p, q), the “closing” pair of the loop. The number of this

vertices is called the size of the loop.

3. An external vertex is an unpaired vertex which does not belong to a loop.

A collection of adjacent external vertices is called an external element.

If it contains the vertex 1 or n it is a free end, otherwise it is called joint.

Definition 4 A stack [(p, q), ..., (p+ k, q− k)] is called terminal if p− 1 = 0 or

q + 1 = n + 1 or if the two vertices p− 1 and q + 1 are not interior to any base

pair. The sub-structure enclosed by the terminal base pair (p, q) of a terminal

stack will be called a component of S.

Definition 5 The degree of a loop is given by 1 plus the number of terminal

base pairs of stacks which are interior to the closing bond of the loop. A loop

of degree 1 is called hairpin (loop), a loop of a degree larger than 2 is called

multi-loop. A loop of degree 2 is called bulge if the closing pair of the loop and

the unique base pair immediately interior to it are adjacent; otherwise a loop

of degree 2 is termed interior loop. Two stacked base pairs form an interior
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Figure 2.1: Basic loop types

loop with size 0.

.

Representation of Secondary Structures

Up until now we used a graph-representation directly derived from the defini-

tion of secondary structures. A string representation S can be obtained by the

following rules:

(1) If vertex i is unpaired then Si =”.”
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I

H

H

H
H

M
B

B

EXTEXT

EXT

EXT

C1 C2 C3

Figure 2.2: Labeled secondary structure: All loops except stacks are labeled. H: hairpin

loops, B: bulges, I: interior loop, M: multi loop, EXT external vertices, C component

(2) If (p, q), p < q is a base pair and then Sp =”(“ and Sq = ”)“

A linked graph can be viewed as a particular way to draw secondary struc-

ture graphs by placing the sequence on a line and connecting the bases with

arcs. Especially useful to compare even large structures is the mountain-

representation ( or mountain-plot) [24, 31]. The three symbols of the string

representation ’(’,’)’ and ’.’ are assigned to three directions ’up’,’down’ and

’horizontal’ in the plot. The structural elements of a mountain-plot profile

match certain secondary structure features.

• Peaks correspond to hairpins. The symmetric slopes represent the stems

enclosing the unpaired bases in the hairpin loop, which appear as a

plateau.

• Plateaus represent unpaired bases. When interrupting sloped regions

they indicate bulges or interior loops, depending on whether they occur

alone or paired with another plateau on the other side of the mountain

at the same height respectively.

• Valleys indicate the unpaired regions between the branches of a multi
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loop or, when their height is zero, they indicate unpaired regions sepa-

rating the components of secondary structures.

The height of the mountain at sequence position k is simply the number of

base pairs that enclose position k, i.e., the number of all base pairs (i, j) for

which i < k and j > k. The mountain representation allows straightforward

comparison of secondary structures and inspired a convenient algorithm for

alignment of secondary structures.

Figure 2.3: The secondary structure of tRNAPhe in linked dia-

gram representation. The same structure in string representation:

(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....

0 20 40 60 80
Position

0

5

10

15

m
(k

)

Figure 2.4: The secondary structure of tRNAPhe in mountain plot representation
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2.2 H-Type Pseudoknot Definitions

If we violate definition 1.3 we produce two overlapping base pairs, the result

is called pseudoknot. The most simple type of pseudoknot is the so called h-

type pseudoknot or h-pseudoknot.

Representation of Secondary Structures with H-type Pseudoknots

Some useful representations of secondary structures are not applicable if we

include h-pseudoknots in the set of allowed base pair patterns. This is due

to the fact that overlapping base pairs do occur. However, we can always

represent an h-pseudoknot as a planar graph or as a linked graph.
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Figure 2.5: Two alternative representations of the same base pair pattern

The consideration of overlapping base pair interactions gives an enormous en-

largement of the structure space. The number of possible structures grows

faster than exponentially.
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We are not able to deal with the resulting complexity by computational means.

Additionally a lot of them can never be realized by an RNA sequence ( e.g.

parallel β-sheets). Thus the term “pseudoknot” gives not at all a sufficient

definition to what extend the structure space should be enlarged. Simply

calling all structures containing an overlapping base pair a pseudoknot is not

of great help. Therefore we start with the most elementary pseudoknot and

discuss the more complex types later.

Definition 1 A building block Bi,k,l,j, i ≤ k < l ≤ j is a secondary structure

on the interval [i, j] with a gap at [k + 1, l − 1]. All loops of this structure,

except (k, l), have degree 2, therefore a building block can also be viewed as a

set of base pairs fulfilling the condition:

Bi,k,l,j = {(p, q)|i ≤ p ≤ k and l ≤ q ≤ j} (2.1)

Note that, because of its gap, a building block alone is not a valid secondary

structure.

Definition 2 Two building blocks Bi,k,l,j and Bi′,k′,l′,j′ are h-type generating if

their associated intervals are disjoint:

{

[i, k] ∪ [l, j]
}

∩
{

[i′, k′] ∪ [l′, j ′]
}

= ∅ (2.2)

and arranged in an alternating way

i < i′ : [i, k].[i′, k′].[l, j].[l′, j ′] (2.3)

i′ < i : [i′, k′].[i, k].[l′, j ′].[l, j] (2.4)

Definition 3 An h-pseudoknot Pki,j′ is obtained when we merge two h-type

generating building blocks. We can distinguish an upstream Bu
i,k,l,j and a

downstream Bd
i′,k′,l′,j′ building block:

PKi,j′ = Bu
i,k,l,j ∪ Bd

i′,k′,l′,j′ (2.5)



CHAPTER 2. BASICS 24

When (k, l), (k′, l′) and (i, j), (i′, j ′) are base pairs we produce three unpaired

regions:

L1 = {n|k < n < i′} (2.6)

L3 = {n|k′ < n < l} (2.7)

L2 = {n|j < n < l′} (2.8)

All vertices L1 are immediately interior to (k, l), vertices L3 are immediately

interior to (k′, l′). All vertices L2 are immediately interior to both (k, l) and

(k′, l′). These three regions are in the literature referred as loops which does

not meet our definition of loops ( definition 3.2 ) because it is not possible

to uniquely assign the vertices L2 to just one loop.

With the definition given above we can easily extend the string notation S to

fit our requirements:

1. If vertex i is unpaired then Si =”.”

2. If (p, q), p < q is a base pair and (p, q) ∈ M ′ then Sp =”(“ and Sq =”)“

3. If (p, q), p < q is a base pair and (p, q) ∈ PKit,jt
, 1 ≤ t ≤ h and

(p, q) ∈ Bu;t
i,k,l,j : Sp = ”(“ and Sq = ”)“

(p, q) ∈ Bd;t
i′,k′,l′,j′ : Sp = ”[“ and Sq = ”]“

(((.(..[.[[[...))))..]].]]
i j’

i k l m

m’l’k’ j’

..]].]][.[[[...

(((.(.. ))))

+

B
i,k,l,m

B
k’,l’,m’,j’

Pk
i,j’

[[[[...(.(( ))) ]]..]].....
i k l j

i’ k’ l’ j’

L1 L2L3

B Bu d

Figure 2.6: Two h-type generating building blocks merged to result a h-pseudoknot. The

right picture denotes the three unpaired regions L1, L2 and L3.
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Definition 4 A set of base pairs M is called an RNA secondary structure with

h-pseudoknots if the following conditions are satisfied:

1. M = M ′ ∪ Pki1,j1 ∪ Pki2,j2... ∪ Pkit,jt
where t is a non-negative integer

and 1 ≤ i1 < j1 < i2 < j2 < ... < it < jt ≤ n.

2. Each Pkih,jh
is a h-pseudoknot

3. M ′ is a secondary structure without pseudoknots for a sequence Σ′,

where Σ′ is obtained by deleting all σih , σih+1 · · ·σjh
from Σ (i.e., Σ′ =

σ1σ2 · · ·σi1−1σj1+1 · · ·σi2−1σj2+1 · · ·σit−1σjt+1 · · ·σn ).

4. For each (i, j) ∈ Pkih,jh
, 1 ≤ h ≤ t there is no (i′, j ′) ∈ M ′ which satisfies

i′ < i < j < j ′, i.e. there is no base pair in Pkih,jh
which is interior to a

base pair in M ′.
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R1 PK1 PK2 PK3 PK4

H1

H2

Figure 2.7: tmRNA in linked graph representation - a structure that violates definition

4.4. The substructures R1, PK1, PK2, PK3, and PK4 are h-pseudoknots; the stems H1 and

H2 enclose pseudoknots, hence produce ’pseudoknot multi loops’.

Definition 5 A simple h-pseudoknot is an h-pseudoknot where Bu
i,k,l,j and

Bd
i′,k′,l′,j′ are stacks. Because of the symmetry of this building blocks we can

use a reduced notation where STi,j,S denotes a stack with the terminal base

pair (i, j) and stack size S.

PKi,j′ = ST u
i,j,S ∪ ST d

i′,j′,S (2.9)
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[[[[...((( ))) ]]]].....
i k l j

i’ k’ l’ j’

L1 L2L3

ST ST
u d

Figure 2.8: Simple h-pseudoknot

The following stereo-chemical considerations are illustrated on simple h-pseudoknots.

The upstream stack is denoted S1, the downstream S2 to be consistent with

the literature.

2.3 Stereo-chemical Considerations

One of the main reasons why secondary structures are popular among theo-

reticians is the fact that they are discrete and therefore computationally easy

to handle. If we stick to secondary structures without pseudoknots we do not

need to care about coordinates, space exclusion and things like that. We will

always get base pair patterns which give stereo-chemically feasible molecules.

The only requirement is a minimum loop size for hairpin loops which can be

met easily.

The picture changes when we consider h-pseudoknots. The two stacked (S1, S2)

regions have to be bridged somehow and therefore the stereo-chemical situa-

tion gets more complicated. In addition thermodynamic considerations require

the two stacks to be coaxially stacked. This imposes another stereo-chemical

constrain.

Theoretically the two stacks (S1, S2) can be coaxially stacked in four different

ways:
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(1) L1 bridges S2 and L2 bridges S1

(2) L3 bridges S2, L2 bridges S2 and S1

(3) L3 bridges S1, L1 bridges S2 and S1

(4) L1 bridges S1, L3 bridges S2 and S1, L2 bridges S2

Figure 2.9: The four types of coaxial stacking. In the center of the figure no coaxial

stacking is indicated. All described types of coaxial stacking are displayed.

In the first three cases the two stacking interfaces are directly connected by

the RNA backbone. Efficient coaxial stacking is only assumed if the number

of bases in the connecting region is 0 or 1. An intervening base between the to
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stacks is supposed to from a base pair mismatch. The mismatch partner can

be provided by one of the two remaining unpaired regions (figure 2.10).

Obviously the first stacking variant gives the shortest loops and therefore least

destabilizing entropy contribution to the free energy of the pseudoknot. Ad-

ditionally all other types of coaxial stacking interactions are disturbed by the

entering and/or exiting parts of the RNA-chain.

Definition 1 The type of coaxial stacking in an h-pseudoknot can be denoted

according to the location of the 5’ and 3’ end of the h-pseudoknot relative to

the stacking interface.

(1) h3′-pseudoknot - 3’ end at the stacking interface

(2) h0-pseudoknot - no end at the stacking interface

(3) h5′-pseudoknot - 5’ end at the stacking interface

(4) h5′,3′-pseudoknot - 3’ and 5’ end at the stacking interface

As pointed out above the h0-pseudoknot is the most plausible type of coaxial

stacking. This assumption is also confirmed when we take a look at exper-

imentally proven base pair patterns of h-pseudoknots [63](see appendix A).

Only 5 out of 148 h-pseudoknots show |L3| > 1.

The fact that L1 and L2 have to bridge S2 and S1 brings geometrical dimension

in the concept of secondary structures. For a given stack-length we need a

minimum loop-length to bridge the stack:

L1min(S2) minimum loop size of L1 to bridge S2

L2min(S1) minimum loop size of L2 to bridge S1
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Definition 2 Two h0-generating building blocks are stereo-compatible if the

conditions:

L1min(S2) ≤ L1 (2.10)

L2min(S1) ≤ L1 (2.11)

are fulfilled.

This requirement can either be introduced in the definition of allowed h0-

pseudoknots or we can include it in the set of thermodynamic energy param-

eters (by assigning infinite free energy to loops which are to short). We prefer

the first method because we want to give the recursions for the enumeration

and the maximum matching of secondary structures with pseudoknots (both

have nothing to do with thermodynamic energy parameters).

In definition 4.4 we excluded the pseudoknots from being internal to any

base pair. This restriction is also stereo-chemically motivated because other-

wise we would have to bridge the whole pseudoknot with a base pair containing

loop. While this case seems to be manageable, the situation get increasingly

complicated when several pseudoknots and secondary structure components

are enclosed.

It is our objective to find definitions for base pair patters that fit as close as pos-

sible to experimentally known pseudoknots. A closer look at the pseudoknot-

database [63] (appendix) tells us, that on the one hand a general h-pseudoknot

gives by far to much structural freedom and on the other hand the concept of

simple h0-pseudoknots is to narrow. Therefore we give another definition.

Definition 3 A restricted h-pseudoknot has a maximum number of bulges and

interior loops per building block. The maximum size and asymmetry of each

interior loop may also be restricted. The concept of restricted h-pseudoknots

is elaborated in more detail in chapter 3, where we give recursive definitions.
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2.4 Energy Model

The energy model is the most essential part of every energy derived structure

prediction algorithm. In other words, any result produced depends at first on

the quality of the underlying energy function. And the reliability of the energy

model depends on the quality of the empirical thermodynamic data. Unfor-

tunately empirical energy parameters of sufficient accuracy are not available

for pseudoknots. Moreover the general type of the energy model determines

the architecture of the dynamic programming recursions. In fact the energy

function has to meet some properties to allow efficient dynamic programming.

In the upcoming section we describe how an energy is assigned to an RNA

secondary structure.

2.4.1 Thermodynamic Energy Model

The results of both quantum chemical calculations and thermodynamic mea-

surements suggest that horizontal (base pairing) contributions to the total en-

ergy depend exclusively on the base pair composition, whereas vertical (base

stacking) contributions depend on base pair composition and base sequence

i.e. the upstream and downstream neighbors along the chain [54]. The nearest

neighbor model introduces the assumption that the stability of a base pair, or

any other structural element of an RNA, is dependent only on the identity of

the adjacent bases and/or base pairs. The model is justified by the major con-

tribution of short-range interactions (hydrogen bonding, base stacking) to the

overall stabilizing energy of nucleic acid structures. In addition, it is natural

to assign loop entropies to entire loops instead of individual bases. Treating

stacks as special types of loops, one assumes therefore that the energy of an

RNA secondary structure Φ is given by the sum of energy contributions ε of

it’s loops L.

E(Φ) =
∑

L∈Φ

ε(L) + ε(Lext), (2.12)

where Lext is the contribution of the “exterior” loop containing the free ends.

Note that here stacked pairs are treated as minimal loops of degree 2 and size 0.
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In the following we shall discuss the individual contributions in some detail.

In particular, the energy model contains the following contributions [61]:

Stacked pairs and G-U mismatches contribute the major part of the en-

ergy stabilizing a structure. Surprisingly, in aqueous solution parallel stacking

of base pairs is more important than hydrogen bonding of the complementary

bases. By now all 21 possible combinations of A-U G-C and G-U pairs have

been measured in several oligonucleotide sequences with an accuracy of a few

percent. The parameters involving G-U mismatches were measured more re-

cently in Douglas Turner’s group and brought the first notable violation of the

nearest-neighbor model: while all other combinations could be fitted reason-

ably well to the model, the energy of the 5′G-U3′

3′U-G5′
stacked pair seems to vary

from +1.5 kcal/mol to −1.0 kcal/mol depending on its context.

Unpaired terminal nucleotides and terminal mismatches: unpaired

bases adjacent to a helix may also lower the energy of the structure through

parallel stacking. In the case of free ends, the bases dangling on the 5′ and 3′

ends of the helix are evaluated separately, and unpaired nucleotides in multi-

loops are treated in the same way. For interior and hairpin loops, the so called

terminal mismatch energy depends on the last pair of the helix and both

neighboring unpaired bases. While stacking of an unpaired base at the 3′ end

can be as stabilizing as some stacked pairs, 5′ dangling ends usually contribute

little stability. Terminal mismatch energies are often similar to the sum of the

two corresponding dangling ends. Typically, terminal mismatch energies are

not assigned to hairpins of size three. Few measurements are available for the

stacking of unpaired nucleotides on G-U pairs, and for this reason they have

to be estimated from the data for G-C and A-U pairs.

Loop energies are destabilizing and modeled as purely entropic. Few experi-

mental data are available for loops, most of these for hairpins. The parameters

for loop energies are therefore particularly unreliable. Data in the newer com-

pilation by Jaeger et al. [25] differ widely from the values given previously [15].

Energies depend only on the size and type (hairpin, interior or bulge) of the

loop. Hairpins must have a minimal size of 3, and values for large loops
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(k > 30) are extrapolated logarithmically:

H(k) = H(30) + const. ∗ log(k/30) (2.13)

Asymmetric interior loops are furthermore penalized [42], using an empirical

formula depending on the difference |u1 − u2| of unpaired bases on each side

of the loop.

∆Fninio = min
{

∆Fmax, |u1 − u2| ∗ ∆Fninio [min{4.0, u1, u2}]
}

(2.14)

For bulge loops of size 1, a stacking energy for the stacking of the closing and

the interior pair is usually added, while larger loops are assumed to prohibit

stacking. Finally, a set of eight hairpin loops of size 4 are given a bonus energy

of 2 kcal/mol. These tetraloops have been found to be especially frequent in

rRNA structures determined from phylogenetic analysis. Melting experiments

on several tetraloops [2] show a strong sequence dependence that is not yet

well reflected in the energy parameters. No measured parameters are available

for multi-loops, their contribution (apart from dangling ends within the loop)

being approximated by logarithmic extrapolation.

∆G = Epk + const. ∗ log(u + m), (2.15)

where u is the size of the loop and m is the number of base pairs interior to

the loop, i.e. its degree−1. Energy parameters for the contributions described

above have been derived mostly from melting experiments on small oligonu-

cleotides. The first compilation of such parameters was done by Salser [55].

The parameters most widely in use today are based on work of D. Turner

and coworkers . The current work uses the compilation of [15, 23, 61], who

performed measurements at 37◦C in 1 M NaCl. More recently the differences

between symmetric and asymmetric loops have been reported to be only half

the magnitude suggested by Papanicolau et al. [42] and of higher sequence

dependence Serra et al. found a dependence of hairpin loop energies on the

closing base pair [58] and presented a model to predict the stability of hairpin

loops [57]. Walter and coworkers suggested a model system for the coaxial
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stacking of helices [64]. Wu and Walter studied the stability of tandem GA

mismatches and found them to depend upon both sequence and adjacent base

pairs [34, 65]. Ebel and coworkers measured the thermodynamic stability of

RNA duplexes containing tandem G-A mismatches [53]. Morse and Draper

presented thermodynamic parameters for RNA duplexes containing several

mismatches flanked by C-G pairs. Mismatches are reported to have a wide

range of effects on duplex stability; the nearest neighbor model is considered

not to be valid for G-A mismatches [41]. These results are, however, not yet

included into the parameter set used in this work.

H-pseudoknots: Unfortunately there are no measured thermodynamic pa-

rameters for pseudoknots available. Therefore we totally rely on approxi-

mations which are more complicated than those for non-pseudoknot loops.

Gultyaev et al [20] conceived a model for h0-pseudoknots which is based on the

general theory of polymer loop thermodynamics and stereo-chemical consid-

erations. Additionally he uses empirical support from experimentally and/or

phylogenetically proven secondary structures of h-pseudoknots.

The free energy of an h-pseudoknot structure is mainly the sum of the free en-

ergies of stacking in the stems (stabilizing negative values), the coaxial stacking

of the stems (if possible ) and the positive destabilizing loop values. The free

energy of the stems ( including small bulges and interior loops within them )

are calculated using the standard model described above. For the loops some

assumption about h0-pseudoknot topology is needed:

• The loop L1 spans the deep grove of RNA helix S2, whereas L2 crosses

stem S1 in the shallow groove. Therefore, the loops are not equivalent

stereo-chemically and their features depend on the lengths of the corre-

sponding stems [45]. This should be taken into account by introducing

two variables Adeep(S2) and Ashallow(S1) for the loops L1 and L2, re-

spectively.

• The distances between phosphate atoms connected by the loops along

the RNA grooves are minimal at S2 of 6-7 bp and at S1 of 3 bp [45].
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This is also consistent with frequencies of natural occurrence of stem

lengths [9]. Therefore, it is assumed that Adeep is minimal for S2 of 6 or

7 bp, and Ashallow is minimal for S1 = 3 bp.

• Analysis of pseudoknot geometries also suggests the minimal sizes of

loops possible for given stem lengths. In the deep groove, 7 bp can be

bridged by a loop of 1 nt only. Bridging over the shallow groove requires

at least 2 nt, and the distance to be crossed increases significantly with

the length of the stem [45]. However, a bending and/or distortion of

the RNA A-helical geometry is also possible, so the requirements for big

stems may be less rigid. The model assumes a minimally allowed size of

loops L2 (shallow grove) of 2 nt for an S1 of 3bp, 3 nt for 4 bp, 4 for an

S1 of 5 or 6 bp, and a further increase of 1 nt for each increment of 2

bp. For the deep groove, a loop of 1 nt was allowed for stems of 4-7 bp,

and loops of 2 nt for stems of 3 bp or more than 7 bp.

• Instead of just using a logarithmic increase of entropy with loop size, the

dependence on the difference between the loop length and the minimally

allowed length is introduced [46,60]. Such an approximation can partially

reflect restrictions of conformational freedom imposed by the stem end-

to-end distance.

Considering all these assumptions we get two dependences.

∆GL1 = Adeep(S2) + 1.75 RT ln(1 + L1 − Lmindeep(S2))

∆GL2 = Ashallow(S1) + 1.75 RT ln(1 + L2 − Lminshallow(S1))
(2.16)

where Lmindeep and Lminshallow define the shortest loops. The coaxial stacking is

only considered for what we defined as h0-pseudoknot. Coaxial stacking with-

out an intervening base pair gives a free energy which is about 1 kcal/mol more

stable than the corresponding stacking energy in a regular helix. In the case of

an intervening base pair the mismatch values of interior loops are used. How-

ever, it remains unclear from which loop the second mismatch partner should

come and if this base could still be used to bridge the corresponding stem.

Moreover it is not known to what extend we can disturb the building blocks
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with bulges and interior loops and still adhere to Lmindeep and Lminshallow.

Basically the approximations for the h0-pseudoknot should not overestimate

3’

5’

L2

L1

L3

3’

5’

L2

L1

L3

Figure 2.10: Mismatch types of intervening bases

its stability and therefore result in to high abundances of h0-pseudoknots in

an energy derived folding algorithm. At least we know from the rare thermo-

dynamic experiments, that an h0-pseudoknot is only marginally more stable

than each of the two alternative stem-hairpin structures.

5'

3'

5'

3'

5'

3'

Figure 2.11: Equilibrium between an H-pseudoknot and alternative hairpins



3 Dynamic Programming

3.1 The Principle of Dynamic Programming

The method of dynamic programming is used to solve a broad class of dif-

ferent computational problems from compiler optimization to economics and

molecular biology. The first application in molecular biology was an optimal

alignment algorithm. In this work we focus our attention to dynamic pro-

gramming algorithms that deal with RNA secondary structures, and how they

change when we extend the set of allowed base pair patterns. Generally all

dynamic programming algorithms have to pass three stages:

1 Initialization of the matrices

2 Matrix filling - scoring

3 Traceback/Backtracking

Depending on the scoring function in step two several problems with different

time and space complexity can be solved for a given RNA sequence. Ordered

by increasing resource demand:

• Enumeration - count the number of legal base pair patterns

Matching - find the maximum matching i.e. maximum number of base

pairs

• Free energy - find the minimum free energy according to a given energy

model

Partition function - calculate the sum of all Bolzman-weighted legal

structures

• Density of states - calculates the density of secondary structures at any

energy state

36
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According to the scoring functions the corresponding backtracking yields var-

ious results:

• Enumeration - produce a random structure

• Matching

– produce the structure with the maximum number of base pairs

– produce all suboptimal-matching structures within a given base pair

range above the maximum number

• Free energy

– produce the mfe-structure

– produce all suboptimal structures within a given energy range above

mfe

The question arises if these algorithms are still feasible when we introduce

pseudoknots to the structure space. And if they are realizable, how practicable

are they in terms of time and memory demand. First of all the answer depends

on the scale of additional base pair patterns, simplifying called pseudoknots,

we allow. It is by no means obvious what the best formalism is to describe the

set of all legal base pair pattern. A list of coupled recursions is not a very vivid

representation but would be a convenient template for a computer program. A

formal grammar which defines the set of all allowed strings, associated with a

diagram representation called Feynman diagrams, is both more descriptive and

gives reasonable access to the underlying recursions [51,52]. Graph theoretical

definitions are also useful in extending the structure space. As indicated above

the term “pseudoknot” gives not at all a sufficient definition to what extend the

structure space should be enlarged. Simply calling all structures comprising

an overlapping base pair a pseudoknot is not of great help.

For example we can we use the so called book embedding [22] to confine the

complexity of structure space. A p−book is a set of p distinct half-planes

(the pages of the book) that share a common boundary line l, called the spine
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of the book which corresponds to the backbone of an RNA molecule. An

embedding of a graph into a book B consists of an ordering of the vertices

(bases) along the spine of the book together with an assignment of each edge

to a page of the book, in which edges assigned to the same page do not cross.

The book-thickness (sometimes also called the page-number) of a graph is the

minimal number p of pages of a book into which it can be embedded. Thus

ordinary secondary structure graphs need p = 1 pages, a pseudoknot at least

p = 2 pages. An upper limit for the book-thickness consequently constricts

the pseudoknot complexity. Structures with p = 2 pages correspond to the

class of planar graphs which means that they can be drawn without crossing

vertices. Almost all known structures fall into this class (one exception: α-

mRNA). Unfortunately restricting structures to p = 2 gives nevertheless NP-

hard algorithms [1] even with a very simple scoring function. Clearly we need

stronger restrictions to get polynomial dependencies.

Ξ

Π Θ

Σ Ψ

Figure 3.1: Secondary structure of αmRNA - with book-thickness p = 3

Figure 3.2: Two representations of the tmvRNA secondary structure - with book-thickness

p = 2
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3.2 Enumerations

Enumerations are the fundament of RNA-dynamic programming. The recur-

sions to enumerate all possible structures on a given sequence are an implicit

definition of all allowed base pair patterns - they are in fact recursive defini-

tions. Thus the design of the recursions delimits the structure space. Water-

man gave the first recursion for counting secondary structures [66].

3.2.1 The Basic Recursion - Counting Without Pseudo-

knots

When we elongate an interval i, j by one base i, j + 1, this base can adopt two

states. Either it is paired or it is unpaired. If it is unpaired all structures Si,j

with an additional unpaired base have to be counted. If it is paired, it may

form a base pair with any upstream region within i, j (with the restriction of

a minimal hairpin loop-size hp). This upstream position k divides the interval

i, j + 1 in two valid sub-structures.

Si,j+1 = Si,j +
∑

i≤k≤j−hp

Si,k−1Sk+1,j Πσk ,σj+1
(3.1)

.

( )

)(
k=i

i

i

k

j

j

j

j+1

j+1

j+1

S S

S

S

i,j

i,k-1

i+1,j

k+1,j

Si,j = 1, ∀ |i − j| < hp + 2

Only one matrix is needed to hold the numbers for all possible segments.
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3.2.2 The General h-Pseudoknots

Definition 4.4 requires to forbid pseudoknots from being internal to any

base pair, thus we need two matrices more. Let PKi,j be the number of h-

pseudoknots and let Si,j denote the number of secondary structures on i, j.

Then PSi,j gives the number of secondary structures including h-pseudoknots.

pm is the minimum size of an h-pseudoknot.

PSi,j+1 = PSi,j +
∑

i≤k≤j−hp

PSi,k−1Sk+1,jΠσk,σj+1
(3.2)

+
∑

i≤k≤j−pm+1

PSi,k−1PKk,j+1

PSi,j = 1, ∀ |i − j| < hp + 2

.PS

PS

PS

Sk+1,ji,k-1

i,j

PK
k,j

( )

i

i

i

j+1

j+1

j+1

k

j

j

k

i,k-1

There are two recursions coupled with PS: the recursion for S is the same as

above, the PK recursion is given later. It is no problem to allow pseudoknots

inside a loop, actually the opposite is true because we can save one matrix.

PSi,j+1 = PSi,j +
∑

i≤k≤j−hp

PSi,k−1PSk+1,jΠσk,σj+1
+ PKi,j+1 (3.3)

In order to complete the set of recursions we give the general form for PK :

PKi,j =
∑

i<k<j

∑

k<l<j

∑

l<m<j

BRi,k,l,mBOk+1,l−1,m+1,j (3.4)
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(((.(..[.[[[...))))..]].]]
i k l m j

i k l m

m+1l-1k+1 j

..]].]][.[[[...

(((.(.. ))))

+

BR
i,k,l,m

BO
k+1,l-1,m+1,j

Pk
i,j

BOi,k,l,m is the number of possible building blocks on the intervals [i, k] and

[l, m] with the restriction that (i, m) forms a base pair. For BRi,k,l,m we need

the additional constrain that l is also part of a base pair.

The use of BOi,k,l,m and BRi,k,l,m is a method to avoid multiple counting of

the same structure. The auxiliary variable Bi,k,l,j is the number of building

blocks on the intervals [i, k] and [l, m].

Bi,k,l,j = Bi,k,l,j−1 +

k
∑

x=i

Bx+1,k,l,j−1Πσx,σj
(3.5)

B
i,k,l,j-1

.
i k l j

x+1,k,l,j-1
B

)(..
i k lx j

+

BOi,k,l,j = Bi+1,k,l,j−1Πσi,σj
(3.6)

i+1,k,l,j-1
B

)(
i k l j

BRi,k,l,j =

k
∑

x=i+1

BOi,x−1,l+1,jΠσx,σl
(3.7)

..
i k l jx

)

BO
i,x-1,l+1,j

(



CHAPTER 3. DYNAMIC PROGRAMMING 42

Clearly the coupled PK recursions determine the resource demand to calculate

PS.

3.2.3 The Simple h-Pseudoknots

A simple h-pseudoknot consists of two overlapping stacks which are coaxially

stacked. The fact that we only consider stacks enables us to reduce the number

of indices. We give only the recursions for h0-pseudoknots. STi,j,S denotes a

stack with the terminal base pair (i, j) and stack size S.

STi,j,S =

{

1 : stack compatible with the sequence

0 : stack not compatible with the sequence

STi,j+1,S = STi+1,j,S−1Πσi,σj+1

PKi,j =
hmax
∑

h=hmin







S1max
∑

S1=S1min
ST=1

STi,h,S1







S2max
∑

S2=S2min
ST=1

STh−S1−S2+1,j,S2
+ (3.8)

S2max′
∑

S2=S2min
ST=1

STh−S1−S2,j,S2













+

((((((( )))))))

]]]][[[[

((((((( ))))))) ]]]][[[[ ......

((((((( )))))))

]]]][[[[

((((((( ))))))) ]]]]......[[[[ .

+

ST
i,h,S1

hi

ST
h-S1-S2+1,j,S2

j

h hii j j

ST
h-S1-S2,j,S2

h

STi,h,S1

i

j

There are two loops for S2 because one intervening base is allowed. Each loop

for the stack-sizes can be broken if ST = 0. The start and stop conditions for

the loops enable us to include the stereo-chemical situation into the recursions.
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If we neglect all geometrical constrains for the loops and choose minimum stack

lengths (S1 min, S2 min) only:

hmin = 2 S1 min + S2 min (3.9)

hmax = j − S2 min (3.10)

S1 max =
(h − i + 1) − S2 min

2
(3.11)

S2 max can be limited either by the upstream or the downstream part of the

stack.

S2 max = min

{

S2 max up = (h − i + 1) − 2 S1

S2 max down = j − h
(3.12)

S2 max = min

{

S2 max up = (h − i) − 2 S1

S2 max down = j − h
(3.13)

As pointed out previously, stacks and loops are not independent. We need two

introduce L1 min(S2) and L2 min(S1):

hmin = 2 S1 min + S2 min + L1 min(S2 min) (3.14)

hmax = j − (S2 min + L2 min(S1 min)) (3.15)

S1 max =
h − i + 1 − S2 min − L1 min(S2 min)

2
(3.16)

S2 max = min

{

S2 max up = max {S2|L1 min(S2) + S2 ≤ h − i + 1 − 2 S1}

S2 max down = j − h − L2 min(S1)

(3.17)

S2 max′ = min

{

S2 max′ up = max {S2|L1 min(S2) + S2 ≤ h − i − 2 S1}

S2 max′ down = j − h − L2 min(S1)

(3.18)
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3.2.4 The Restricted h-Pseudoknot

The introduction of interior loops and bulges into the stacks brings the concept

of the restricted h-pseudoknot into the game. It is an intermediate between

the general h-pseudoknot and the simple h-pseudoknot. For the beginning we

impose strong restrictions: only one symmetric interior loop with size 2 or one

bulge with size one per building block is allowed. Thus we need three matrices

for the building blocks:

Bi,j,S : |j − q| − |p − i| = 0 no bulges S = j − q + 1

B5
i,j,S : |j − q| − |p − i| = −1 bulge at 5’ interval [i, p], S = p − i + 1

B3
i,j,S : |j − q| − |p − i| = 1 bulge at 3’ interval [q, j], S = j − q + 1

The numbers for the building blocks are also calculated recursively.

Bi,j,S = Bi+1,j−1,S−1 ∗ Πσi,σj
+ STi+2,j−2,S−2 ∗ Πσi,σj

(3.19)

+((((( ))))) )))).( (((.

B5
i,j,S = B5

i+1,j−1,S−1 ∗ Πσi,σj
+ STi+2,j−1,S−2 ∗ Πσi,σj

(3.20)

+(((.( )))) ( ((( )))).

B3
i,j,S = B3

i+1,j−1,S−1 ∗ Πσi,σj
+ STi+1,j−2,S−2 ∗ Πσi,σj

(3.21)

+( )).))((( (((( )))).

In order to get the number of pseudoknots we again have to count all allowed

combinations of building blocks. For the sake of clarity we combine the three

variables B, B5, B3 together by introducing another index A which denotes the

difference in length between the upstream and downstream part of a building
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block.

Bi,j,S,A =















A = −1 : B3
i,j,S

A = 0 : Bi,j,S

A = +1 : B5
i,j,S

(3.22)

PKi,j =
hmax
∑

h=hmin

S1max
∑

S1min

∑

−1≤A1≤1

Bi,h,S1,A1

[

S2max
∑

S2min

∑

−1≤A2≤1

Bh−S1−S2+1,j,S2,A2
(3.23)

+

S2max
∑

S2min

∑

−1≤A2≤1

Bh−S1−S2,j,S2,A2

]

For the innermost sum −1 ≤ A ≤ 1 we give the following example:

[[[[...((( [[[[...((())) ]]]]... ))) ]]]]...

[[.[((( ... [[.[((( ...))).... ]]] ))).... ]]]

[[[((( .... [[[((( ....]].])))... ]].])))...

.

.

.

All other sums are calculated in the same way. Like in the case of simple

h0-pseudoknots, the stereo-chemical constrains are considered in the start and

stop conditions of the sums. However, because building blocks are more vari-

able it gets more confusing to write down all cases.

When we do not impose any kind of coaxial stacking we get the following

recursion:

PKi,j =

hmax
∑

h=hmin

S1max
∑

S1min

∑

−1≤A1≤1

Bi,h,S1,A1

[

mmax
∑

m=0

S2max
∑

S2min

∑

−1≤A2≤1

Bh−S1−S2+1−m,j,S2,A2

]

(3.24)

where mmax determines the size of L3 and again is limited by stereo-chemistry.

Further relaxations of the restrictions are made by changing the recursions for

the building blocks to introduce more or larger loop, which will be discussed

later (mfe-folding).



CHAPTER 3. DYNAMIC PROGRAMMING 46

Compared to the general h − pseudoknot the restricted version seems to be

needlessly complicated. A lot more sums and indices have to be considered.

But the striking difference is that we have at any stage of the recursion the

information about the size of the loops L1,L2,L3 and the corresponding build-

ing blocks. This information is crucial to decide whether a given base pair

pattern is stereo-chemically feasible and helps to avoid dispensable areas of

the structure space.
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3.3 The Maximum Matching

Since the enumerations are equivalent with an implicit definition of the struc-

ture space they do not need a complicated scoring function. The contribution

of a potential structure to the total sum is either 1 or 0. To decide if a po-

tential new structure is compatible with a sequence needs just one lookup in

the Π matrix. A very similar algorithm solves the maximum matching prob-

lem. Maximum matching is concerned with finding the structure providing the

maximum number of base pairs and is therefore an optimization problem. The

dynamic programming solution works on the basis of the following recursion:

PSi,j+1 = max







PSi,j

max
i≤k≤j−hm

[

PSi,k−1 + 1 + PSk+1,j

]

Πσk,σj+1
(3.25)

which fills the PS matrix. The element PS1,n holds the maximum number of

base pairs the sequence allows. The maximum base pair number of all possible

subsequences are stored in the corresponding elements PSi,j.

3.3.1 Maximum Matching with h-Pseudoknots

Like in the case of the enumerations we introduce two new variables, PPKi,j

the max. number of pseudoknot base pairs on (i, j) and PPSi,j the max.

number of base pairs including pseudoknots.

PPSi,j+1 = max



















PPSi,j

max
i≤k≤j−hm

[

PPSi,k−1 + 1 + PSk+1,j

]

Πσk ,σj+1

max
i≤k≤j−pm

[

PPSi,k−1 + PPKk,j+1

]

(3.26)

There are two recursions coupled with PPS: PS is given above and PPK

corresponds to the h0-pseudoknot. Again there is no problem to allow pseu-
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doknots inside a loop:

PPSi,j+1 = max















PPSi,j

max
i≤k≤j−hm

[

PPSi,k−1 + 1 + PPSk+1,j

]

Πσk,σj+1

PPKi,j+1

(3.27)

Obviously there is a simple way to convert the recursions for enumerations (

equation 3.1 ) to recursions for maximum matching: from multiplication to

addition, and from n-additions to finding the maximum of n-alternatives.

Enumeration Max.-Match

SaSb PSa + PSb + 1
∑

n

S max
n

PS

Proceeding to the pseudoknot recursions is now straight forward, thus we only

give the details for the general and the simple h0-pseudoknot.

The General h-Pseudoknot

PBi,k,l,j = max







PBi,k,l,j−1

max
i≤x≤k

[

PBx+1,k,l,j−1 + 1
]

Πσx,σj

(3.28)

PBOi,k,l,j =
[

PBi+1,k,l,j−1 + 1
]

Πσi,σj
(3.29)

PBRi,k,l,j = max
i+1≤x≤k

[

PBOi,x−1,l+1,j + 1
]

Πσx,σl
(3.30)

PPKi,j = max
i<k<j

{

max
k<l<j

{

max
l<m<j

[

PBRi,k,l,m + PBOk+1,l−1,m+1,j

]

}}

(3.31)

The Simple h-Pseudoknot

PSTi,j+1,S =
[

PSTi+1,j,S−1 + 1
]

Πσi,σj+1
(3.32)
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PPKi,j = max
h











max
S1











PSTi,h,S1
+ max











max
S2

PSTh−S1−S2+1,j,S2

max
S′

2

PSTh−S1−S′
2,j,S′

2































(3.33)

Of course we apply the same start and stop conditions for finding the maximum

as we did to calculate the corresponding sum.

3.3.2 Backtracking

While the first two steps of dynamic programming fill all the matrices, the last

step is concerned with constructing a structure (or many structures, in case

of suboptimal folding). This task is accomplished by searching systematically

through the stored matrices proceeding from larger to smaller fragments. We

give a fairly detailed description of the backtracking procedure because it is

the fundament for the suboptimal folding algorithm.

Secondary Structure Backtracking

Basically we ask which two smaller segments are sticked together to get one

larger segment, thus we do not look for the maximum m of n alternatives, but

for the first exact match m of n alternatives.

PSi,j+1 ==







PSi,j

loop
k

[

PSi,k−1 + 1 + PSk+1,j

]

Πσk ,σj+1
(3.34)

Consequently for each match we get two smaller segments which enter the

same process until the breaking condition is reached. The breaking condition

is determined by the minimal size of a hairpin loop. Pi,j+1 == Pi,j is just

a special case where we already know that one of the subsegments already

reached the breaking condition. The recursion indicates a last in, first out

or depth first strategy. In other words the two shorter segments are pushed

on a stack, then the last pushed segment is popped from the stack and again
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divided into two smaller segments which are pushed again on the stack. The

procedure continues until no segment is left to pop from the stack. Whenever

two segments are produced the corresponding characters ’(’,’)’ or ’.’ are written

to the structure string. Again there is a structural similarity between the

expressions used for the max. matching and the backtracking.

Backtracking Max.-Match

PS == loop
n

PSn PS = max
n

PSn

The pseudoknot conditions are straight forward, thus only the general and the

simple h-pseudoknots are outlined.

H-Pseudoknot Backtracking

PPSi,j+1 ==























PPSi,j

loop
i≤k≤j−hm

[

PPSi,k−1 + 1 + PSk+1,j

]

Πσk ,σj+1

loop
i≤k≤j−pm

[

PPSi,k−1 + PPKk,j+1

]

(3.35)

The General h-Pseudoknot

PPKi,j == loop
i<k<j

{

loop
k<l<j

{

loop
l<m<j

[

PBRi,k,l,m + PBOk+1,l−1,m+1,j

]

}}

(3.36)

PBi,k,l,j ==







PBi,k,l,j−1

loop
i≤x≤k

[

PBx+1,k,l,j−1 + 1
]

Πσx,σj

(3.37)

PBOi,k,l,j ==
[

PBi+1,k,l,j−1 + 1
]

Πσi,σj
(3.38)

PBRi,k,l,j == loop
i+1≤x≤k

[

PBOi,x−1,l+1,j + 1
]

Πσx,σl
(3.39)
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The Simple h-Pseudoknot

PPKi,j == loop
h











loop
S1











PSTi,h,S1
+











loop
S2

PSTh−S1−S2+1,j,S2

loop
S′

2

PSTh−S1−S′
2,j,S′

2































(3.40)
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3.4 RNA Secondary Structure Folding

Dynamic programming is not the only computational method to predict the

secondary structure of a given sequence. There are several ways to deduce an

RNA structure from a given sequence. In principle we can divide them into to

broad classes: Folding by phylogenetic comparison and energy directed folding.

3.4.1 Phylogenetic Structure Analysis

Given a large enough number of sequences with identical secondary structure,

that structure can be deduced by examining covariances of nucleotides in these

sequences. This is the principle used for structure prediction through phyloge-

netic comparison of homologous (common ancestry) sequences. Basically these

methods just look for compensatory mutations such as an A change to C in

position i of the aligned sequences simultaneously with a change from U to G

in position j, indicating a base pair (i, j). So the sequence alignment is the

most complicated theoretical part (if the sequences in the set are to dissimilar).

The basic assumption is that structure is more conserved during evolution than

sequence, since it is the structure that determines function. The only experi-

mental information needed is a large enough number of sequences. Fortunately

nucleic acid sequences are nowadays one of the best accessible molecular bio-

logical informations. In fact the success of the method in the prediction of, for

instance, the secondary structures of the 16S ribosomal RNAs,RNAseP RNA

or the clover-leaf structure of tRNAs provides an excellent justification for this

method.

The advantages: Since no assumptions about pairing rules are necessary,

non-canonical pairs and tertiary interactions can be detected as well.

The disadvantages: A sufficiently large set of sequences which exhibit the

proper amount of variation has to be provided. So the sequences should be

dissimilar enough to show many covariations while still yielding a good align-

ment. If there are strongly conserved regions (i.e. the function is sequences de-

pendent) or parts of the structure are highly variable (because non-functional)
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our assumption holds not true. As a consequence, phylogenetically determined

structures usually are incomplete, that means, they do not show all base pairs

of the actual structures.

Nevertheless phylogenetic comparison can generate the most reliable struc-

ture models to date and are therefore frequently used for comparison of other

folding algorithms.

3.4.2 Energy Directed Folding

Most methods for prediction of RNA secondary structure work on the basis

of energy model presented in chapter 1. They can be further divided into

methods that try to find the structure of minimal free energy (or equilibrium

ensemble) and “kinetic” algorithms.

Minimal free energy (mfe) Zucker et al. published the first dynamic pro-

gramming mfe-algorithm with an energy model which is still used without

principle changes. It is the object of this work to extend this algorithm by in-

troducing pseudoknots. Mfe-folding can be extended to calculate suboptimal

structures within a given energy band above the minimum free energy. This

method provides us with a lot of useful information about the RNA folding

landscape.

Kinetic folding algorithms try to mimic the folding process in order to de-

rive the biologically active structure. They can simulate the process of RNA

5’-3’ synthesis, pseudoknots and other tertiary interactions can be included. It

is by no means clear that the biological relevant structure of RNA is the struc-

ture of minimal energy, instead the structure might be trapped in some local

minimum during the folding process. Therefore kinetic folding algorithms are

not the fist choice to find the mfe-structure. We manly use them to simulate

the time dependence of folding and refolding and to study the characteristics

of folding paths. In contrast to mfe- algorithms, kinetic-algorithms are more

flexible regarding the energy function and structural diversity.
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3.5 Minimum Free Energy Folding with H-

Pseudoknots

Proceeding from the maximum matching algorithm to the mfe-folding algo-

rithm means a significant increase in complexity regarding the scoring i.e.

energy function. As a consequence we need more different matrices and a few

approximations.

Let Ci,j be the minimum energy possible on the substructure Ii,j provided that

i and j pair and Ii,j is not part of or contains a pseudoknot. Since the energy

of some substructure Si,j with i and j paired is given by the energy of the loop

closed by (i, j) plus the energy of any loops directly interior to it,

Ci,j = min{E(L) +
∑

Cp,q} (3.41)

and Ci,i = ∞.

Three subsets are contributing to this set of structures, depending on the

number of base pairs immediately interior to (i, j). The minimum energies of

these three subsets are (recursively) obtained from smaller fragments:

Ci,j = min















































H(i, j)

( )...................

min{Cp,q + I(i, j, p, q)}

)(.... ......

min{F M
i+1,k−1 + F M

k,j−1 + MC}

( )

(3.42)

H(i, j) denotes the free energy of a hairpin loop closed by (i, j). The second

subset is the minimum energy of all structures, where (i, j) closes a loop of

degree 2 (stacks, bulges and interior loops); their minimum energy equals the

sum of the minimum energy of the smaller fragment, Cp,q and the energy of the

closing loop, I(i, j, p, q). In the third element multi loop structures enclosed

by (i, j) are obtained by constructing the multi loop from two parts, F M
i+1,k−1

and F M
k,j−1, plus the multi loop closing energy MC . If we consider dangling
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ends for multi loops we have to consider four cases. d
5,(3)
i,j,j−1,(i+1) denotes the

energy contribution of the 5’(3’) dangling end indicating the (i, k)-pair and the

i − 1(j + 1) unpaired end.

C i,j
Multi

= min



































































F M
i+1,k−1 + F M

k,j−1 + MC

( )

F M
i+2,k−1 + F M

k,j−1 + d3
i,j,i+1 + MC

( )<

F M
i+1,k−1 + F M

k,j−2 + d5
i,j,j−1 + MC

( )>

F M
i+2,k−1 + F M

k,j−2 + d5
i,j,j−1 + d3

i,j,i+1 + MC

( )< >

(3.43)

The F M
i,j are calculated recursively with the initial condition F M

i,i = ∞.

F M
i,j = min































































































































Ci,j + MI

Ci+1,j + d5
i+1,j,i + MI

>

Ci,j−1 + d3
i,j−1,j + MI

<

Ci+1,j−1 + d5
i+1,j−1,i + d3

i+1,j−1,j + MI

<>

F M
i+1,j + MB

.

F M
i,j−1 + MB

.

min(F M
i,k−1 + F M

k,j)

(3.44)

If we do not require (i, j) to be paired and again include the dangles we get

the minimum fee energy on (i, j) analog to the multi loop case but without
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assigning energies to non-dangling bases and base pairs (MB = MI = 0).

Fi,j = min











































































































































































Ci,j

Ci+1,j + d5
i+1,j,i

>

Ci,j−1 + d3
i,j−1,j

<

Ci+1,j−1 + d5
i+1,j−1,i + d3

i+1,j−1,j

<>

PKi,j

PKi+1,j + pkd5
i+1,i

>

PKi,j−1 + pkd3
j−1,j

<

PKi+1,j−1 + pkd5
i+1,i + pkd3

j−1,j

<>

min
i<k≤j

(Fi,k−1 + Fk,j)

(3.45)

Let PKi,j be the minimum energy possible on the substructure Ii,j provided

that this substructure is a restricted h-pseudoknot. The best PKi,j is obtained

by producing all possible combinations of best building blocks.

PKi,j = min{Bu + Bd + EL1 + EL2 + ECoax} (3.46)

Bu denotes the best upstream and Bd the best downstream building block.

The superscripts u and d do not denote two different matrices but two different

sets of indices. Of course Bu and Bd have to be h-type generating and stereo-

compatible. A building block Bi,p,q,j can be viewed as a substructure with a

gap, where (i, j) and (p, q) are base pairs. The degree of each loop (except

(p, q)) comprising this substructure is 2. Since we impose strong restrictions
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on the building blocks we use the same notation as for the enumerations.

The Simple h0-Pseudoknot

Of course all recursions are very similar to the enumerations. The best build-

ing blocks are calculated recursively. Let STi,j,S be the energy of a stack with

the closing pair (i, j) and stack-size S.

STi,j,S = STi+1,j−1,S−1 + I(i, i + 1, j − 1, j) (3.47)

where STi,i,S = ∞ and STi,j,1 = ∞ which means that we only consider pseu-

doknots with minimal stack-size 2. Equation 3.46 simplifies to

PKi,j′ = min{ST u
i,j,Su + ST d

i′,j′,Sd + EL1(L1, Sd) + EL2(L2, Su) + ECoax}

(3.48)

where the destabilizing contributions of the loops (L1, L2) depend on the loop-

size and the stack-size to bridge.

+

((((((( ))))))) ST

]]]][[[[ST

((((((( ))))))) ]]]][[[[ ......

((((((( ))))))) ST

]]]][[[[ST

((((((( ))))))) ]]]]......[[[[ .

u u

dd

+

)E (L1,S 
L1

d
)E (L1,S 

L1

dE (S  
L2

u
,L2) E (S  

L2

u
,L2)

In case of an intervening base we have to check from which loop the mismatch

partner should come to yield the best possible coaxial stacking energy. Un-

fortunately the energy model does not give us any hint how to deal with this

situation. There might be some stereo-chemical preference for one loop to do-

nate the mismatch partner, or the excess of bases (over the minimal number of

bases in a loop to bridge the stem) determines the stacking behavior. However,
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in our implementation we compare the two alternatives and take the one with

the lower free energy.

The Strongly Restricted h0-Pseudoknot

In the strongly restricted h0-pseudoknot model we allow one interior loop or

bulge per building block. The bulge may be formed by one unpaired base,

the interior loop has to be symmetric and contains two unpaired bases. This

definition implies that three kinds of building blocks can be produced:

Bi,j,S = min























Bi+1,j−1,S−1 + I(i, i + 1, j − 1, j)

((((( )))))

STi+2,j−2,S−2 + I(i, i + 2, j − 2, j)

)))).( (((.

(3.49)

B5
i,j,S = min























B5
i+1,j−1,S−1 + I(i, i + 1, j − 1, j)

(((.( ))))

STi+2,j−1,S−2 + I(i, i + 2, j − 1, j)

( ((( )))).

(3.50)

B3
i,j,S = min























B3
i+1,j−1,S−1 + I(i, i + 1, j − 1, j)

( )).))(((

STi+1,j−2,S−2 + I(i, i + 1, j − 2, j)

(((( )))).

(3.51)

Relaxed Restrictions for h0-Pseudoknots

There is no principle problem to relax the strong restriction imposed on the

building blocks. We just have to consider that more variable building blocks

imply increasing memory and time demand. It is also questionable if the

energy model for h0-pseudoknots is still applicable if we allow the stacks to be

disturbed by larger and more interior loops and bulges. Nevertheless we give

examples in which way our system of recursions has to be extended.

In the first two examples we use the same range of building block-asymmetry as

before (the difference between the length of the upstream and the downstream
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part of a building block is −1 ≤ A ≤ 1), which means no increase in memory

demand.

In the first example we do not impose a limit on the number of bulges and

interior loops per building block but stick to the previous maximum sizes:

Bi,j,S = min























Bi+1,j−1,S−1 + I(i, i + 1, j − 1, j)

Bi+2,j−2,S−2 + I(i, i + 2, j − 2, j)

B3
i+2,j−1,S−2 + I(i, i + 2, j − 1, j)

B5
i+1,j−2,S−2 + I(i, i + 1, j − 2, j)

(3.52)

B5
i,j,S = min

{

B5
i+1,j−1,S−1 + I(i, i + 1, j − 1, j)

Bi+2,j−1,S−2 + I(i, i + 2, j − 1, j)
(3.53)

B3
i,j,S = min

{

B3
i+1,j−1,S−1 + I(i, i + 1, j − 1, j)

Bi+1,j−2,S−2 + I(i, i + 1, j − 2, j)
(3.54)

As we can see there is no significant increase in time dependence. In the second

example we introduce larger interior loops and bulges.

Bi,j,S1 = min















min{Bp,q,S2 + I(i, j, p, q)}, |p − i| = |j − q|

min{B5
p,q,S2 + I(i, j, p, q)}, |p − i + 1| = |j − q|

min{B3
p,q,S2 + I(i, j, p, q)}, |p − i − 1| = |j − q|

(3.55)

B5
i,j,S1 = min















min{Bp,q,S2 + I(i, j, p, q)}, |p − i − 1| = |j − q|

min{B5
p,q,S2 + I(i, j, p, q)}, |p − i| = |j − q|

min{B3
p,q,S2 + I(i, j, p, q)}, |p − i − 2| = |j − q|

(3.56)

B3
i,j,S1 = min















min{Bp,q,S2 + I(i, j, p, q)}, |p − i| = |j − q − 1|

min{B5
p,q,S2 + I(i, j, p, q)}, |p − i| = |j − q − 2|

min{B3
p,q,S2 + I(i, j, p, q)}, |p − i| = |j − q|

(3.57)

where |j − q − 1| + |p − i − 1| ≤ Imax, which is the same maximum interior

loop size as used for ordinary secondary structures. Because of the restricted
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building block asymmetry the interior loops also have to meet certain condi-

tions beside a maximum size which are specified for each case. The time scale

is still not altered dramatically as long as we require a maximum interior loop

size.

The next step in relaxing the conditions of our h0-pseudoknot is to allow a

larger asymmetry between the upstream and the downstream part of a build-

ing block. It is convenient so use the same notation as we used for the enu-

merations:

Bi,j,S,A =















A = −1 : B3
i,j,S

A = 0 : Bi,j,S

A = +1 : B5
i,j,S

(3.58)

In the previous example we had three entries for each Bi,j,S and for each Bi,j,S,A

three types of combinations of building blocks and interior loops. When we

only focus on the asymmetries we can write a reduced form:

0 = min















min { 0 0}

min {+1 −1}

min {−1 +1}

+1 = min















min { 0 +1}

min {+1 0}

min {−1 +2}

(3.59)

−1 = min















min { 0 −1}

min {+1 −2}

min {−1 0}

When the asymmetry range is changed to −2 ≤ A ≤ +2 the following combi-

nations have to be checked:
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0 = min



































min {−2 +2}

min {−1 +1}

min { 0 0}

min {+1 −1}

min {+2 −2}

+ 1 = min



































min {−2 +3}

min {−1 +2}

min { 0 +1}

min {+1 0}

min {−2 −1}

−1 = min



































min {+2 −3}

min {+1 −2}

min { 0 −1}

min {−1 0}

min {+2 +1}

+ 2 = min



































min {−2 +4}

min {−1 +3}

min { 0 +2}

min {+1 +1}

min {+2 0}

(3.60)

− 2 = min



































min {+2 −4}

min {+1 −3}

min { 0 −2}

min {−1 −1}

min {−2 0}

Clearly this approach can be extended to larger ranges of asymmetry in an

analogous way. At the end, when we do not impose any restrictions to the gaps

of the building block, each interval (i, j) needs O(n2) memory (the number of

possible gaps) and O(n2) time. Recursion 3.46 for the best h0-pseudoknot on

the segment [i, j] generalizes to:

PKi,j = min
h,Su,Au











Bu
υ + min











min
Sd,Ad

Bd
δ + ELoops + ECoax

min
S′

d
,A′

d

Bd′

δ′ + ELoops + ECoax





















(3.61)

υ = i, h, Su, Au

δ = h − Su − Sd + 1, j, Sd, Ad

δ′ = h − Su − S ′
d, j, S

′
d, A

′
d
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Time and Space complexity

In the case of simple secondary structures two tricks facilitate a time depen-

dence of O(len3) and a memory requirement of O(len2):

The Maximum Size for Interior Loops

With the help of a maximum size for interior loops, Imax, it takes a constant

number of checks to find the best interior loop for a given closing base pair

Ci,j. Without an Imax it would take O(n2) steps for each Ci,j,(n = j− i). This

approach is applicable because it is unlikely that very large interior loops are

more stable than any alternative secondary structure on a given subsequence

(if the temperature is not to high). Obviously with the same argument we

could introduce a maximum size for hairpin loops. The time saving effect

would be very small because for each (i, j) we need only one lookup (O(0)). It

has to be mentioned that it is also possible to avoid a cutoff in loop-size and

still retain a O(n3) time dependence for the sequence ( [33], [67]). However,

the method requires O(n3) memory and a special type of energy function for

the interior loops.

The Linear Ansatz for Multi Loops

If we consider multi loops with a maximum degree k it takes time proportional

to n2k for every Ci,j and k itself grows linear with n. This would definitely give

a prohibitive time dependence. In contrast, the linear ansatz enables us to get

the best multi loop closed by (i, j) in O(n) steps, by trying all possibilities to

build the multi loop from two smaller subsequences. Of course the consequence

is some loss in accuracy and an additional memory demand for the auxiliary

matrix F M .

The h-Pseudoknots

It is plausible that an enlarged structure space implies higher memory and

time requirements. In our approach we impose reasonable restrictions on the

building blocks and the way we combine them. The considerations which led



CHAPTER 3. DYNAMIC PROGRAMMING 63

to the restrictions where guided by the energy model and the stereo-chemical

characteristic of h-pseudoknots.

For a given building block Bi,k,l,j = Bi,j,S,A we actually restrict the size and

position of the gap [k + 1, l− 1]. Without this method we would need O(len4)

memory space for all possible building blocks. One the other hand, as long

as we use a maximum value for S and a maximum range for A, the memory

requirement scales with O(len2), which is the same as for ordinary secondary

structures except a constant factor which depends on the actual numbers for

Smax and A.

The number and size of internal loops and bulges within a building block is

neither a problem as long a maximum size for internal loops is used. The only

restriction comes from the fact, that in the recursions larger building blocks

are constructed from smaller ones and therefore the size and asymmetry of the

interior loops is limited by Smax and the range of A as well.

(.((....(

))) )...

)))...)

((.((...

( ((((..... )))) ).....

i jk llm n

i jk m n l

i jk lm n

Figure 3.3: Implicit restrictions for interior loops beside Imax.

A base pair is wrapped around an interior loop and a building block Bk,m,n,l to produce a

larger building block Bi,m,n,j . Smax = 9, −1 ≤ A ≤ 1;

A: legal combination, B: the asymmetry of the new building block is to big; C: the new

building block is to big

In the next step we level the maximum size for the loops produced when we

merge two building blocks. Again we use the same argument as for interior

loops. The last restriction comes from the fact that only one type of coaxial

stacking is considered which reduces the number of possible building block

combinations.
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All considerations given above enable the algorithm to

• produce all variations of pseudoknots which can be evaluated with the

energy model

• avoid a huge number of pseudoknots for which we do not even have an

approximate energy model

• do the calculation with the same order of space and time dependence,

except a constant factor.
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3.5.1 Backtracking

The backtracking for mfe-folding can be directly derived from the matrix filling

recursions in the same way pointed out for the maximum matching case. The

flow chart in figure 3.5.1 gives a compact overview how the algorithm traces

back without dangles (dangles would require additional case discriminations

just spoiling clearness).

When we start with any given interval [i, j] ( for example [1, len] ) and do not

consider dangles Fi,j is the result out of three alternatives:

• (i, j) is a base pair:

Fi,j = Ci,j (3.62)

therefore we write a base pair in the structure string: Si =′ (′, Sj =′)′.

(i, j) can be the closing pair of a hairpin, an internal loop (stack and

bulge included) or a multi loop.

If it closes a hairpin no further backtracking is necessary. In the case of

an internal loop the condition

Ci,j = Cp,q + I(i, j, p, q) (3.63)

with i < p < q < j finds (p, q) which is another base pair and therefore

treated like (i, j). At a last possibility (i, j) closes a multi-loop, therefore

we have to find a k, i < k < j accomplishing

Ci,j = F M
i+1,k−1 + F M

k,j−1 (3.64)

This condition yields to segments [i+1, k] and [k+1, j−1] which need to

be traced back in the F M array. Without dangles we have to distinguish

4 cases for each segment:

F M
i,j =























Ci,j + MI

F M
i,j−1 + MB

F M
i+1,j + MB

F M
i,k−1 + F M

k,j

(3.65)
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in the first case we can write a base pair in the structure string and pro-

ceed the backtracking in the C array. In the second and third case we

found an unpaired base at i (j) which is written in the structure string.

In the fourth case a k has to be found fulfilling the given condition. All

of the three last cases need further backtracking in the F M array.

• (i, j) is not a base pair:

first we check if there is a pseudoknot:

Fi,j = PKi,j (3.66)

now we need to find the two appropriate building blocks that comprise

the pseudoknot. Once we have them, we know in which building block

arrays further backtracking has to be performed to elucidate their ’in-

ner’ structure ( interior loop, bulges ). Let’s take for example a strongly

restricted h0-pseudoknot which is a combination of two building blocks

accomplishing:

PKi,j = Bu + Bd + EL1 + EL2 + ECoax (3.67)

The backtracking in Bu and Bd is done in the familiar way, by asking

which smaller building block plus interior loop gives the larger one. Then

we proceed with the smaller building block in the same way until there

is nothing left to trace back.

• If (i, j) is not a base pair and Fi,j is not a pseudoknot, we have to look

for a k to accomplish.

Fi,j = Fi,k−1 + Fk,j (3.68)

Again we obtain two segments [i, k − 1] and [k, j], which both enter

the backtracking process in the F array described at the top of this

explanation.
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It has to be mentioned that this kind of backtracking is not the most effective

one and cannot be used for the generation of suboptimals. Nevertheless we

think that a descriptive explanation facilitates the general understanding of

backtracking.

S =’.’i

S =’.’j

|j-i-1| < hm

else

Find (p,q) that
C  = I(i,j,p,q)i,j

found
Cp,q

 no(p,q) 
found

F  = F   + M
i,j i+1,j B

MM

F  = F   + M
i,j i,j-1 B

MM

F  = C  + M
i,j i,j I
M

else

S  =’.’ x |j-i+1|
i..j

S    =’.’ x |j-i-1|
i+1..j-1

C  = H(i,j)i,j C  = H(i,j)i,j

S =’(’i S =’)’j Find k that

F  = F  +F    
i,j i,k k,j

Find k that

C  = F   +F    +M
i,j i+1,k k+1,j-1

M M

C

Find k that

F  = F   +F    
i,j i+1,k k+1,j-1

M MM

PK  = B +B +E(L1)+E(L2)+E
i,j

u d

coax

Find B and B that
u d

F  = C
i,j i,j

F  = PKi,j i,j
else

F  = ?
i,j

S    =’.’int-loop

B is smallest
building block

else

S   =
block

’(’..’)’
or

’[’..’]’

Find B and B that

B = B +B +E 

o

o i

i

int-loop

Figure 3.4: Backtracking the mfe-structure without considering dangles. Bu, Bd: up-

stream, downstream building block; Bo, Bi: outside, inside part of a building block;
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3.6 Beyond h-pseudoknots

As outlined in previous sections, our notion of thermodynamic parameters for

pseudoknots is mainly supported by theoretical considerations and experimen-

tally proven secondary structures, leading to an approximation for the most

simple kind of pseudoknot (the h-type). As a consequence we focused on the

development of an algorithm that explores only the structure space which can

be evaluated with this approximate energy model.

Indeed the most abundant entries in the database for pseudoknot secondary

structures belong to the category of h-pseudoknots. Nevertheless we want to

give an outline how to extend the algorithm to include less abundant types of

pseudoknots.

3.6.1 The i-Pseudoknot

Analogous to the h-pseudoknot, this category might me called i-pseudoknot

(or b-pseudoknot), because in this case the overlapping base pairs are formed

by nucleotides form an interior loop (or bulge) and an exterior region. On the

other hand we can view it as an h-type pseudoknot where each of the three

unpaired regions (L1, L2, L3) is allowed to form a one-component secondary

structure. Actually the last description does more reflect the way our algo-

rithm is extended.

Obviously the design of the algorithm strongly depends on the not yet de-

veloped energy model. With the h-type energy model in our mind, we want

to anticipate some characteristics of i-pseudoknots, leading to two different

algorithm-versions. However, we want to stress the fact that it is not the pur-

pose of this work to develop an extended energy model.

Definition 1 An i-pseudoknot is an h-pseudoknot where each unpaired region

L1, L2 and L3 is allowed to form a one-component secondary structure.
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Like in the case of h-pseudoknots, we assume, that coaxial stacking is required

to produce a stable i-pseudoknot. Additionally we postulate a stabilizing three-

way junction. Consequently, if we start with an h-pseudoknot, five different

positions of the additional component are possible:

• in L1 at the 5’-end - produces a 3w junction

in L1 at the 3’-end - produces three coaxially stacked stems

• in L2 we produce a 3w junction

• in L1 at the 5’-end - produces three coaxially stacked stems

in L1 at the 3’-end - produces a 3w junction

In all cases L1 and L2 still have to bridge the corresponding stems, hence

it seems plausible to use the same approximations for their free energies as

before. For a given combination of two building blocks Bu
i,k,l,j and Bd

i′,k′,l′,j′ the

five potential positions are checked in the following way:

E1 = min



















min
k<m<i′−hm

{EL1(L1, S2) + Cm,i′−1 , L1 = m − k − 1

min
k+hm<m<i′

{EL1(L1, S2) + Ck+1,m , L1 = i′ − m − 1

EL1(L1, S2), L1 = i′ − k − 1

(3.69)

E2 = min



















min
j<m<l′−hm

{EL2(L2, S1) + Cm,l′−1 , L2 = m − j − 1

min
j+hm<m<l′

{EL2(L2, S1) + Cj+1,m , L2 = l′ − m − 1

EL2(L2, S1), L2 = l′ − j − 1

(3.70)

E3 = Ck′+1,l−1 (3.71)

and E1, E2 and E3 correspond to the previous unpaired regions L1, L2 and L2.
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Figure 3.5: Five possibilities to place a component in one of the h-pseudoknot loops -

resulting an i-pseudoknot.
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Figure 3.6: Representation of the i-pseudoknot generating recursions
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Equation 3.46 generalizes to:

PKi,j = min{Bu + Bd + E1 + E2 + E3 + ESI} (3.72)

ESI is the free energy contribution from the stem interaction, either from two

coaxial stackings or from a 3w junction. Of course we can store previously

calculated values for E1 (E2) but we have to consider that for every E 1
i,j (E2

i,j) a

third parameter for the bridged stack-size is needed. As we apply restrictions

for the pseudoknots (hence for the third parameter) the time demand to fill

the new arrays, scales with O(len), while the memory scales with O(len2).

In the next approach we discuss the implementation of a linear ansatz and the

additional structural freedom the algorithm consequently gains.

3.6.2 Linear Ansatz for Pseudoknot Loops

The introduction of a linear ansatz facilitates the handling of pseudoknot in a

similar way it does with the multi loops in simple secondary structures. Nev-

ertheless we have to take into account that we sacrifice the control over the

stereo-chemical constraints.

We replace the formerly unpaired regions L1, L2 and L3 by an arbitrary sec-

ondary structure. The best energy for L1 is obtain by finding the best combi-

nation of two segments:

E1
i,j = min























F L1
i,k−1 + F L1

k,j + L1C

F L1
i+1,k−1 + F L1

k,j + pkd3
i,i+1 + L1C

F L1
i,k−1 + F L1

k,j−1 + pkd5
j,j−1 + L1C

F L1
i+1,k−1 + F L1

k,j−1 + pkd5
j,j−1 + pkd3

i,i+1 + L1C

(3.73)

F L1
i,j = min























































Ci,j + L1I

Ci+1,j + d5
i+1,j,i + L1I

Ci,j−1 + d3
i,j−1,j + L1I

Ci+1,j−1 + d5
i+1,j−1,i + d3

i+1,j−1,j + L1I

F M
i+1,j + L1B

F M
i,j−1 + L1B

min(F M
i,k−1 + F M

k,j)

(3.74)
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The constants L1C ,L1I and L1B have the same meaning as in the multi loop

recursions. L2 and L3 can be treated alike, but with different constants.

Coaxial stacking is accomplished when we replace the functions EL1 and EL2

in equation 3.69, 3.70 with the entries from the new recursions. The linear

ansatz is an elegant method to calculate the energy of the best structure, but

we do not know which distance this structure is able to bridge. Therefore the

information about the stack-sizes S1 and S2 becomes useless. Subsequently

building blocks can be constructed in a more flexible way, utilizing the linear

ansatz. No further structural restrictions are necessary, building blocks are

allowed to contain multi-loops and even other pseudoknots. The required re-

cursions are outlined in detail in [51].
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3.7 Suboptimal Folding

Suboptimal structures are often of biological interest and in a more general

way, we need the suboptimals to understand the folding landscape of a given

sequence. The first methods to calculate suboptimals where the so called com-

binatorial algorithms. Their main advantage is, that they are not restricted to

a nearest neighbor energy model and are able to deal with tertiary interactions

like pseudoknots. However, combinatorial algorithms easily get combinatorial

problems when sequences become longer. A problem that can only be attenu-

ated with more or less rough approximations which consequently lead us even

farther away from a complete solution.

Fortunately the dynamic programming approach gives us access not only to the

most stable structure. When we exploit the backtracking process, we are able

to calculate all suboptimal structures within a given energy band. The first

complete suboptimal folding algorithm was introduced by Wuchty et al. [72].

In contrast to previous dynamic programming approaches (Zucker et al.), this

algorithm is able to find the complete set of structures within an energy band,

not only a subset. In this section we give a detailed description how the algo-

rithm works and how it is extended to find h0-pseudoknots.

3.7.1 Waterman’s Algorithm

Waterman and Byers suggested a dynamic programming algorithm to find all

solutions in the neighborhood of an optimum . The purpose of the “shortest

path problem” is to locate the shortest path from node 1 to node N in an

acyclic network of N nodes and A arcs (e.g. RNA secondary structure in

linked diagram representation). Each arc (i, j) has an associated weight t(i, j).

Nodes i are labeled with f(i), the length of the shortest path from node i to

node N . Provided Bellman’s insight of optimality “sub paths of optimal paths
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are themselves optimal” the recursion

f(i) = min{t(i, j) + f(j) : (i, j) an arc} (3.75)

follows. The idea is, that to reach i from N , the last step is from some node

j. The node j must be reached in an optimal manner, if j is an optimal path

from N to i. Note, that f(N) = 0 is required to start the recursion. So far

nothing else than the procedure of dynamic programming and backtracking was

described. The new algorithm requires an interval ε above the optimal length

f(1) from the user. All paths less than or equal to the quantity f(1)+ε should

then be found by the algorithm. The node labels f(j) are found by working

backwards from node N until node 1 is labeled. The new algorithm then

performs a depth-first search with stacking, starting at node 1 and continuing

until all near-optimal paths are found. Consider a node x not equal to the

destination. Some path P with cumulative distance d led to node x from node

1. The test for entry of the arc (x, y) and distance d onto the stack now takes

the general form for all (x, y) ∈ A

d + t(x, y) + f(y) ≤ f(1) + e, (3.76)

where d is the cumulative distance to node x from node 1 by path P (not

necessarily the shortest path!), t(x, y) is the distance from node x to node y,

and f(y) is the optimal remaining distance to node N from node y. The algo-

rithm constructs a path P of length d from node 1 to node N . Then P and d

are output and the stack is examined to see, if other near-optimal paths exist.

Hence the algorithm performs a last in, first out or depth first search.

3.7.2 Suboptimal Maximum Matching

In order to show the general design of the subopt-algorithm we first apply Wa-

terman’s concept to the maximum matching problem. Maximum matching

is well suited to sever as a model to exemplify the data-structure and search

strategy, thus to keep it simple we left out the pseudoknots.
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The suboptimal maximum matching backtracking finds all structures whose

number of base pairs lies within PS1,n and PS1,n−δ. Starting with the segment

[1, n] the combination of segments PSi,k−1 and PSk+1,n−1, which fulfill this con-

dition is found. The found combination of intervals [1, k− 1] and [k + 1, n− 1]

is written to an interval stack. Also the found base pair (l, n) is written to a

separate base pair stack. Both stacks are contents of a so called state which

is written to the state stack. In the next round of the algorithm the last state

is taken from the state stack and the last interval, in general [i, j], from the

interval stack within that state (again last-in, first-out). Again within the

interval [i, j] those combinations of PSi,k−1 and PSk+1,n−1 are traced, whose

number of base pairs lies within PS1,n and PS1,n − δ. However, this time also

the already found base pair and the best possible number of base pairs of the

intervals remaining on the stack denoted by PSp,q must be taken into account,

so that the condition reads as

Nbp + [PSi,l−1 + 1 + PSl+1,j−1] +
∑

p,q

PSp,q ≤ PS1,n − δ (3.77)

in analogy to

d + t(x, y) + f(y) ≤ f(1) + ε (3.78)

Nbp denotes the number of all already found base pairs and p, q the several yet

unconsidered intervals remaining on the interval stack. The state containing

the interval stack the interval [i, j] was taken from is copied and the new

found base pair and intervals are written to the related stack within the state.

The state is pushed back to the state stack. That happens to every new found

combination of segmentations, which accomplish the condition outlined above.

If no base pair, which accomplish the condition, can be found, the remaining

state is pushed back to the state stack. The iteration goes on by taking out

the first state of the state stack and following the first interval of the interval

stack. If the interval stack is empty, a solution i.e. a structure, is found, and

the state is skipped. The iteration continues until no state remains on the

stack.
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3.7.3 Suboptimal mfe-Folding

Modifications for the mfe-Matrix Filling

For the sake of an efficient implementation we introduce useful modifications

to the matrix filling part of the algorithm, affecting the energy model for the

dangles as well as the multi loop handling. In the mfe algorithm only unpaired

bases are allowed to dangle and in case of two alternative dangle positions the

one yielding the lower free energy contribution is chosen. In the subopt-dangle

model every potential dangling base in a multi loop or exterior region con-

tributes to the free energy, regardless if it is paired or not. Therefore we can

simplify the recursions for the F array to something like:

Fi,j = min



































Ci,j + d5
i,j,i−1 + d3

i,j,j+1

PKi,j + pkd5
i,i−1 + pkd3

j,j+1

Fi,j−1

min
i<k≤j

(Fi,k−1 + Ck,j + d5
k,j,k−1 + d3

k,j,j+1)

min
i<k≤j

(Fi,k−1 + PKk,j + pkd5
k,k−1 + pkd3

j,j+1)

(3.79)

For the extended backtracking process it is necessary to introduce another

auxiliary array F M1 for the multi loop decompositions. In the case of mfe-

multi loop backtracking we tried to find the decomposition that yielded the

best energy. A closer look at the recursions for the F M array reveals that there

might be a lot of possible decompositions giving the same energy and the same

structure. This is not a problem, because in mfe-backtracking we take the first

of the best decompositions. The subopt-backtracking has to avoid identical

multi loop decompositions by introducing an additional array F M1:

F M1
i,j = min{Ci,l + MB(j − l) + d5

i,l,i−1 + d3
i,l,l+1 + MI} (3.80)

F M1
i,j denotes the minimum free energy of a multi loop segment containing

only one stem situated at the upstream end of [i, j] plus an arbitrary number

of bases on the downstream side. Consequently we construct a multi loop with

two different multi loop arrays:

C i,j
Multi

= min{F M
i+1,k−1 + F M1

k,j−1 + d5
i,j,j−1 + d3

i,j,i+1 + MC} (3.81)
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The recursion for F M simplifies to:

F M
i,j = min

{

min{F M
i,k−1 + F M1

k,j }

min{F M1
k,j + MB(k − i)}

(3.82)

The first element gives a multi loop segment with at least two stems, the sec-

ond one yields a segment with only one stem at an arbitrary position.

Extended Backtracking

Waterman’s concept can be applied to thermodynamic RNA folding in order

to find all suboptimal structures within a given energy range above the mfe-

energy. To that end, we modify condition 3.77 to something like

Ef + Ei,j +
∑

k,l

Emin
k,l ≤ Emin

1,n + δ (3.83)

where Ef is the summed energy of all already found substructures. Ei,j denotes

the energy of the considered segment [i, j] and
∑

Emin
k,l is the best possible

energy of all remaining not investigated segments. Emin
1,n is the optimal energy,

whereas δ is the given energy range.The algorithm uses the same data structure

like in the maximum matching backtracking case. All found base pairs and

segments are written to separate base pair and interval stacks, which belong

to a particular state. The states are written to a state stack.

Starting with a given segment [i, j] we find all possible ways to produce a Fi,j

fulfilling the condition:

Ef + Fi,j +
∑

k,l

Emin
k,l ≤ F min

1,n + δ (3.84)

according to equation 3.79:

Ef + Fi,j−1 +
∑

k,l

Emin
k,l ≤ F min

1,n + δ (3.85)

gives a new interval [i, j − 1],

Ef + Fi,k−1 + Ck,j + d5
k,j,k−1 + d3

k,j,j+1 +
∑

k,l

Emin
k,l ≤ F min

1,n + δ (3.86)
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gives a base pair (k, j) and two new segments [i, k − 1] and [k, j] for each k.

The pseudoknots have to meet a similar condition:

Ef + Fi,k−1 + PKk,j + pkd5
k,k−1 + pkd3

j,j+1 +
∑

k,l

Emin
k,l ≤ F min

1,n + δ (3.87)

yielding also two segments [i, k − 1] and [k, j] for each k. A segment [i, j] that

is formed by a base pair needs further backtracking according to equation

3.42. First we check which stacks, bulges and interior loops fulfill

Ef + Cp,q + I(i, j, p, q) +
∑

k,l

Emin
k,l ≤ F min

1,n + δ, (3.88)

then we look if a hairpin loop meets the condition

Ef + H(i, j) +
∑

k,l

Emin
k,l ≤ F min

1,n + δ, (3.89)

and at last we find out which unique multi loop decompositions accomplish

Ef + F M
i+1,k−1 + F M1

k,j−1 + d5
i,j,j−1 + d3

i,j,i+1 + MC + (3.90)
∑

k,l

Emin
k,l ≤ F min

1,n + δ

The backtracking in the F M and F M1 on arbitrary interval [i, j] starts with

the conditions

Ef + F M
i,j−1 + MB +

∑

k,l

Emin
k,l ≤ F min

1,n + δ (3.91)

and

Ef + F M1
i,j−1 + MB +

∑

k,l

Emin
k,l ≤ F min

1,n + δ (3.92)

If these conditions are fulfilled, no base pair is found and the 3′ end is nibbled

creating the segment [i, j − 1]. The condition

Ef + Ci,j + d5
i,j,i−1 + d3

i,j,j+1 + MI +
∑

k,l

Emin
k,l ≤ F min

1,n + δ (3.93)
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gives the first base pair (i, j) of an internal branch of a multi loop, the segment

[i, j] proceeds backtracking at equation 3.88. Using the F M array multi loop

decompositions can be performed accomplishing the conditions

Ef + F M
i,k + Ck+1,j + d5

k+1,j,k + d3
k+1,j,j+1 + MI +

∑

k,l

Emin
k,l (3.94)

≤ F min
1,n + δ (3.95)

if the segment [i, j] contains more than one stack. This condition finds a base

pair (k +1, j) and generates the segments [i, k] (enters at equation 3.84) and

[k + 1, j] (enters at equation 3.88). If the considered segment contains only

one stack, the condition turns to

Ef + Ck+1,j + d5
k+1,j,k + d3

k+1,j,j+1 + MI + (3.96)

MB(k − i + 1)
∑

k,l

Emin
k,l ≤ F min

1,n + δ

finding the base pair (k+1, j) and the segment [k+1, j]. Both conditions hold

for i < k < l.

The pseudoknot segment encountered in equation 3.87 requires backtracking

in the building block arrays.

Ef + Fi,k−1 + Bu + Bd + EL1 + EL2 + Coax + (3.97)

pkd5
k,k−1 + pkd3

j,j+1 +
∑

k,l

Emin
k,l ≤ F min

1,n + δ

resulting in a set of building block pairs. Subsequently we produce suboptimal

building blocks still fulfilling equation 3.97. Depending on the building block

model in use, we use to that end equations 3.49-3.51, equations 3.52-3.54

or equations 3.55-3.57.



4 Kinetic Folding Algorithm

It has been already mentioned in chapter 3, that beside the dynamic program-

ming algorithms, the kinetic folding approach is an essential tool to investigate

the nature of RNA folding. During the cause of a folding process, an RNA

molecule may get trapped in a misfolded state or there may be two meta-stable

states. There is no dynamic programming algorithm that gives direct access

to this information.

Most kinetic folding algorithms start from some initial structure (e.g. the

open chain) and progress, by incorporation of whole helixes, through a series

of nearly optimal structures to the most probable one at the end of the fold-

ing process. The various methods differ mainly in how the next structure is

selected. However, they apply more or less strong heuristic assumptions about

the transition rates and are therefore not suitable to reconstruct folding path-

ways.

In this work, we follow a much more elementary approach introduced by

Christoph Flamm et al. [12, 13]. To get a better understanding why this ap-

proach is the most elementary possible, with actually no heuristic involved, we

need to give some explanations.

4.1 Conformation Space, Move Set and En-

ergy Landscape

The conformation or structure space C comprises all secondary structures that

are compatible with a given sequence. A move set is a set of rules, which

defines how to convert one structure into another, i.e. how to move within

the conformation space C. To be more precise, the move set is an order

80
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relation on C, defining adjacency between the elements of C. It fixes the

possible conformational changes that can take place in a single step during

the simulation of folding and thus defines the topology of the conformational

space. The following properties are important for move sets:

1 Each move has an inverse counterpart. At thermodynamic equilibrium

the quotient of forward and backward reaction rates must give the mi-

croscopic equilibrium constant.

2 The outcome of an operation always leads to an element of the underlying

state space.

3 The move set has to be ergodic. In other words starting from an arbitrary

point of the state space every other point must be reachable by a sequence

of legal operations.

4 Every move set defines a metric an the underlying state space.

The most elementary move set on the RNA secondary structure space, which

fulfills all properties, consists of closing and opening of a single base pair (i, j).

It is convenient to represent the structure space and its topology as a graph.

Each vertex corresponds to a secondary structure, and the edges connect struc-

tures which are inter-convertible with one move. Thus secondary structures

connected with an edge are called neighbors.

A value landscape is obtained by taking the graph as support of a function

that assigns a value to every conformation. If this value is the free energy of

the corresponding structure, the landscape is called energy landscape or folding

landscape.

The Shift Move

Experimental data on a mechanism called defect-diffusion suggest a minor

extension to the elementary move set. For instance the base of a bulge loop

present i a helix, will be subject to a rapid base pair formation and dissociation
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Figure 4.1: One move neighborhood of a vertex in the conformation space (l.h.s) and

its embedding in the graph representing the conformation space (r.h.s.) for a short RNA

molecule which can exhibit 3 base pairs.

process. According to experiments, this kind of chain sliding mechanism occurs

very fast. In the framework of the elementary move set, the defect-diffusion is

in most cases not a favorable process. To facilitate chain sliding, we extend the

elementary move set by a further move called shift-move. The shift converts

an existing base pair (i, j) into a new base pair (i, k) or (l, j) in one step.

Figure 4.2: Defect diffusion: The bulge can easily migrate along the helix. Shift moves

are indicated by arrows.

The Canonic Move Set

The canonic move set avoids per definition moves that produce a structure
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with an isolated base pair. A base pair is isolated if it is not part of a stack,

or in other words, an isolated base pair is a stack with stack-size 1. Thus the

canonic move set works on a much smaller structure space, namely the space of

all structures with minimal stack-size 2. Consequently the number of neighbors

of a given structure is reduced significantly. The algorithm gains efficiency not

only because of this combinatorial effect. Additionally, the canonic move set

takes advantage of energy-model properties, because stem nucleation moves are

now energetically more favorable. Moreover assumptions about the transition

rates of nucleation moves can be made easily.

4.2 The Algorithm and its Implementation

The simulation is based on a continuous time Monte Carlo method proposed by

Daniel Gillespie [18]. The rate constant which characterize the transition from

one structure Si to a neighboring structure Sj is calculated by a symmetric rule

introduced by Kyori Kawasaki [30]. It is symmetric because it takes gradients

for both uphill and downhill steps into account (in contrast to the Metropolis

rule [38]).

kij := e−
∆G
2kT (4.1)

Note that the free energy difference ∆G between the two states i and j must

be divided by 2kT to get the detailed balance right. The Kawasaki dynamics

approaches the Boltzmann distribution at equilibrium because it satisfies mi-

croscopic reversibility.

The method provides an internal clock to measure time. The time spent in

a certain state is inversely proportional to the total flux Φ leading away from

this state. If Φ is small, as for example at the bottom of a deep local minimum,

the internal clock is advanced by a big time increment. For each step, the rate

constants from the current state to all its neighbors are computed. Then, the

time is advanced by an appropriate time increment adjusted to the sum of the

rate constants. Finally, the current state is replaced by a state chosen from
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the set of neighbors. The algorithm works in the following way:

0. Initialization.

(a) Set the time variable t = 0 and the “stopping time” tstop.

(b) Specify the start structure and initialize the current structure Scur

with the start structure.

(c) Specify and store the stop structure Sstop.

1. Generate the set of legal neighbor structures {Sn} from Scur.

2. Calculate all the reaction channel weights R
(α)
curr and the total flux Φcur =

∑

α R
(α)
cur. Afterwards normalize the R

(α)
cur’s.

3. Draw two random numbers r1, r2 ∈ [0, 1] from a uniform number gener-

ator.

4. Cumulatively adding the successive values R
(1)
cur, R

(2)
cur, ... until their sum

is observed to equal or exceed r1. Choose the structure with the index

of the last term added to the sum as the new Scur.

5. Calculate the time increment tinc = 1
Φcur

· ln
(

1
r2

)

and advance the clock

t = t + tinc.

6. If t > tstop or if Scur equals Sstop, terminate the calculation; otherwise,

return to Step 1.

By following the above procedure from time 0 to time t, only one possible

realization of the stochastic process is obtained. In order to get a statistically

complete picture of the temporal evolution of the folding of a RNA molecule,

several independent realizations or “runs” have to be carried out. Each run

must start with the same initial conditions and should proceed to the same

time t.
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4.3 How to Generate the Neighbors

The second requirement for the move set, that every move has to yield an

element of the state space, is always fulfilled if we open a base pair. If we

close a base pair, it depends on the current state if the move is legal. In the

case of secondary structures without pseudoknots, every move which yields

two overlapping base pairs is illegal. Consequently closing a base pair is only

allowed within a loop or on the external regions (which can be viewed as an

open loop). This implies a data structure derived from the rooted ordered

tree representation of secondary structures. All loops are linked together in

a tree-like fashion. In figure 4.3 this links are indicated with dashed lines,

bases which belong to the same loop are connected with solid lines, unpaired

bases are drawn in red. Additionally a virtual root (blue), which is the closing

base pair of the external region is introduced. It is obvious to which loop an

unpaired base belongs. In the case of a base pair we assign the 5’ base to

the loop which engulfs the base pair, whereas the 3’ base is assigned to the

loop closed by the base pair. Producing all neighbors is now straight forward,

we just have to visit every loop and produce all possible base pairs with the

unpaired bases that belong to the loop. Then the loops closing base pairs are

opened to complete the set of neighbors.
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duced by a elementary move.
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If L is the set of all unpaired bases of a loop, then

Nc(L) = {(i, j)|i, j ∈ L, i + hm < j, Πσi,σj
= 1} (4.2)

is the set of all possible closing neighbors within L.

4.3.1 The Pseudoknot Neighbors

However, a tree representation of a secondary structure with h-pseudoknots is

not possible. Instead we have to implement a more complex data structure.

In order to explain the extended algorithm, it is convenient to distinguish two

stages:

1. The “first contact” - produces the first base pair between the hairpin

loop and the external region

2. Generate the neighbors of an already existing h-pseudoknot

Let Eu (Ed) be the set of all upstream (downstream) unpaired bases, which are

adjacent to a multi-loop free component and let LH be the set of all unpaired

bases of the components hairpin loop. Then

Nc(PK) = {(i, j)|PKR(i, j) = 1, Πσi,σj
= 1,

{

i ∈ Eu, j ∈ LH

i ∈ LH , j ∈ Ed

}

} (4.3)

is the set of all “first-contact” base-pairs. PKR is a function which indicates

if a base pair is in accordance with a given h-pseudoknot restriction. Thus the

loop closed by the virtual root produces not only neighbors among its unpaired

bases, but checks also multi-loop free components for potential pseudoknot

base pairs. To that end, all components which are consistent with the h-

pseudoknot restrictions are specially labeled. If such a labeled base pair is

encountered the algorithm finds the corresponding hairpin-list and generates

the first contacts.
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When the first contact is established, for example with Ed, then both sets are

split into two sets,

LH → L1, L2 (4.4)

Ed → L2, E ′
d (4.5)

resulting the following conditions for closing neighbors:

Nc(PK) = {(i, j)|PKR(i, j) = 1, Πσi,σj
= 1,























i ∈ L1, j ∈ E ′
d

i ∈ L3, j ∈ L2

i ∈ L1, j ∈ L3

i ∈ Eu, j ∈ L2























} (4.6)

An upstream first contact splits LH and Ed sets into

LH → L3, L2 (4.7)

Ed → E ′
u, L1 (4.8)

Ed

Ed

Eu

Eu

L1

LH

L3

L2 EdEu L1

L3

L2

Figure 4.4: The “first contact” splits LH and Eu (Ed) into two intervals
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yielding the conditions

Nc(PK) = {(i, j)|PKR(i, j) = 1, Πσi,σj
= 1,























i ∈ E ′
u, j ∈ L2

i ∈ L1, j ∈ L3

i ∈ L3, j ∈ L2

i ∈ L1, j ∈ Ed























} (4.9)
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Figure 4.5: Extended data-structure for h-pseudoknots.

All other base pairs that involve L1, L2 or L3 are not allowed, as well as base

pairs between E ′
u and Ed or Eu and E ′

d. In contrast to simple secondary struc-

tures, base pairs are produced between to unpaired regions and not within

a loop. The data structure which provides the appropriate pairs of unpaired

regions is not very different from the previously discussed. For a better under-

standing we draw the pseudoknot in liked diagram representation.
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First we traverse the data-structure on page 1 (upper half-plain) and find that

the hairpin-loop and Ed are connected by base pairs. Subsequently the algo-

rithm finds the corresponding pairs of segments (L1, L2), (Eu, l2) and produces

all allowed base pairs. Consequently page 2 (lower half-plain) is handled in

the same way finding base pairs between segments (L1, E ′
d) and (L3, L2).



5 Computational Results

In this chapter we apply the whole set of previously discussed algorithms

to give some examples how the RNA-energy landscape is influenced by h0-

pseudoknots. To that end, we utilize the suboptimal and the neighbor-generating

algorithm and make them part of the barrier tree-algorithm. The barrier tree is

a strongly reduced but very practical representation of the energy landscape.

It is obtained by flooding the energy landscape with suboptimal structures,

beginning with the mfe-structure (see figure 5.1). Whenever the lowest sad-

dle point between two valleys is reached, the two vertices representing the

two local minima are connected with the saddle point vertex. The two edges

are weighted according to the energy difference between the corresponding

vertices. Thus the barrier tree provides information about the energetically

lowest barrier between two connected minima.

5.1 RNA Conformational Switches

RNA conformational switching it thought to be fundamental to a number of

biological processes, including translational regulation [3, 11, 49], protein syn-

thesis [71], and mRNA splicing [35]. Typically the two competing secondary

structures show mutually exclusive base pair patterns but nearly equal free

energy. Thus the energy barrier between the to structures is very high and

consequently the transition rates are very low. A transition process that may

take hours to accomplish is not well suited as a biological regulatory switch.

Indeed, experiments suggest the existence of an alternative folding path that is

faster and does not involve high energetic intermediates [32]. With the help of

a short model-RNA sequence, we can show that h0-pseudoknots may facilitate

the transition between the conformers.

91
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Figure 5.2: Barrier tree without h-pseudoknots

Step Structure Energy / kcal/mol Type

1 (((((....)))))........ -7.30 L 2

2 .((((....))))......... -3.70 S

3 .((((....))))((.....)) -4.30 I

4 .((((....))))(((...))) -4.50 L 5

5 ..(((....))).(((...))) -3.90 I

6 ..((......)).(((...))) -2.50 I

7 .............(((...))) -0.80 I

8 ((......))...(((...))) -0.60 S

9 (((....)))...(((...))) -2.00 L 11

10 (((....)))...((.....)) -1.80 I

11 (((....)))............ -1.20 S

12 (((....)))((....)).... -2.50 L 10

13 ((......))((....)).... -1.10 S

14 ..........((....)).... -1.30 I

15 .........(((....)))... -3.20 I

16 .......(((((....))))). -6.20 I

17 ......((((((....)))))) -8.00 L 1

Table 5.1: Folding path

from the metastable structure

2 into the mfe-structure 1.

The “Type” column indicates

if a structure is a local mini-

mum L, an intermediate I or

a saddle point S.
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Figure 5.2 shows the barrier tree without pseudoknots. A big barrier of 6.5

kcal/mol separates structure 1 and 2. Table 5.1 depicts the circumstantial

folding path from the metastable structure 2 to the mfe-structure 1. The melt-

ing of the stem in 1 is facilitated by a stabilizing stem which is nucleated in step

3. At step 7 the original stem is melted and in step 8 a second intermediate

stem is introduced to melt the previous auxiliary stem which is incompatible

with the target structure. At step 12 the target stem is nucleated and subse-

quently the auxiliary stem is melted while the mfe-structure forms. The peak

of the whole path is reached at step 8, 7.4 kcal above the target structure.

Intermediates from step 6 to 11 do not share a single base pair with the start-

or target structure.

The situation changes totally when we consider h0-pseudoknots.
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Figure 5.3: Barrier tree with h-pseudoknots

Step Structure Energy / kcal/mol Type

1 (((((....)))))........ - 7.30 L 2

2 ((((......))))........ -5.90 I

3 ((((...[[.)))).....]]. -3.44 S

4 ((((...[[[))))....]]]. -3.84 I

5 ((((..[[[[))))....]]]] -6.32 L 4

6 (((...[[[[.)))....]]]] -3.54 S

7 (((...[[[[[)))...]]]]] -7.08 L 3

8 ((....[[[[[.))...]]]]] -5.61 I

9 ......(((((......))))) -4.20 S

10 ......((((((....)))))) -8.00 L 1

Table 5.2: Folding path from the metastable structure 2 into the mfe-structure 1. The

“Type” column indicates if a structure is a local minimum L, an intermediate I or a saddle

point S.
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The folding path in table 5.2 has its peak at step 3 only 3.86 kcal above

structure 2. It occurs when the pseudoknot, and at the same time the target

stem is nucleated. After the nucleation the upstream stem is melted while the

downstream stem is formed. All intermediate structures share base pairs with

the start and/or the target structure. The more rugged profile is due to the

pseudoknot energy model.

For a direct comparison of both barrier trees we omit the local minima 12, 13, 15,-

16, 17 and 18 because they remain unchanged.
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Figure 5.4: Comparison of both barrier trees. The red dashed line indicates where the

pseudoknots introduce a shortcut.
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The profiles of both folding paths provide a qualitative picture, however there

are other alternative paths which also contribute to the overall transition rates.

Thus it is useful to simulate the transition from structure 1 to structure 2 and

vice versa, utilizing the kinetic folding algorithm. First passage times of 6000

trajectories were measured for the four different cases. The resulting curves

confirm the assumptions inferred from the barrier tree.
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6 Conclusion and Outlook

The knowledge about the spatial conformation of functional RNA molecules

is a crucial prerequisite to understand how they work.

In order to get a model that is theoretically and by computation easier to

manage, the RNA secondary structure, an interesting class of contact struc-

tures, is introduced. Secondary structures provide a coarse graining of the

3D structure, by regarding base pair pattern only. Conventional secondary

structures exclude overlapping base pair interactions by definition, and con-

sequently reduce radically the number of possible base pair patterns. This

strong restriction permits efficient algorithms to study RNA folding, but they

totally ignore an important structural motif called RNA pseudoknots.

RNA pseudoknots mediate several biological functions, like translational and

replicational control, others are necessary to form the reaction center in ri-

bozymes. Therefore it is desirable to consider pseudoknots in theoretical mod-

els and prediction algorithms. The extension of the conventional secondary

structure concept raises problems for the computational handling, caused by

an enormous increase of possible base pair patterns and the fact that stereo-

chemical constraints come into effect. To circumvent this problems, we focus

on a strongly restricted type of pseudoknot - the hairpin-pseudoknot. More-

over the restrictions are motivated by the fact, that h-pseudoknot are by far

the most abundant of all known pseudoknots, and that at least an approximate

energy model exists. In particular dynamic programming algorithms become

feasible in terms of time and memory demand due to the restrictions.

Dynamic programming was for a long time considered as incompatible with

dynamic programming until Rivas and Eddy [51] published an algorithm ca-

pable to handle a multitude of different pseudoknot types. However, their

method is rather prohibitive for longer sequences ( O(n6) time and O(n4) mem-
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ory) and neglects stereo-chemistry completely. The introduction of restricted

h-pseudoknots reduces requirements to O(mn3) time and O(mn2) memory

where m is a constant, depending on the structural freedom we approve to the

h-pseudoknot. Consequently several valuable methods become realizable, like

complete suboptimal folding. The complete suboptimal folding algorithm pro-

duces all secondary structures within a given energy interval above the most

stable structure.

Pseudoknots are assumed to adopt an important role in several kinetically de-

termined phenomena, like conformational switches. Thus an already existing

method, introduced by Christoph Flamm et.al. [12,13] was adjusted. With the

help of this rejection free Monte Carlo-type algorithm, folding trajectories can

be calculated. A crucial component for this stochastic simulation is the choice

of the move set for inter-converting secondary structures. The move set lays

down the topology of the folding landscape by defining which secondary struc-

tures are neighbors of each other. It encodes the set of structural changes that

RNAs can undergo at moderate activation energies. The algorithm uses the

most elementary move set on the level of secondary structures, the closing and

opening of a single base pair. A neighbor generating algorithm is consequently

an integral part of this method. In fact it is the only extension necessary to

include pseudoknots. For an efficient implementation a more flexible data-

structure than for simple secondary structures was devised.

Moreover, the neighbor generating algorithm is utilized for the so called barri-

ers algorithm, which provides information about the local minima of an energy

landscape and how they are connected. To that end also suboptimal structures,

produced by the previously mentioned complete suboptimal folding method,

are needed.

The combination of all pseudoknot-adapted algorithms gives a comprehensive

tool to study how pseudoknots change the folding landscape of RNA sequences.

We could show, that pseudoknots can play an important role as intermediates

in the folding path of conformational switches. They are able to lower the

energy barrier between the two alternative conformations and accelerate tran-

sition rates significantly.
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Restrictions also make sense for more complex pseudoknots, in fact they be-

come even more important than in the case of h-pseudoknots. The missing

energy model and the unsolved evaluation of stereo-chemical constraints are

severe problems for the handling of complex pseudoknots. Dynamic program-

ming algorithms can only be implemented efficiently on the basis of a simple

energy model or strong restrictions. However until sufficient experimental re-

sults are available, it remains unclear if pseudoknot thermodynamics follows a

simple-enough energy model.



A The Pseudoknot Database

In this section, a brief overview about the diversity of known pseudoknot base

pair patterns is given. The reference for this overview is a database maintained

by the Institute of Chemistry at the University Leiden [63]. There are 191

different pseudoknots in the database. 148 of them are h-pseudoknots, 13 are

i-pseudoknots, 10 are i-pseudoknots with more that one stem in the pseudoknot

loops, 4 are kissing hairpin complexes and 16 are more exotic pseudoknots. The

h-pseudoknots are of special interest, because throughout this work we mainly

focus on this most simple type of pseudoknot. Thus we give the frequencies of

the occurring loop-sizes L1, L2 and L3 and stem-sizes S1 and S2.

The loop-size distribution of L3 shows, that almost all h-pseudoknots are

actually h0-pseudoknots, only 5 structures do not fit into this restriction. In

the case of L2 four structure with big loop-sizes (58, 75, 83, 261) where omitted

because there are gaps in the database entry and they are very likely to form

secondary structures. Stack-size S1 is wider distributed than S2, and loop-size

L2 wider than L1. This corresponds well with the fact that L2 has to bridge

S1 and L1 has to bridge S2. 35 of all h-pseudoknots exhibit one interior loop

or bulge. 28 of them can be captured by a restriction where only symmetric

interior loop of size 2 and bulges of size 1 are allowed.
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Figure A.1: Frequencies of loop- and stack-sizes of h-pseudoknots



Bibliography

[1] T. Akutsu. Dynamic programming algorithms for RNA secondary struc-

ture prediction with pseudoknots. Discrete Applied Mathematics, 1104:45–

62, 2000.

[2] V. P. Antao and I. Tinoco. Thermodynamic parameters for loop formation

in RNA and DNA hairpin tetralooops. Nucl.Acid.Res, 20(4):819–824,

1992.

[3] P. Babitzke and C. Yanofsky. Reconstitution of bacillus subtilis trp at-

tenuation in vitro with trap, the trp RNA-binding attenuation protein.

Proc Natl Acad Sci, 1:133–137, 1993.

[4] I. Brierley, N. J. Rolley, A. J. Jenner, and S. C. Inglis. Mutational analysis

of the RNA pseudoknot component of a coronavirus ribosomal frameshift-

ing signal. J. Mol. Biol, 229:889–902, 1991.

[5] J. W. Brown. Structure and Evolution of Ribonuclease P RNA. Bio-

chemie, 73:689–697, 1991.

[6] T. Cech. RNA as an enzyme. Scientific American, 11:76–84, 1986.

[7] M. Chamorro, N. Parkin, and H. E. Varmus. An RNA Pseudoknot and

an Optimal Heptameric Shift Site Are Required for Highly Efficient Ri-

bosomal Frameshifting on a Retroviral Messenger RNA. Proc Natl Acad,

89:713–717, 1992.

103



BIBLIOGRAPHY 104

[8] E. B. T. Dam, C. W. A. Pleij, and L. Bosch. RNA Pseudoknots and Trans-

lational Frameshifting on Retroviral, Coronaviral and Luteoviral RNAs.

Virus Genes, 4:121–136, 1990.

[9] B. Deiman and C. W. A. Pleij. Pseudoknots: A vital feature in viral

RNA. Semin Virol, 8:166–175, 1997.

[10] J. D. Dinman, T. Icho, and R. B. Wickner. A -1 Ribosomal Frameshift-

ing in a Double-stranded RNA Virus of Yeast Forms a Gag-Pol Fusion

Protein. Proc Natl Acad Sci U S A, 88:174–178, 1991.

[11] G. Fayat, J. Mayaux, C. Sacerdot, M. Fromant, M. Springer,

M. Grunberg-Manago, and S. Blanquet. Escherichia coli phenylalanyl-

tRNA synthetase operon region. evidence for an attenuation mechanism.

identification of the gene for the ribosomal protein l20. JMB, 3:239–261,

1983.

[12] C. Flamm. Kinetic Folding of RNA. PhD thesis, University Vienna, 1998.

[13] C. Flamm, W.Fontana, I. L. Hofacker, , and P. Schuster. RNA folding at

elementary step resolution. RNA, 6:325–338, 2000.

[14] A. C. Forster and S. Altman. Similar Cage-shaped Structures for the RNA

Component of All Ribonuclease P and Ribonuclease MRP Enzymes. Cell,

62:407–409, 1990.

[15] S. M. Freier, R. Kierzek, J. A. Jaeger, N. Sugimoto, M. H. Caruthers,

T. Neilson, and D. H. Turner. Improved free-energy parameters for predic-

tions of RNA duplex stability. Proc. Natl. Acad. Sci., USA, 83:9373–9377,

1986.

[16] D. R. Gallie, J. N. Feder, R. T. Schmike, and V. Walbot. Functional

Analysis of the Tobacco Mosaic Virus tRNA-like Structure in Cytoplasmic

Gene Regulation. Nucleic Acids, 19:5031–5036, 1991.

[17] W. Gilbert. The RNA world. Nature, 319:618, 1986.



BIBLIOGRAPHY 105

[18] D. T. Gillespie. A general method for nummerically simulating the

stochastic time evolution of coupled chemical reactions. J. Comput. Phys.,

22:403–434, 1976.

[19] C. Guerrier-Takada, K. Gardiner, T. M. N. Pace, and S. Altman. The

RNA moiety of ribonuclease P is the catalytic subunit of the enzyme.

Cell, 35:849–857, 1983.

[20] A. P. Gultyaev, F. van Batenburg, and C. W. A. Pleij. An approximation

of loop free energy values of RNA h-pseudoknots. RNA, 5:609–617, 1999.

[21] E. S. Haas, D. P. Morse, J. W. Brown, J. F. Schmidt, and N. R. Pace.

Long-range Structure in Ribonuclease P RNA. Science, 254:853–856,

1991.

[22] C. Haslinger and P. F. Stadler. RNA structures with pseudo-knots:

Graph-theoretical, combinatorial, and statistical properties. Bul. Math.

Biol., 1:1–33, 1998.

[23] L. He, R. Kierzek, J. SantaLucia, A. Walter, and D. Turner. Nearest-

neighbour parameters for G-U mismatches. Biochemistry, 30:11124, 1991.

[24] P. Hogeweg and B. Hesper. Energy directed folding of RNA sequences.

Nucleic acids research, 12:67–74, 1984.

[25] J. A. Jaeger, D. H. Turner, and M. Zuker. Improved predictions of sec-

ondary structures for RNA. Proc. Natl. Acad. Sci., USA, Biochemistry,

86:7706–7710, 1989.

[26] G. Joyce. Building the RNA world: evolution of catalytic RNA in the

laboratory. In T. Cech, editor, Molecular Biology of RNA. UCLA Sympo-

sium on Molecular and Cellular Biology, pages 361–371. New York: Alan

R.Liss, 1988.

[27] G. Joyce. Amplification, mutation, and selection of catalytic RNA. Gene,

82:85–87, 1989.



BIBLIOGRAPHY 106

[28] G. F. Joyce. RNA evolution and the origins of life. Nature, 338:217–224,

1989.

[29] G. F. Joyce. The rise and fall of the RNA world. The New Biologist,

3:399–407, 1991.

[30] K. Kawasaki. Diffusion constants near the critical point for time-

dependent Ising models. Phys. Rev., 145:224–230, 1966.

[31] D. Konings and P.Hogeweg. Pattern analysis of RNA secondary structure,

similarity and consensus of minimal-energy folding. J. Mol. Biol., 207:597–

614, 1989.

[32] K. A. LeCuver and D. M. Crothers. Kinetics of an RNA conformationsl

switch. Proc. Natl. Acad. Sci., 91:3373–3377, 1993.

[33] R. B. Lyngso, M. Zucker, and C. N. S. Pedersen. Fast evaluation of

internal loops in RNA secondary structure prediction. Bioinformatics,

15:440–445, 1999.

[34] J. M. M. Wu and D. H. Turner. A periodic table of symmetric tandem

mismatches in RNA. Biochemistry, volume 34::2304–11, 1995.

[35] H. D. Madhani and C. Guthrie. A novel base-pairing interaction between

u2 and u6 snRNAs suggests a mechanism for the catalytic activation of

the spliceosome. Cell, 5:803–817, 1992.

[36] R. Mans, C. Pleij, and L. Bosch. Transfer RNA-like Structures: Structure,

Function and Evolutionarz Significance. Eur J Biochem, 201:303–324,

1991.

[37] R. Mans, M. H. V. Steeg, P. Verlaan, C. Pleij, and L. Bosch. Mutational

Analysis of the Pseudoknot in the tRNA-like Structure of Turnip Yel-

low Mosaic Virus RNA. Aminoacylation Efficiency and RNA Pseudoknot

Stability. J Mol Biol, 223:221–232, 1992.



BIBLIOGRAPHY 107

[38] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and

E. Teller. Equation of state calculations by fast computing machines. J.

Chem. Phys., 21:1087–1092, 1953.

[39] F. Michel and E.Westhof. Modelling of the Three-dimmensional Archi-

tecture of Group I Catalytic Introns Based on Comparative Sequence

Anaysis. J Mol Biol, 216:585–610, 1990.

[40] D. Moazed and H. F. Noller. Transfer RNA Shields Specific Nucleotides

in 16S Ribosomal RNA from Attack by Chemical Probes. Proc Natl Acad

Sci U S A, 47:985–994, 1986.

[41] S. Morse and D. E. Draper. Purine-purine mismatches in RNA helices: ev-

idence for protona ted ga pairs and next-nearest neighbor effects. Nucleic

Acids Res., 23::302–6, 1995.

[42] C. Papanicolau, M. Gouy, and J. Ninio. An energy model that predicts

the correct folding of the tRNA and the 5S RNA molecules. Nucl. Acid.

Res., 12:31–44, 1984.

[43] C. Philippe, C. Portier, M. Mougel, M. Grunberg-Manago, J. P. Ebel,

B. Ehresmann, and C. Ehresmann. Target site of escherichia coli riboso-

mal protein S15 on its messenger RNA. J Mol Biol, 211:415–426, 1990.

[44] C. W. A. Pleij. Pseudoknots a New Motiv in the RNA Game. Trends

Biochem Sci, 15:143–147, 1990.

[45] C. W. A. Pleij, K. Rietveld, and L. Bosch. A new principle of RNA folding

based on pseudoknotting. Nucl. Acids Res, 13:1717–1731, 1985.

[46] D. Poland and H. A. Scheraga. Theory of helix coil transitions in biopoly-

mers. New York and London: Academic Press, 1970.

[47] T. Powers and H. F. Noller. A Functional Pseudoknot in 16S Ribosomal

RNA. EMBO, 10:2203–2214, 1991.



BIBLIOGRAPHY 108

[48] J. D. Puglisi, J. R. Wyatt, and I. Tinocco. RNA Pseudoknots. Acc Chem

Res, 24:152–158, 1991.

[49] H. Putzer and N. Gendron. Co-ordinate expression of the two threonyl-

tRNA synthetase genes in bacillus subtilis: control by transcriptional an-

titermination involving a conserved regulatory sequence. EMBO, 11:3117–

3127, 1992.

[50] A. L. N. Rao, T. W. Dreher, L. E. Marsch, and T. C. Hall. Telomeric

Function of the tRNA-like Structure of Brome Mosaic Virus RNA. Proc

Natl Acad Sci, 86:5335–5339, 1989.

[51] E. Rivas and S. R. Eddy. A dynamic programming algorithm for RNA

structure prediction including pseudoknots. Journal of Molecular Biology,

285:2053–2068, 1999.

[52] E. Rivas and S. R. Eddy. The language of RNA: a formal grammar that

includes pseudoknots. Bioinformatics, 16:334–340, 2000.

[53] T. B. S. Ebel and A. N. Lane. Thermodynamic stability and solution

conformation of tandem g a mismatches in RNA and RNA/DNA hybrid

complexes. Eur. J. Biochem., 220::703–15, 1994.

[54] W. Saenger. Principles of Nucleic-Acid Structure. Springer-Verlag, New

York, first edition, 1984.

[55] W. Salser. Globin messenger RNA sequences - analysis of base-pairing

and evolutionary implications. Cold Spring Harbour Symp. Quant. Biol.,

42:985, 1977.

[56] P. Schimmel. RNA Pseudoknots that Interact with Components of the

Translation Apparatus. Cell, 58:9–12, 1989.

[57] M. J. Serra, T. J. Axenson, and D. H. Turner. A model for the stabilities

of RNA hairpins based on a study on the sequence dependence of stability

for hairpins of six nucleotides. Biochemystry, 33::14289–965., 1994.



BIBLIOGRAPHY 109

[58] M. J. Serra, M. H. Lyttle, T. J. Axenson, C. A. Schadt, and D. H. Turner.

RNA hairpin loop stability depends on the closing base pair. Nucleic Acids

Res., 21:3845–9, 1993.

[59] S. Spiegelman. An approach to the experimental analysis of precellular

evolution. Quart. Rev. Biophys., 17:213–219, 1971.

[60] W. Stockmayer and H. Jacobson. Intramolecular reaction in polyconden-

sations. J. Chem. Phys., 18:1600–1606, 1950.

[61] D. H. Turner, N. Sugimoto, and S. Freier. RNA structure prediction. An-

nual Review of Biophysics and Biophysical Chemistry, 17:167–192, 1988.

[62] T. H. Tzeng, C. L. Tu, and J. A. Bruenn. Ribosomal Frameshifting

Requires a Pseudoknot in the Saccharomyces cerevisiae Double-stranded

RNA Virus. J Virus, 66:999–1006, 1992.

[63] F. H. D. van Batenburg, A. P. Gultyaev, and C. W. A. Pleij. Pseudobase:

a database with RNA pseudoknots. Nucl. Acids Res, 28:201–204, 2000.

[64] A. E. Walter, D. H. Turner, J. Kim, M. Lyttle, P. Muller, D. H. Mathews,

and M. Zucker. Coaxial stacking of helices enhances binding of oligori-

bunucleotides and improves prediction of RNA folding. Proc. Natl Acad

Sci., 91::9218–22, 1994.

[65] A. E. Walter, M. Wu, and D. Turner. The stability and structure of tan-

dem g-a mismatches in RNA depends on closing base pairs. Biochemistry,

33::9218–22, 1994.

[66] M. S. Waterman. Secondary structure of single-stranded nucleic acids.

Adv. Math. Suppl. Studies, 1:167 – 212, 1978.

[67] M. S. Waterman and T. F. Smith. Rapid dynamic programming methods

for RNA secondary structures. Adv. Appl. Math., 7:455–464, 1986.



BIBLIOGRAPHY 110

[68] A. M. Weiner and N. Maizels. tRNA-like Structures Tag the 3’ ends of

Genomic RNA Molecules for Replication: Implications for the Origin of

Protein Sybthesis. Proc Natl Acad Sci, 84:7383–7387, 1987.

[69] N. Wills, R. F. Gesteland, and J. F. Atkins. Evidence that a Downstream

Pseudoknot is Required for Translational Readthrough of the Moloney

Murine Leukemia Virus Gag Stop Codon. Proc Natl Acad Sci U S A,

88:6991–69995, 1991.

[70] C. R. Woese and R. R. Gutell. Evidence for Several Higher Order Struc-

tural Elements in Ribosomal RNA. Proc Natl Acad Sci U S A, 86:3119–

3122, 1989.

[71] I. Wool, Y. Endo, Y.-L. Chan, and A. Glck. Structure, function and evo-

lution of mammalian ribosomes. Biochem. Cell Biol., 73:933–947, 1995.

[72] S. Wuchty, W.Fontana, I. L. Hofacker, and P. Schuster. Complete subopti-

mal folding of RNA and the stability of secondary structures. Biopolymers,

49:145–165, 1999.



Curriculum vitae

Mag. Christian Haslinger

* 23.3.1972, St.Pölten

1978 – 1982 Volksschule in St.Pölten

1982 – 1986 Hauptschule in St.Pölten
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