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Zusammenfassung

Eine iiberwéltigende und immer schneller wachsende Flut an Sequenzinformation
aus grofl angelegten Sequenzierexperimenten erschwert immer mehr den Blick auf
relevante Daten. Man kann zwar DNA Sequenzen leicht in die entsprechende Pro-
teinsequenz ,translatieren“, jedoch ist diese ohne die dazugehdrige 3d Struktur
oft nutzlos. Ein detailliertes ,mapping“des astronomisch grofien Proteinsequenz-
raumes wire vollig aussichtslos, wenn nicht die Zahl der stabilen Strukturen sehr
begrenzt wire. Diese Kartierung wére von grolem Nutzen fiir evolutionére Stu-
dien und das de novo Design von Proteinen. Babajide et al. konnten zeigen, dafl
empirische Potentiale zur Erforschung des Proteinraums mittels inverser Faltung
geeignet sind. Hierbei wird die Kompatibilitidt einer Struktur mit einer gegebe-
nen Sequenz ermittelt. Die zugrunde liegenden Annahmen sind, dafl das Protein
im energetischen Grundzustand vorliegt, und das inverse Boltzmann Gesetz gilt.
Da die Grundzustandsenergie nicht bekannt ist, d.h. das Faltungsproblem nicht
gelost ist, mufl eine Energieskala, z-score genannt, eingefiihrt werden, um Ver-
gleiche anstellen zu kénnen.

Empirische Potentiale, die aus einer Datenbank strukturelle Informationen ,,ex-
trahieren®, unterscheiden sich meist in der Definition der beriicksichtigten Kon-
takte. Alexander Tropsha konnte die Willkiir eines gewihlten Abstandes umge-
hen, indem er Methoden der statistischen Geometrie einfiihrte. Die Proteinkette
wird hierzu durch die C*-Atome dargestellt. Die dadurch definierte Menge von
Punkten im Raum wird der Delauney Tessellation unterzogen.

Das Ergebnis ist ein Agglomerat dicht gepackter, unregelméfliger Tetraeder, mit
einer Aminosiure an jeder Ecke. Diese Beschreibung einer nichsten Nachbar-
schaft wird verwendet, um die Statistik der Wechselwirkung in einer Untermenge
der pdb-Datenbank zu ermitteln. Dies erm&glicht die Berechnung der Wahrschein-
lichkeit, diesen bestimmten Kontakt vorzufinden.

Ungliicklicherweise zeigten inverse Faltungsexperimente, die mit diesem Potenti-
al durchgefiihrt worden sind, Inkonsistenzen mit Daten aus anderen Potentialen
(wie zum Beispiel PROSA). Das fiihrte zu der Idee, das Tesselations Potential
zu erweitern: Ein Oberflichenterm sollte die spezielle Rolle der 16sungsmittel-
exponierten Reste beriicksichtigen. Auflerdem wollte man dazu iibergehen, das
Backbone durch C#-Atome darzustellen, da diese riumlich in Richtung der Ami-
nosidurereste zeigen. Es war auch notig ein Filterkriterium anzuwenden, um un-
wahrscheinliche Kontakte zu entfernen, die aus dem Tessellationsalgorithmus der
konvexen Hiille stammen.

Diese Arbeit beschreibt die erfolgreiche Implementierung eines Tessellations Po-
tentials und dessen Anwendung in Simulationen von inversen Proteinfaltungen.
Die Computerexperimente zeigen eindrucksvoll eine deutliche Verbesserung ge-
geniiber den Originaldaten von Alexander Tropsha. Auf Grund der effizienten
Implementierung des Kalibrierungsvorgangs ist es nun einfach, weitere Zusatz-
terme einzufiihren.
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Abstract

The overwhelming and fast growing amount of known sequences from large sca-
le sequencing projects hardly leaves a view to the relevant data. It is easy to
translate the DNA sequence to the corresponding protein chain, but by the time
impossible to gain access to the structure from this information level, because the
amino acid sequence separate from its 3d context is often meaningless. Nevert-
heless sequence homologies and alignement studies are useful tools. A detailed
mapping of the hyper-astronomic sequence space of proteins would be a hopeless
task, if the number of distinct stable folds would not be restricted. Such a map
would be extremely useful for evolutionary studies as well as protein de novo
design.

Babajide and co-workers revealed that knowledge based potential are suitable
means to perform an analysis of protein space, targeting inverse folding. This
approach tries to determine the compatibility of a given structure with a chosen
sequence. The basic assumptions of knowledge based potentials are that proteins
exist in the energetic ground state and the inverse Boltzmann law is valid. Since
the ground state is not known (i.e. the folding problem is not solved), an energy
scale, the so called z-score, must be introduced for comparison.

Empirical potentials as extracted form databases of known structures vary mainly
in the definition of residue interaction. Avoiding the arbitrariness of a binned
distance, Alexander Tropsha introduced a “statistical geometry” approach, in
which the polypeptide chain is un-ambiguously partitioned by means of Delauney
tessellation. The result is a cluster of tightly packed, irregular tetrahedra having
an amino acid at each corner. This description of contact is used to extract a
log-likelihood quantity for various types of interactions from a subset of the pdb
database.

Unfortunately the inverse-folding experiments performed with this kind of poten-
tial showed a severe inconsistence with other potentials such as PROSA. This led
to the idea of extending the original potential: A special surface term should be
introduced, paying respect to the special role of solvent exposed residues. Fur-
thermore the chain representation should be extended to C? atoms because they
point towards the residue. It was also necessary to introduce a filter criterion
to the calibration method for removing improper contacts as produced by the
convex hull.

This work describes a successful implementation of a tessellation potential and a
few applications to inverse folding computer experiments. A distinct improvement
compared to the original parameters could be obtained and directions for further
improvements of the discrimination power are pointed out.
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1 Introduction

Since the early 19" century it is known that, according to Lamarck, “each science
has to have its philosophy. Only then real progress is possible.”[38]. Projecting
this to modern biology of the late 20" century, a new meaning is gained by this
sentence. The fast growing wealth of data from cloning and sequencing projects
hardly leaves space in molecular biology for finding theories and organizing the
empirical knowledge, the philosophy of science as we understand it today is con-
sidered to be secondary.

The striking breakthroughs in molecular biology were mostly brought by the
knowledge of the participating structures of a biochemical process. In particu-
lar for proteins, being the “genetic executable” the 3d structure is an avenue to
understand function on the molecular level. It is almost trivial to translate the
DNA sequence, if known, to the corresponding protein, but a protein sequence
contains little meaning unless in the context of its spatial distribution and in-
teraction. Structures are the key to understanding function, though the exact
determination of dynamics is still one step after the folding problem.

Modeling structures of biomolecules ahead of experiments is still a demanding
challenge, up to now the answer to the folding problem can only be given for the
comparable simple logic of nucleic acid secondary structures [32, 62, 71, 72|. For
proteins a mapping of sequence to structures is still out of sight, though intensive
research opens the view into this world of complexity.

In contrast to nucleic acids, where the main part of the folding energy derives
from basepair stacking, the driving force for protein folding are the more or less
unspecific hydrophobic interaction. These hydrophobic contributions are hardly
characterized or measured. It is widely assumed that the native structure of a
protein represents the global minimum of its the energy function W(S). The
number of terms contributing to the energy function is enormous and depend on
the amino acid composition as well as the natural environment (pH, temperature,
ionic strength, solvent type etc.), but if the function would be known, the sequence
S could in principle be assigned to a fold (S). So it would be very favorable
to gain access to structures form sequence databases using the concept of “data-
mining” as introduced in computer science, and to avoid a detailed determination
of all parameters. Extracting structural information from sequence databases, in
other words solving the folding problem, is still out of sight though much work is
done on this topic.

Some approaches targeting protein secondary structure [16, 45, 61] brought rea-
sonable success, for instance Sander et al. [48]) report an accuracy of some 70%
in predicting the structural elements from sequence. But it has to be considered
carefully that assigning the random coil as local structure is counted as predictio-
nal success. This is not very meaningful since usually two different conformations
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in random coil have a large root-mean-square error when superimposed, and can
not be considered to be similar. Tertiary structure prediction is targeted by po-
tential energy based analysis (e.g. molecular dynamics), lattice simulations of
protein folds, and knowledge based approaches. However, accurate results are ra-
re and mostly restricted to cases where homologous structures are known [47].
The nature of this optimization problem makes all kinds of calculation extremely
costly in computation time. Though a lot of rules for protein folding have been
discovered, at the moment the only straightforward way to get 3d-structures are
NMR spectroscopy and X-Ray crystallography.

The size of the sequence space [60] for proteins is enormous, since it grows expo-
nentially with the chain length (20" sequences for chain length n). On the other
hand, the amount of stable folds seems to be small [33], therefore it makes sense
to ask, how sequences adapting a similar fold are distributed in sequence space.
The sequences folding into a given structure ¢ form the neutral set S(1) of this
structure. This gives rise to a seizable problem — the question of threading a
sequence to a known native structure, this is inverse folding. If all possible struc-
tures were known, the folding problem would reduce to the compatibility of a
sequence with a given structure. Detailed knowledge about the topology of the
neutral sets in sequence space containing is important to answer questions ari-
sing from protein evolution and de nowvo protein and drug design as targeted by
industrial applications.

Again the situation for nucleic acids is much simpler from the predictional point of
view, and some very unexpected results were obtained by exploring the sequence-
structure maps for RNA. It could be shown, that expanded neutral networks
percolate the entire sequence space, and in some parts sequences of different
structures come very close to each other [27, 28, 36].

Babajide et al. [3, 2] showed that knowledge based potentials are suitable tools
to investigate neutrality in protein space. The idea of using a database of known
structures to obtain information about spatial distribution of residues is quiet old
(see Blundell [7]), and the idea of using a statistical mechanical interpretation
arose in the early 1990s. The models differ mainly in the definition of interaction
and unfortunately yield oftentimes diverging results.

The methods of computational geometry may help to avoid this inconsistence by
applying objective criteria to neighborhood definition. Bernal [5] proposed in the
late 1950ies to characterize disordered systems by means of irregular polyhedra
as obtained by a specific tessellation in three dimensional space. Representing
an amino acid chain by its C* atoms yields a set of points in 3d-space, uniquely
describing the backbone of the protein. Applying the Delauney Tessellation gene-
rates a tightly packed cluster of space filling irregular tetrahedra (called Delauney
simplices) with four C* atoms forming the corners.



1 INTRODUCTION 3

This approach has successfully been introduced by Alexander Tropsha et al. [68,
54, 69] in 1996 but employing his original parameters led to the observation,
that the energies (as represented by z-scores) showed some inconsistency with
potentials derived from other approaches such as Sippl’s PROSA potential [55, 13,
56] and hence we decided to extend the original potential by introducing a surface
term and to change the representation of the backbone from C® to C? atoms.
The fact that there was no appropriate tool to calibrate the Tropsha potential
made a design of such a program unavoidable.

Organization of this Work

The first part of this work gives a brief overview of potential functions used in
recent computer experiments comparing molecular mechanical approaches and
then presenting various knowledge based potentials. The main focus will the be
on the development of tools to calibrate and extend the Tropsha-like potential
function. Finally details of the algorithms are described and a brief manual is
included. Then we present first results obtained from the improved potentials.
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2 Theoretical Background

2.1 Molecular Force-Fields versus Knowledge-Based Po-
tentials

The energy of a macromolecular system is a function of the conformational varia-
bles (e.g. Cartesian coordinates) plus its interaction energy with the surrounding
solvent. The derivation of the energy from the conformational variables gives the
force field of the molecule. The term potential in this context is a synonym to
energy function. Generally we assume that a protein sequences S = (s1,...,S,)
of n amino acids

sie {A,C,,LM,F, WY, VR N,DEQGHKP, S T}

is related with its structure 1 as represented by the coordinates z; = (z1,... ,wy,)
via the potential function V' (S, ):

xs = argmin, V (S, ¢)

The design of molecular force fields allows at least two different approaches:

On the one hand semi-empirical approaches consider macromolecular systems as a
summation of the forces observed for monomers. The force fields are obtained from
quantum mechanical calculations, and data from thermodynamic or spectroscopic
measurements on small molecules.

On the other hand knowledge-based potentials are based on the assumption that
force fields of macromolecules are of immense complexity and the only reliable
source of information are macromolecular molecules themselves. So empirical or
knowledge-based potentials try to extract information from databases of macro-
molecular structures.

2.2 Molecular Mechanics Force Fields

The “mechanical” molecular model was developed out of the need to describe mo-
lecular structures and properties in as practical a manner as possible. Quantum
chemical calculation are highly accurate, but the computational effort is immen-
se and at the moment it is unthinkable to solve the Schrédinger equation for
macromolecular systems. Therefore, a classical approach was chosen to calculate
atomic structures. The following assumptions are made:

e Nuclei and electrons are lumped into atom-like particles according to the
Born-Oppenheimer approximation of the Schrédinger equation.
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e The atom-like particles are spherical (radii obtained from measurements or
theory) and have a net charge (obtained from theory).

e Atoms are considered as balls, bonds are based on springs, whereby classical
potentials come to use.

e Interactions must be preassigned to specific sets of atoms.

e Interactions determine the spatial distribution of atom-like particles and
their energies.

The object of molecular mechanics is to predict the energy associated with a
given conformation of a molecule. However, molecular mechanic energies have no
meaning as absolute quantities. Only energy differences between two conforma-
tions of the same molecule are meaningful. A simple molecular mechanic energy
equation is given by:

Etot = Estretch + Ebend + Etors + Enonfbonding

Torsion

A

Bond
*, Stretching

Non-bounding Interaction

FIGURE 1: Energies used by molecular mechanic force fields

These terms together with the parameters required to describe the behavior of
different kinds of atoms and bonds, is called a force-field. Many different kinds of
force-fields have been developed over the years. Some include additional energy
terms that describe other kinds of deformations. Some force-fields account for
coupling between bending and stretching in adjacent bonds in order to improve
the accuracy of the mechanical model. The constants (force constants, equilibri-
um lengths) can be either measured by spectroscopy or calculated by quantum
mechanical means.
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The energy terms in detail are:

Stretching Energy:
Occurs whenever a bond is deformed (stretched or compressed), and is
described by an equation based on Hooke’s law for springs.

Estretch = Z kb(r - TO)Z

whereby £ is the force constant, r is the actual bond length and ry the
equilibrium length. This parabolic approximation fails as the bond is
stretched toward the point of dissociation.

Bending Energy:
Energy increases if the equilibrium bond angles are bent. Again the ap-
proximation is harmonic and uses Hooke’s law.

Epend = Z ko (6 — 6o)°

ke controls the stiffness of the angel, 6 is the actual bond angle, 6, the
equilibrium angle. The force constants have to be estimated for each

triple of atoms (e.g. C-C-C, C-C-O, C-C-H)

Torsion Energy:
Intra-molecular rotations (around torsions or dihedrals) require energy
as well:

Eiorsion = Z A[(l + COS(?’LT - ¢))]

The parameter A controls the amplitude of this periodic function, n the
periodicity, and ¢ shifts the entire curve along the rotation angle axis
7. Again the parameters for all combinations of four atoms have to be

determined (e.g. C-C-C-C, C-O-C-C, H-C-C-N).

Non-bonding Energy:
The different implementation of force field differ mainly in the definition
of this term. Mostly present are Van der Waals and electrostatic terms.

—A.. —B.. i’y
D DN
i

J

i
v -

-~

Van d(;lf Waals Coulomb

The Van der Waals term accounts for the attraction and the Coulomb
term for electrostatic interaction. Repulsion occurs, when the distance
between two atoms becomes less than the sum of their radii. The shown
approximation for the van der Waals energy is of the Lennard-Jones
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potential type. It is used this way for instance in in the AMBER force
field [65] as can be seen in equation 1. The last term accounting for
H-bonds is modeled by a 6-12 potential as well.

Etotal = Z K,«(T - req)Q (1)

bonds

+ ) Ko(0 - )

angles

Va
+ Z 7[1 + cos(ng — )]
dihedrals
Aij By | 4y
+ [ 2y ]:|
; }211]2 Rzﬁj GRij
Cy; Dy
+ |: ) _ ] :|
Z R? RY

H—bonds ij

2.3 Knowledge Based Potentials

In contrast to the analytic approach of mechanical force fields, knowledge based
potentials describe the energy needed for a certain contact to occur by a like-
lihood. This likelihood of finding a particular contact is extracted from a database
of known structures. Computer scientists would call this procedure data-mining.
The increase of information is measured by the log-likelihood ratio of the Bayesi-
an events [4]. This ratio is the relation of prior expected events and the observed
occurrence. Therefore the log-likelihood is a kind of measure for the “surprise”
provided by the database.

A physical interpretation of the probability function comes from statistical me-
chanics: Based on the assumption that the protein is in its energetic minimum,
low energy elements must occur more frequently than others in 3d-structures of
globular proteins. This dependence of occurrence on energy resembles a Boltz-
mann statistic:

focc. ~ €exXp _E/RT

Here T is the conformational temperature and R is the gas constant. This simi-
larity reveals, that if in principle the frequency of occurrence can be estimated,
it is possible to gain access to the putative energy of a certain fold (S). This
interpretation of knowledge based potentials was introduced by Manfred Sippl
and is the basis for most of the contemporary potentials of mean force.

Recently Dill and Thomas stated severe critic on this approach of statistical po-
tentials [63]. They intended to test how “extracted” energies correspond with
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“true” energies by mimicking the extraction process on ideal lattice models and
comparing the observed with the accurate energy of HP interactions. Their ma-
jor points of critic for this model are that proteins are not seen as chains (either
as gas composition) and the temperature applied to the Boltzmann device is
meaningless. Further they try to show that the energies for a certain fold depend
solely on clustering of polarity. These findings were put into theoretic framework
recently by Neumaier’s “Nonuniqueness Theorem” [44]. Tt has been shown, that
empirical potentials obtained by extraction of equilibrium geometries can never
reveal {rue energies. In particular, empirical potentials derived solely from data-
bases of equilibrium data will never be useful for dynamical studies.The relevance
of these results will be discussed later on.

2.3.1 Statistical Thermodynamics of Proteins or the Inverse Boltz-
mann Law

The so called “folding postulate” states, that “In equilibrium the native state of
a protein-solvent system corresponds to the global minimum of free energy”. This
was demonstrated in the pioneer study performed by Anfinsen [1] in 1973. He was
able to show, that by reducing and re-oxidating disulfide bonds in ribonuclease
no loss of function occurs, i.e. that folding is a reversible process.

The peptide chains will be presented by C* atoms to make the model easier, by
no loss of generality. According to Bolzmann’s law the probability f(z) of finding
a physical system in a particular state z in equilibrium is give by:

= on [-22]]

Where £ is the Boltzmann’s constant, 7" the absolute temperature in Kelvin
(Reference temperature) and Z is the partition function defined as:

E(x)
7 = e S )
[ [ o { KT ] ’
For discrete systems the integral may be replaced by the sum.
- E(x)
Z = ;exp [— o7 ]
If energies of all states x are known, the probability density could be computed.

On the other hand it is possible to obtain the energy if the density of states can
be measured [55].

E(x)=—kTIn[f(z)] — kTlnZ (2)
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From equation 2 it is possible to calculate the energy of a particular distribution
but it is impossible to get the Boltzmann sum Z, so an additive constant remains
unknown. If the probabilities of a distribution are extracted from a database,
the potential of mean force of interaction can be obtained. If E(x) denotes the
reference state of the system (averaged energy), the net potential for a given
interaction 7 can be computed by:

AE,(z) = B, (z) - E(x)

or:

f (fﬂ)} Z

AFE. (x :—len[ 4 — kTln -

and since Z, and Z do not depend on the state z, it is legitime to assume Z, ~ Z,

and therefore —£7 In % ~ 0. T is tied to the temperature of the NMR or X-ray
measurement, of the data.

AE,(z) = —kTIn [M]

f(=)

Due to the restriction of a limited number of observations it must be distinguis-
hed between the probability densities f(z) or f,(z) and the information obtained
from the database g(z) respectively g,(z). It is reasonable however to approxi-
mate the reference state probability f(z) with g(z) since the overall number of
interactions in the database is big enough (magnitude of 10.000). On the other
hand the number of observations can be low for particular contacts, especially
when considering higher order interactions. Therefore database size is crucial for
the approximation of f,(z) ~ g,(x).

So without knowledge of any specific interaction we have to assume f(z) = f,(z)
and expect AE,(z) = 0. Each information quantum derived form the database
increases f,(z), and the net contribution is twofold: (1) The relative energy of
all states AE, (x) is increased and (2) the energy of a particular state AE,(t)
is lowered. This means that if f,(x) < 1 the contribution to the overall energy
becomes negative. When parameters for all configurations v are extracted, a
summation over all contributions yields the energy of sequence S for structure

(¥):
E(S,Y) =Y E,(z)

2.4 Various Approaches to Knowledge-Based Potentials

Over the past years many different approaches to potentials of mean force have
been made. The various potential functions are distinct in the definition as well as
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in the order of interaction. Therefore different “resolutions” are used to define the
energy functions. The spectrum reaches from an atomic resolution mode (Sippl)
to simplified HP-patterns (Crippen), and a lot in between.

Munson et al. [41] were able to show that increasing the order of interaction im-
proves the statistical significance of the terms. Starting with a highly significant
one body term, that counts for the exposures of the residue, continuing to a pair
potential term, that contributes for amino acid preferences (e.g. hydrophobic-
hydrophobic interactions) independent of the burial status, one can clearly iden-
tify that multi-body interactions participate to a major extent the overall poten-
tial function.

2.4.1 Atom-Atom Potentials

The reversible energy required to bring two particles close to each other at con-
stant volume is given by the potential of mean force or Helmholtz free energy of
the system. It is related to the radial distribution function g(r) by:

w(r) = —kT In[g(r)]

and can give insights to protein folding and the role of specific interaction in
native structures (e.g. H-bonds). The distribution function for arbitrary sets of
atom-atom interactions occurring in proteins can either be obtained by diffraction
experiments, or they are extracted from a database of structures. The two functi-
ons turn out to be equal, if the distance distributions are similar. The knowledge
based distribution function is accessed by the determination of

Pab(T) = Z(S(T — 7i)

as the sum over all distinct pairs ab within the radius r in a protein library. The
observed density is compared with a bulk of non interacting particles to finally
obtain the distribution function:

pab(r)
p

gab("') =

The potentials using these distribution functions are perfectly suited for a detai-
led analysis of spatial distributions of atom contacts along a protein chain [59].
To make use of an atom-atom based potential, one has to know the Cartesian
coordinates for all residues in a poly peptide chain. Therefore this approach is of
no use to solve the inverse folding problem, as targeted by our group.
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2.4.2 Sippl’s PROSA II Potential

Sippl also implemented a pair potential in his software package PROSA II [55, 13,
56, 57]. The program was designed to determine the correctness of an experimen-
tally derived structure under use of a quality factor score. The potential function
used is a superposition of a pair-potential and a surface potential:

Wz, w) = D Wy [w 2, i = gl dl] + V3 i x()] (3)

1<j

The first term W, stands for the pair contribution, V,, is the surface part of the
potential and both terms depend upon the backbone atom type vy (C* or C?). The
pair-potential is calculated between amino acids z; and x;, located at position 7
and j of the sequence zx. de is the Euclidean distance of the contributing amino
acids. Using a particular surface term is caused by the observation, that a solvent-
protein interactions can be used to model amino acid energies more accuratly [8,
9, 10]. The parameter x represents a quantitative measure for the extent of surface
exposure of amino acid x. The potential function as described by the parameters
W, [aci, zj, i — jl; dZ]—] and V,, [z;; x(¢)] are extracted from a representative pdb-
subset, applying the Boltzmann principle, and distributed with the PROSA II-
package.

Because PROSA only uses the C# (or C%) atoms of the backbone, and calculates
the probability of finding two residues within a spatial distance, it is quiet well
suited for inverse folding studies.

2.4.3 Lapedes’ Neural Network NN Potential

Alan Lapedes et al. [26] developed a potential with multi-body interactions, pa-
rameterized in “local neighborhoods” for each residue.He generalized other threa-
ding approaches, and ended up in a statistical interpretation. To employ a neural
net for finding a log-likelihood ratio containing higher order terms of interaction,
it is necessary to find a suitable representation of the available structural informa-
tion. To tackle this problem an internal coordinate system is defined, setting the
C“-atom to the center, and constructing two vectors pointing to the neighboring
chain atoms: C' and N. This plane has been shown to have an almost constant
angle, and a third dimension is spanned by the cross product of C*NxC%C.
Further a binned sphere is constructed around the center (C*-atom) of the coor-
dinate system, representing a “neighborhood shell” of residues. To order this shell
to spatial residues, the sphere is split into a predefined number of finite, binned
sub-shells.

The chain neighbors, carrying information necessary for secondary structure, can
be included as well. The M bins are filled with integers mimicking the 20 amino
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acids, describing the surrounding of a particular C* atom. The neural net is
trained on the pdb-select database, and parameters as number of sub-bins, bin
size, or bin resolution were varied. Approaches for C? as a core atom showed
better results in threading experiments.

2.4.4 Contact Potentials

Contact potentials can be understood as subgroup of knowledge based potential.
This kind of mean energy function measures the overall energy of a system, as
the sum of nearest neighbor contacts. The most prominent examples are:

Crippen’s Simplified Potential

To obtain a simplified representation of heteropolymers Ken A. Dill introduced
the concept of lattice polymers [14]. When used to model proteins, each amino
acids occupies one positions on the grid of the lattice. Conformations of lattice
polymers are represented by self-avoiding walks, short SAWs. Hence this method
greatly reduces the conformational space of the optimization problem. On a lattice
bond lengths are, of course, always constant, furthermore potentials for lattice
proteins usually neglect bond angles and dihedrals. Instead they focus on non-
bonding interactions of topological neighbors.

In Crippen’s potential the energy for the pair interaction is written as:

E(s,x) = Z U(s(i), s(j); i — 55 de (i, x;)]

The individual interaction terms ¥ depend on the type s(i) and s(j) of residues,
on their separation |i— j| along the chain and on the eucledian distance d.(x;, x;)
of the lattice points. The potential function

Ws(d),s(4); |t — 35 de(xi,%5)] = Uls(2), 5(3); [i — 7|19 (de (i, %))

is normalized such that the contribution of the nearest neighbor reduces to
Uls(i), s(4); i = ]-
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Crippen extracted a contact matrix of the form:

Uls(i), s(4); li — jll =

( —0.008 ifli—j| = 3
0.004 ifli—j| = 4
0.021 ifli—j| = 56,7
{ [ —0.012 —0.074 —0.054 0.123

-0.074  0.123 -0.317  0.156
—-0.054 —-0.317 -0.263 -0.010
0.123  0.156 —0.010 —0.004

ifli—j| > 8

\

from a structural database where the matrix entries correspond to the four amino
acids classes:

1 = {GYHSRNE}
2 = {AV)}

3 = {LICM F}

4 = {PWTKDQ}

A further simplification of the potential can be obtained by restricting the amino
acid alphabet to just two classes: H for hydrophobic amino acids and P for polar
residues. For a review of HP based potentials see [15, 19]

Crippen recently used the described potential in kinetic simulations and calcu-
lations of denaturation curves [18]. These computer experiments showed, that
folding kinetics largely depends on the coding scheme and that the results obtai-
ned by using the Crippen alphabet differs strongly from calculations for spin-glass
encoded SAWs [23, 25].

Tropsha’s Four-Point Potential

Avoiding the arbitrariness of a binned distance, A. Tropsha [68, 54, 69] introdu-
ced an approach from computational geometry to knowledge based potentials. He
suggested to represent the protein structure as a set of points in 3d, for simplifi-
cation only C* atoms were chosen as model for the backbone. This set of points
is tessellated using the Delauney triangulation. The result of this geometric pro-
cedure is a partitioning of the space included by the set into irregular tetrahedra
with the points as vertices. The quadruple of amino acids represented by these
points are considered to be nearest neighbors. The beauty of this method is that
it is parameter free, the list of tetrahedra is non-ambiguous.

If one counts the occurrence of all possible neighborhood combinations of the
amino acids in a structural dataset, a log-likelihood function can be constructed
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easily. This function can then be used to test if a given sequence yields favorable
contacts when threaded to a certain structure — in one word inverse folding.

Since the implementation of a Tropsha-based potential is the core part of this
work, it will be discussed in section 2.7 in depth.

2.4.5 Profiling Potentials

Eisenberg and coworkers decided to “translate” the 3d-structures to a 1d-string,
using three parameters:

1. The total side-chain area being covered by any other protein atoms

2. The fraction of side-chain area being covered by polar atoms or water mo-
lecules

3. The local secondary structure

The environment strings were extracted from a database of known structures.
The resulting environment classes discriminate buried and exposed residues, and
further subdivisions yield 18 distinct classes for the 20 amino acids. The optimi-
zation problem was to find the most favorable alignment of a protein sequence
to the environment string, whereby classical alignment techniques came to use.
The resulting threading procedure has been successfully employed to identify
sequence-structure pairs.

2.5 Delauney Tessellation

The common meaning of “tessellation” is to arrange squares in a mosaic pattern.
The term derives from the Greek word “tesseres” which means four. Generally
tessellating can be understood as arranging regular polyhedra congruently (all
angles and sides are equal) in a plane with edges attached to each other. Only
three regular polygons tessellate in the Euclidean plane: triangles, squares and
hexagons (see figure 2). By extension, space or hyper space may also be tessella-
ted.

The Delauney triangulation tessellates a set of points in R? in the sense of filling
space with tetrahedra. The Delauney triangulation is computed via its dual, the
Voronoi diagram.
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FI1GURE 2: Tessellations in two dimensions.

2.6 Delauney Triangulation and Voronoi Diagrams
2.6.1 The Voronoi Diagram

Given a set S of n distinct points in R¢, a Voronoi diagram is the partition of R?
into n polyhedral regions vo(p), (p € S). Each region vo(p), called the Voronoi
cell of p, is defined as the set of points in R? which are closer to p than to any
other points in S, or more precisely,

vo(p) = {z € R*|dist(z, p) < dist(z,q)Vq € (S —p)}

where dist is the Euclidean distance function. The set of all Voronoi polyeders
forms a cell complex. The vertices of this complex are called the Voronoi vertices,
and the extreme rays (i.e. unbounded edges) are the Voronoi rays.

For each point v € R?, the nearest neighbor set nb(S,v) of v in S is the set
of points p € S — v which are closest to v in Euclidean distance. In order to
compute the Voronoi diagram, the following construction is very important. For
each point p in S, consider the hyperplane tangent to the paraboloid in R¢*!:
Tqy1 = 23 + - -- + 27 . This hyperplane is represented by h(p):

d d
D P} = D% + 2ara =0
7j=1 7j=1

By replacing the equality with inequality > above for each point p, we obtain
the system of n inequalities, which we denote by b — Ax > 0. The polyhedron
P in R¥*! of all solutions z to the system of inequalities is a lifting of the Voro-
noi diagram to one higher dimensional space. In other words, by projecting the
polyhedron P onto the original R? space, we obtain the Voronoi diagram in the
sense that the projection of each facet of P associated with is exactly the voronoi
cell vo(p). The vertices and the extreme rays of P project exactly to the Voronoi
vertices and the rays, respectively.
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2.6.2 Delauney Triangulation

Let S be a set of n points in R?. The convex hull conv(nb(S,v)) of the nearest
neighbor set of a Voronoi vertex v is called the Delauney cell of v. The Delauney
complex (or triangulation) of S is a partition of the convex hull conv(S) into the
Delauney cells of Voronoi vertices.

The Delauney complex is not in general a triangulation but becomes a triangula-
tion when the input points are non-degenerate, i.e. no d+ 2 points are cospherical
or equivalently there is no point whose nearest neighbor set has more than d + 1
elements. The Delauney complex is dual to the Voronoi diagram in the sense that
there is a natural bijection between the two complexes which reverses the face
inclusions.

There is a direct way to represent the Delaunay complex, just like the Voronoi
diagram. In fact, it uses the same paraboloid in R¥*! : x4, = 22 4+ --- + 22. Let
f(x)=2t+---+ 22, and let p = (p; f(z)) € R for p € S. Then the so-called
lower hull of the lifted points represents the Delauney complex. More precisely,
let

P = conv(S) + noneg(e?*!)

d+1 js the unit vector in R¢*! whose last component is 1. Thus P is the

where e

unbounded convex polyhedron consisting of conv(S) and any nonnegative shifts
by the “upper” direction r. The nontrivial claim is that the the boundary complex
of P projects to the Delauney complex: any facet of P which is not parallel to
the vertical direction 7 is a Delauney cell once its last coordinate is ignored, and

any Delauney cell is represented this way.

Considering a set of point in R?* the Delauney triangulation describes an algorithm
to decompose the convex hull of these points into tetrahedra.

2.6.3 The qhull Algorithm

As previously described, the first step in generating the tessellation built from
the irregular tetrahedron is finding the convex hull, which is the smallest convex
set of points containing the entire set. The hull is represented by a set of facets
and a set of adjacency lists giving the neighbors and vertices for each facet. In
R? facets are triangles and ridges are edges. The Delauney triangulation in R?
is calculated from a convex hull in R¢*! by lifting the points to a paraboloid by
adding the sum of the squares of the coordinates and computing their convex
hull, the set of ridges of the lower convex hull is the Delauney triangulation of
the original set.
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FIGURE 3: Voronoi diagram of a set of points in 2d: The Delauney triangulation can easily
be computed via its dual, the nearest neighbors of each Voronoi vertex are connected in the
Delauney diagram. Voronoi cells are shown with dashed lines.

The ghull algorithm [11] is a variation of the randomized incremental algorithm,
employing a constructed additional point at the hull to decide which facet belongs
to it. The point is outside the facet if it is above the set and in the ghull variation
of the original version, the point is not created randomly, but at the furthest
distance from the outside set. This method is used in the program ghull which
is publically available via the Internet ). It has been shown empirically [11] that
this algorithm is especially efficient and well suited for a 3d set of points.

This algorithm of triangulation can be applied to any set of points in space,
always objectively describing neighborhood. Representing amino acids of a poly-
peptide chain by an atom (e.g. C* or CP) leads to a regular set of points in 3d
space, that can be tessellated applying the rules described above. The Voronoi
polyhedron is now the region around an atom, each side describes a contact to
a neighbor. The underlying Delauney simplices are irregular tetrahedra with an
amino acids at each corner. This diagram can be employed to describe contacts
of amino acids objectively in 3d space.

DURL: http://www.geom.umn.edu/software/download/qhull . html
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2.7 Empirical Protein Potentials from Delauney Tessella-
tion

2.7.1 Four Body Contact Potentials

Based on the fact that four neighboring points in space form an irregular tetra-
hedron, applying the Delauney tessellation to a set of points in 3d results in a
contact potential. The likelihood of finding a distinct set of labeled points in this
set can be expressed as:

fijki

Dijkl

(4)

¢ijr1 = log

where 4, j, k, [ are four amino acids, f;;x is the observed normalized frequency of
occurrence of a given quadruple, and p;;; is the a priori expected frequency of
occurrence of a given quadruple. So g;;x; is a measurement of likelihood for finding
four distinct amino acids in a simplex, namely a log-likelihood. The observed
frequency fi;w is calculated by dividing the total number of occurrences of each
quadruple by the number of all observed quadruples.

Pijk = Caa;a,a (5)

where a;, a;, a;, and a; denote the individually observed frequency of occurrence
of each amino acid residue. That is the total number of occurrence of a distinct
amino acid type divided by the total number of residues in the dataset. C' is
the combination factor, acounting for the fact that replicated residue types are
underestimated due to permutability. C' is defined as:

4!
I
with n being the number of distinct residue types in a quadruple and ¢; is the
number of amino acids of type 1.

C (6)

Applying this procedure to a predefined set of experimentally derived protein
structures leads to a potential of mean force. The calibration dataset has to be
selected with care, since this selection determines the discriminative power of the
force field. Parameters like the protein type (e.g. globular, membrane, soluble
etc.), the type of backbone atom used for tessellation and any kind of selection
of tetrahedra (i.e. filtering) have to be kept constant for the parameter set.

2.7.2 Energy and z-score

Statistical Analysis of the Delauney tessellation of a protein yields the ¢ factors
for the occurring quadruples as the likelihood of finding this particular contact
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within the structure. Based on equation 4, it is possible to define the energy of
a sequence x on a fold ¥ as the sum over the log-likelihoods of all contacts that
occur in :

W(ﬂ?,’(/)): Z Gcontact (7)

contacts
where geontact 1S the statistic likelihood of a quadruple.

However since the determination of the ground state for each sequence would
require to solve the folding problem, it is not possible to normalize the energy
function. But defining a quantity called z-score as an energy separation between
the native fold and the average of an ensemble of misfolds in the units of standard
deviation of the ensemble, can be used for constructing an energy scale by which
conformations between different sequences can be compared. Following Sippl [55,
13, 56, 57] we define

W(z,¢) — W(z)

Ow (z)

z(z, ) = (8)

where W (z) is the average energy of sequence N in all conformations of a database
and ow (z) denotes the standard deviation.

The database has to be a source of alternative conformations for the sequence
S with length n. If the database size x of possible structures is set to a fixed
number, the number of possible decoys is a function of the sequence length. So
for the limit [ — N the database becomes insignificant. This problem has been
circumvented by the construction of a “polyprotein” by linking all structures that
are initially constructed for the measurement of the log-likelihood.

The sequence of the protein to be tested is slid along this aggregate of proteins
from the N- to the C-terminus of the structural library amino acid by amino acid.
For each aligned structure a z-score is calculated and counted as “misfold” to the
ensemble, therefore it does not make too much sense to use a member of the
dataset for testing the threading capabilities of the potential via the z-score . If
n ~ 40.000 is the length of the poly-protein, n — [ missfolds can be constructed.
Since n > [ this number of sequence-structure pairs is in the magnitude of the
poly-protein length. This computational brute force attack is sufficient if it is not
necessary to have gaps within the sequence-structure alignment. Otherwise more
sophisticated techniques must be used.

An experimental test of the z-score [67] using thermodynamic data could demon-
strate the definite significance of the scale. A z-score range from 15-30 for small
native proteins could be observed. The magnitude of these scores shows the need
to improve existing potentials. The scores derived form existing potentials are in
range of 5-20, so they are too low.
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2.8 Reduced Alphabet Potentials

Especially when asking for the origins of life it seems naturally to assume that
prior stages of todays cells did not use the whole repertoire of 20 amino acids.
Hypothesis about the origin of the genetic code postulate a reduced alphabet size
as well since complexity always developed in steps.

On the other hand restrictions in alphabet size dramatically changes the energy
landscapes, that give rise to the folding kinetics [66]. Considering the popular
two-letter approximation:

H = {A,C,I,LL,M,F,W,Y,V}
P = {R,N,D,E,Q,G,H,K,P,S,T}

it appeared that additional complexity is unavoidable. It has been shown by
experiment that a protein domain (SH3) could still fulfill function when restricted
t0 95% I, K, E, A and G. This additional complexity must have been inevitably
for fine tuning, otherwise it would be difficult to justify the use 20 letters in
contemporary translation mechanisms.

An important feature for empirical potentials arising from reduced alphabets is
the fact that the number of parameters is reduced dramatically, what leads to
better statistics for observing particular contacts. The problem of known reduc-
tion schemes classifying the 20 amino acids is a lack of objectivity. The number
of possible properties is enormous and largely “chemical” knowledge is applied,
which mostly means any combination of parameters like hydrophobicity, acidity
or charge. Therefore the classification depends more than less on the taste of the
author.

Examples of coding are for instance the Crippen scheme (see page 13) or the one
taken from Goldstein et al. [23], using 6 letters for coding (reffered as 61):

TABLE 1: coding scheme for the 6 letter alphabet

C

FYW
HR K
NDQE
STPAG
MILV

S » I O

The coding used by Crippen and this 6 letter alphabet shows no relation, both
authors use different biophysical properties for grouping the amino acids.
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{1-1-1-1} {2-1-1} {2-2} (3-1} {4}

FIGURE 4: The five distinct Delauney classes as introduced to define the neighbor-
hood in the amino acid chain for the simplices. The classes from left to right are:

class 0 all four residues are distant from each other eg..1-3-5-7
class 1 two residues are consecutive, the rest is distant  e.g. . 1-2-5-7
class 2  two pairs of neighboring residues eg..1-2-5-6
class 3 three amino acids are consecutive, one is distant e.g. . 1-2-3-5
class 4 all residues are consecutive eg..1-2-34

For the analysis of sequence-structure correlation five additional classes were in-
troduced, grouping the contacts according to their chain position of the parti-
cipating residues (compare [68]). These Delauney classes pay respect e.g. to the
steric hinderance of certain contacts of consecutive residues. Information about
local secondary structural properties is obtained, therefore the protein does not
appear as gas like agglomerate any more. This helps to improove the biophysical
correctness of the model to a great extend. Figure 4 shows how the classification
is constructed.



3 METHODS 22

3 Methods

3.1 Computational Details — Overview

The practical part of this work involved the development of tools for calibrating
a knowledge based potential, applying the tessellation as proposed by Alexander
Tropsha. Since earlier studies of our group revealed a lack of consistence when
ranking sequences optimized by the original Tropsha potential with the PROSA
package extensions to the promising statistical geometric approach were intended
to be made (for details see section 4.3.2).

Performing the tessellation for a given set of points in 3d space always generates
per definition the convex hull. This of course leads to a very smooth surface for the
protein structure in the model. To circumvent the artifact a particular filtering
procedure is applied to the tessellation. Tropsha’s implementation is lacking this
extention.

In the original version of the potential C* atoms were used for representing a
residue in the poly peptide chain, in contrast PROSA uses C?, arguing that these
coordinates are more sensitive to the side chain orientation. Therefore it seemed
natural to include this option in the calibration, interpolating a wvirtual C? for the
glycine residue, since this amino acid lacks that position.

Another term used by PROSA is paying respect to the difference between residues in
the bulk and at the surface. This extension originates in the profiling approaches,
introduced by Eisenberg et al. [8, 9, 10] An energy term for the surface can be
combined via a scaling factor with the contact term.

The steps needed for the calibration of a tessellation potential and the required
tools are listed below.

1. Determination of the database content from the list as described at [31] and
downloaded pdb-files from EMBL 2.

2. Generation of a proper dataset by pre-processing of the raw pdb-files.
Calibration of the desired potential (either contact or surface potential).
Post-processing of the parameter set.

Calculation of z-scores for the protein chains building the database.

S A

Identify proteins chains not being globular, soluble structures and exclude
them from the initially used pdb sub-set.

7. Recalculate potentials for the cleaned dataset.

2)URL: ftp://ftp.embl-heidelberg.de/pub/databases/protein extras/pdb_select/
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3.2 Selection of a Representative Dataset

For the proper calibration of a knowledge based potential it is crucial to select
a representative non-redundant dataset. The Protein Data Bank (PDB) is an
archive of experimentally determined three-dimensional structures of biological
macromolecules, serving the global scientific community [6]. The archive contains
atomic coordinates, bibliographic citations, primary and secondary structure in-
formation, as well as crystallographic structure factors and NMR experimental
data. The entries are of a specific defined format 3 structured in a header section
and a section containing the coordinates.

In 1998 the pdb database contained about 8.000 entries of atomic coordinates for
proteins (according to the pdb-newsletter). This number however does not repre-
sent the number of different structures, which is by far smaller, because there is a
lot of redundancy within the database (e.g. more than 70 structures of immuno-
globulins can be found). Statistical analysis however require non-redundant data,
so Hobohm et al. [49, 30] developed an algorithm to extract a subset with maxi-
mum coverage and minimum redundancy. The protein structures in the selected
dataset had to fulfill the following requirements:

1. No pairs of proteins in the set have more than a prescribed level of sequence
similarity.

2. The experimental quality meets certain criteria

3. The chains should not be shorter than a certain length

The question if two proteins are “close to each other” means that they are neigh-
bors in sequence space. To generate a non-redundant subset one has to align each
chain with all other members of the database. The arbitrary cutoff of sequence
similarity is set to 25%. It has been shown by [49] that the exact value of this
cutoff has only a weak influence, but for achieving a set of sequences that are
widely spread in sequence space, the boundary has to be low. Another import-
ant point is that only high resolution structures are accepted as members of the
selected set. This list is updated periodically and free accessible at EMBL 4.

3.3 Preprocessing of the Database

Prior to calibration of the potential the pdb-files were preprocessed with several
tools, resulting in files only containing the amino acid backbone.

3)URL: http://pdb.pdb.bnl.gov/pdb-docs/Format.doc/Contents_Guide_21.html
YURL: ftp://ftp.embl-heidelberg.de/pub/databases/protein extras/pdb_select/
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First the files were split into separate files for each protein chain. The name of the
chain (as given in the 21° column of the ATOM-sector of the file, “_” if only one
exists) was added to the file name. The chain was represented by the backbone
atoms (C, O, N, C, CA, if present) for a reduction of the file size. Since identical
protein chains within one protein would distort the statistics these chains were
ignored, if they are fully identical (sequence and length are equal). For theoretical
models and models yielded by NMR-spectroscopy only the first model has been
taken into account, discarding the rest. Furthermore nucleotides were omitted,
and the chain is only processed if more than 30 atoms are present, since ghull
needs more than 5 points to calculate a useful tessellation (either C* or C# atoms
are processed). If an amino acid shows alternate locations (indicated by a letter
in column 16 of the pdb entry) only version ‘A’ is used, all are others ignored. It
is also an option to check for gaps within the chains, but the computational cost
is quiet high, so this step is done while reading the files finally for tessellation.

TABLE 2: The June 98 — release of the pdb-select database shows the following characteristics:

Number of pdb files: 874
Total number of chains: 1663
Total no. of Amino acids: 357582
Average no. of chains/file: 1.9
Average no. of amino acids/file: 409
files rejected: 47
No. of C? contacts: 613,170
No. of C? contacts (unfiltered): 955,939
No. of C* contacts: 557,252
No. of C* contacts (unfiltered): 1,019,126
No. of contacts (C? filtered ): 8,847
No. of contacts (C* filtered ): 8,830

3.4 Tessellation and Counting of the Statistics
3.4.1 Construction of a Virtual C# Atom
To enable calibration and calculation of scores for C? atoms of a protein it is

necessary to construct a virtual atom for glycine residues due to a lack of this
position.
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From figure 5 we see that the

= C°N  C°C
X = S 9)
ICoN|  |C°C]
N N bd AN « Cal)
G SRS R L) (10)

I X|  |C°N x C°C)|
(11)

Equation 10 gives Cartesian coordinates for the “virtual” atom constructed. The
values for 4 and [ were measured at an alanine residues using VMD [35] and given
in Angstrgm.

FIGURE 5: Construction of a virtual C? by / application of simple vector calculation and para-
meters obtained from alanine. The vector X in equation 9 is between C*C' and C*N on the
dashed line. The parameters h = 0.88 and [ = 1.24 were measured.

3.4.2 Counting Statistics

If one wishes to recored all possible contacts between 20 different amino acids,
20* = 160,000 terms would be generated. Assuming permutation symmetry of
the vertices of each tetrahedron, the resulting categories reduce to a manageable
amount of 8,855 different 4-tuples. As can be seen in table 2, not all possible con-
tacts occurred in the database, since it is still very limited. The average number
of contacts per quadruple is about 69.

Counting of the contacts is performed seperatly for all the various modes of
tessellation (atom type C* or C, filter on/off, alphabet size 20 or 6 letter) and
the resulting parameters are written to an ASCII file. For calculation of the g;;
factors the relative frequencies of the amino acids have to be estimated as well.
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Since not all 8,855 possible permutations of the amino acids tuples were observed,
some log-likelihoods were calculated to be -Infinty. Those contacts were set to the
minimum observed likelihood of that class in a post-processing procedure. A more
rigorous procedure for this correction of sparse data still has to be developed.

3.4.3 Filtering the potential

Globular proteins are not necessarily convex. The tesselation hence may contain
very flat tetrahedra or tetrahedra with unusual long edges. This problem arises
from the construction of convex hull for the set, and is best illustrated by direct
comparison of the surfaces obtained for filtered and unfiltered tessellations of a
protein. As an example this was performed for the C* atoms of Thioredoxin (pdb-
id: 2trx), the result is shown in picture 6. It can be seen, that all surface properties
are lost without the filter. The filtering system introduced to the original potential
identifies “bad” contacts by two parameters:

e The length of the edges of a tetrahedron must not be longer than 9.5 A,
what is a compromise due to loss of contacts, compare [41].

e Avoiding flat tetrahedra by setting a maximum circumsphere radius of 9.0 A
for the tetrahedra. A small radius suggests that the four residues are packed
tighter.

Munson et al. [41] showed, that though applying this filter to the tessellation
all relevant contacts still appear in the set. Unfortunately this true improvement
introduces a parameter to the otherwise un-ambiguous approach.

3.4.4 Surface Generation

One of the most important innovations to the Tropsha potential is the use of a
special term for surface contacts. This was mainly motivated by the observation,
that with this potential optimized sequences showed unacceptable bad surface
scores when cross-checked with the PROSA package.

The biophysical foundation is that proteins strongly interact with the surrounding
solvent. Eisenberg and Bowie [8, 9, 10] demonstrated that solvent exposure can
be used as a sensible parameter for the modeling of energetic features of protein-
solvent systems. Reluctantly due to the mobility of solvent molecules only a small
fraction of them can be monitored in X-ray experiments. Because of this lack of
experimental data, an indirect approach has to be considered. Again employing
the means of computational geometry can help to discriminate bulk and solvent
phase.
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FI1GURE 6: Comparing the filtered and unfiltered tessellation in the example of 2trxA. The
red balls represent C® atoms, the green tube mimics the backbone of the protein. The right
pictures shows the surface as generated by the Delauney Tessellation without any selection of
tetrahedra. The left side was tessellated with the filter procedure as described above.

Contacts in 2d are unambiguously defined by the points of a triangle, therefore
three amino acids form a contact that can be interpreted as surface. Trivially
each tetrahedron generated by tessellation of the protein exposes 4 surfaces to the
surrounding, either another tetrahedron of the package or the molecular surface
as exposed to the solvent. Each triangle in the complete set only being member
of one single tetrahedron therefore is considered as part of the surface.

Thus using a similar procedure as for obtaining the counting statistics of the
tetrahedra can be applied to surface triangles, is, to those triangles that are
contained in only one tetrahedron. member of the tetrahedra. The result again is
a parameter set containing log-likelihoods for a specific triple of amino acids to
appear in neighborhood and at the surface. The influence of filtering the surface
is extremely high as expected , since a smoother surface provides fewer different
contacts. The combined potential is defined as:

Wcomb — Wcont + ,)/Wsurf (12)

with W™ being the contact energy and W**/ representing surface energy for
the appearance of three particular residues at the surface. The scaling factor ~
weighs the the different influence of bulk and surface terms.

The surface energies as obtained by summation of all individual surface contact
parameters is being combined with the contact energy via a scaling factor. This
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factor pays respect to the order of interaction, and was a priori set to be 1. To
test this assumption, the parameters are varied and plotted against the scores,
the result is shown in figure 13 of section 4.

3.5 Iterating the Potential to Self-consistency

The nature of the pdb-select dataset makes it necessary to post-process the ca-
libration dataset. Some of the z-scores for the native proteins in pdb-select were
unacceptably bad when calculated with the PROSA II package (i.e. high in terms
of the PROSA scale which is inverted). These files were removed from the calibra-
tion dataset, see table 3 for details.

Plotting z-scores from PROSA against the chain lengths (see figure 7) lead to the
exclusion of some pdb-select entries because they obtained a score that did not
show the observed dependency of the score and the chain length: usually longer
chains get better scores, a linear curve-fit shows good accordance, those files being
outliners were excluded as well and added to table 3.

Inspection of the excluded files showed in most cases that the basic assumption
of globular, soluble proteins has been violated: in table 3 four main explanations
are recorded to be the reason in most cases:

1. Membrane proteins are not soluble or globular in most cases: They have
large parts that are surrounded by the hydrophobe part of the membrane.

2. Hydrophobic residues are also exposed on the surface if the sequence is not
a complete protein.

3. The protein is part of a complex with other molecules(e.g. nucleic acids, or
large prosthetic groups)

4. Another problem arises from the fact, that the pdb-select contains single
chains from multi domain proteins. Viewing these chains isolated leads to
the observation of denaturated proteins since it is easily possible to imagine
that chains touch each other in hydrophobe regions. These regions would
of course be water exposed after separation of the chains. This is especially
important for surface potentials.

5. The structure is very long stretched and rod-like. Some of the entries con-
tained coordinates for isolated a-helices, that did not obtain a good surface
score.

Figure 8 shows a few examples for these artifacts.
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The classification scheme used in table 3 is more than less arbitrary, but ex-
plains the outliner quite well. There is an overlap in the categories, the most
obvious reason has been assumed to be relevant. The chosen cut-off value of sco-
res (zprosa > —3) considered as “bad” was arbitrary, but under respect of a
minimum in loss of files: see figure 9 for details.

Calculating the scores for the dataset using the tessellation potential yields a
list similar to the one for calculated with PROSA. For convenience the cut-off was
again set to be 3: Most files are the same, some were identified as “bad” that
were considered ok by PROSA. This can be understood easily because the cut-off
is taken arbitrary, and numerical values of the z-scores are of course not directly
comparable between the two potentials.

This consistency is very promising, and a cross-check for the dataset within the
tessellation potential showed a similar result. It could be observed, that especially
the small proteins with bad scores were identified by both potentials in good
correlation.

Proteins showing bad scores in one of the two potentials were excluded from the
calibration dataset, since in all cases an obvious reason could be found why the
score was bad. For future database procession an iterative consistency check as
performed here will be done: folds showing a score smaller than a cut-off value
are discarded (under consideration of the chain length dependency).
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FIGURE 7: PROSA z-scores for proteins of the pdb-select database. Data points shown as dia-
monds represent proteins, that have a z-score too low for their length, since it has been observed,
that usually longer chains yield better scores. Those points drawn as cross were excluded from
the data set because they exceed the chosen threshold. The parameters from the regression are:
y = —0.014352 — 4.966
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laa0l

FicURrE 8: Examples of protein structures that should be excluded from the calibration data

set:
1a0a: This chain has a DNA ligand in its native structure

laa0: The structure is a long rod-like a-helix

11pb: The pdb-select contains isolated chains (here shown by its secondary structure), that
expose hydrophobic residues if taken from the nativ counterpart (shown in blue licorice
(hydrophobic regions are coded red in this plot)

2por: Membran proteins are excluded a priori
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TABLE 3: Proteins with PROSA z-scores higher than -3, the limit was chosen because a stricter
judgment would result in a big loss of files (see figure 9 for details). Proteins with very low
z-scores in the tessellation potential were excluded as well.
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TABLE 3 continued.
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FIGURE 9: Distribution of the z-scores: The line shows the number of files excluded from the
pdb-select database as a function of the treshold of the z-score (Data refer to the June 1998
release of the database)
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3.6 Inverse Folding Using Knowledge-Based Potential

As stated initially, the hyper-astronomic size of sequences map into distinct areas
of stable folds. The number of possible sequences exceeds the number of structures
by far [3, 2|. Proteins frequently adopt similar 3d-folds even if they are completely
unrelated on the sequence level [46]. We define the neutral set of a native structure
1 to be the set of all sequences that fold into 1 according to the z-score criterion:

SW) ={z € Q| 2(x,¢9) = 27} (13)

where z* means the z-score threshold level that must be reached by a sequence
to be considered native-like. Inverse folding aims to identify sequences that fit
into a distinct conformation, using an energy parameter as a guide (i.e. z-score ).
The solution of the inverse folding problem is by far more feasible than folding a
sequence without a known structure, since shape space dimensions are immense,
and optimizing a structure exceeds the computational possibilities by far and
often structures derived from energy minimization, Monte Carlo and MD studies
violate basic steric constrains. The optimization problem is very easy from the
computational point of view:

Generate new sequen¢
Generate Start Sequenge by point mutation

..WRTACCAQ.... ..WYTACCAQ....
Thread new sequence|to
score increased structure
? 7

@

Calculatez - score

FI1GURE 10: Schematic drawing of inverse folding using an adaptive walk to find the optimum

An adaptive walk, the simplest heuristic optimization algorithm, is sufficient.
That means one repeatedly tries random point-mutations on the test-sequence,
that are only accepted if they lead to an increase of the z-score. This would
normally end up in a local minimum, but in practice a target z-score z* is to be
reached, in most cases that of the wild type sequence. For consistency sequences
optimized with one type of empirical potential should obtain a good score with
other methods of mean force as well. This has been shown to be true for the
PROSA and NN potentials. For the tessellation potentials this test will be reported
in the following
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4 Results

4.1 Validation of the Potential
4.1.1 Re-Evolution with New Database

First a comparison of z-score calculated with the original data was done (table 4),
showing that basically in most of the cases for the five proteins (which were
arbitrarily selected) we obtain a better score within the new potential. This can
be understood by the consideration that A.Tropsha used about 100 protein chains
for the calibration of his set, while in our case about 700 chains were tessellated
for the calibration. In general, if more information is provided as input for the ¢-
factors, the energy contributions increas. All scores were calculated for C* atoms
and the same PolyProtein (poly10k.pdb). To apply the filter to tessellations
using the original parameter set is incorrect because the the filter procedure was
not used for the calibration by Tropsha.

TABLE 4: Comparison of the contact potential based z-score for new derived C* tessellation
potential data (Eiess, 2tess) With parameters obtained from original parameters as provided by
A. Tropsha [54, 68] (EtTropshas 2Tropsha) for the six and 20 letter alphabets. z-scores printed
slanted don’t show the enhancement

‘ Name ‘ Alphabet | filter ‘ Etropsha ‘ ZTropsha H FEitess ‘ Rtess ‘

201 on 6.514 4.627 || 14.780 | 6.315

1bpi (58) off 3.125 3.616 4.709 | 3.360
61 L_°n 7.805 4.618 || 17.845 | 6.766

off 5.845 2.943 8.149 | 3.166

201 on 9.823 4.709 || 16.586 | 5.623

2trxA (108) off 29.944 7.578 || 27.137 | 7.850
61 on 13.370 5.322 || 21.356 | 5.675

off 38.622 8.460 6.097 | 8.399

201 on 2.657 3.791 4.148 | 4.382

tbar (110) off 0.609 3.860 2.044 | 4.026
61 o8 4.836 4.303 4.019 | 3.263

off 2.435 3.480 0.502 | 3.168

201 L_°0 1.221 2.814 || 10.589 | 3.066

1hab (141) off 14.592 5.242 9.524 | 5.061
61 on 1.499 2.343 || 12.461 | 3.962

off 17.620 5.907 || 15.115 | 5.786

901 OB 4.861 2.774 || 15.178 | 5.097

1hijt (153) off 38.733 6.965 || 37.426 | 7.357
61 o8 4.639 2.668 9.456 | 3.603

off 42.733 8.646 || 39.595 | 8.665
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As observed for the original parameters, reduced alphabets lead to better z-scores
because of the improved statistics, but the effect of improvements are not so high
as in the 20 letter case. Remarkably there was only one example where a filtered
potential using the new parameters did not show an enhancement (1bnr, 61).
Figure 11 shows schematic drawings of the protein structures.

FIGURE 11: Pictures of the sample proteins used for the comparison of C* and C? potenti-
als. The proteins are (starting from left top): 1hjt: sperm whale myoglobine, 1bpi: bovine
pancreatic trypsin inhibitor, 1hab haemoglobin, 1bnr barnase).
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4.1.2 Enhancements by extensions

The first innovation is the implementation of C? atoms as representatives for
the amino acid chain. The enhancement achieved is reasonable due to the fact
that C? is oriented sterical towards the side chains of the backbone. Table 5
shows the direct increase of the z-score if switched from a C® to a C? calibrated
potential, regardless of the alphabet used. The same is true for the surface score.
In all the cases the pII3.0.short.pdb PolyProtein was used, all calculations
were performed using the filter.

TABLE 5: Comparison of C* and CP based potentials used for calculating z-score of native

sequences
(leIlllgth) alphabet | atom Econt Zeont Esurf Zsurf Ecomb Zcomb
201 Ce |14.780 | 6.315 || -2.454 | 1.606 || 12.326 | 5.510

1bpi CP 119.161 | 6.758 || -1.110 | 2.172 || 18.051 | 6.537
(58) ol Ce | 17.845 ] 6.766 || -0.558 | 1.792 || 17.287 | 5.837
CP 120.729 | 6.637 || 0.722 | 2.538 || 21.451 | 6.263

901 C* ]16.586 | 5.623 || 6.216 | 5.909 || 22.802 | 7.224

2trxA CP 137350 8.311 | 1.707 | 4.892 || 39.056 | 9.178
(108) 6l C* |21.356 | 5.675 || 10.352 | 6.789 || 31.708 | 6.998
CP |46.400 | 8.544 || 6.750 | 6.477 || 53.150 | 9.322

201 Ce 4148 | 4.382 || -0.323 | 2.588 || 3.826 | 4.861

lbnr CP 111307 ] 5.432 || 2.423 | 2.461 || 13.730 | 5.779
(110) ol Cce 4.019 | 3.263 || -1.007 | 1.474 || 3.012 | 3.036
CP 8.436 | 3.646 || 4.232 | 3.318 || 12.668 | 4.119

201 Ce |10.589 | 3.066 || 2.979 | 5.139 || 13.567 | 4.811

lhab CP 122972 ]5.306| 1.216 | 5.679 || 24.188 | 6.661
(141) ol Ce |12.461 | 3.962 || 9.440 | 6.976 || 21.901 | 5.769
CP 128.708 | 5.640 || 8.420 | 7.001 || 37.128 | 6.935

201 Ce | 15.178 | 5.097 || 13.374 | 6.541 || 28.553 | 6.990

1hjt CP 135230 7.296 || 16.614 | 7.151 || 51.844 | 8.675
(153) 6l Ce 9.456 | 3.603 || 18.826 | 8.184 || 28.282 | 5.569
CP |33.480 | 5.637 || 22.059 | 9.000 || 55.539 | 7.138

In table 6 an exhaustive variation of all possible options has been performed.
First C* scores were calculated for the original potential. The parameters were
originally derived not using a filter procedure by Tropsha et al. [54, 68, 69]. If
filtering is applied to the tessellation while z-score evaluation the score decreases.

The newly calibrated potentials were employed for the calculations in the second
table below. Generally C? calculations provide better scores as C%, but for C* the
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combined score is lowered by the surface score. The best z-score reached is in the
range where scores of native proteins should be, in accordance with experiment.
In all C? calculations the use of the combined potential improoves the z-score .

TABLE 6: influence of all extension terms on the z-score of 2trxA: All scores were calculated
using the poly10k.pdb - PolyProtein. The first table shows scores for the original potential with
variation of filter and alphabet size. In the second table the parameters used were generated
under identical conditions as the z-score calculation.

‘ Atom ‘ filter ‘ Alphabet ‘ E ‘ zeont ‘

0 201 [ 29.944 | 7.730

1 9.823 | 4.694

CA 0 61 38.622 | 8.639

1 13.370 | 5.390

| Atom | filter | Alphabet || Econt  2Scont || Esurs  Zsurs || Eeomb  Zeomb |

CA 0 901 6.598  8.616 || 18.472 4.136 || 55.070 8.185
1 16.868 5.977 || 6.231  5.329 || 23.099 7.125
CA 0 6l 36.598 8.616 || 18.472 4.136 || 55.070 8.185
1 21.639 6.076 || 10.372 8.193 || 32.010 7.636
OB 0 501 28.267 8.237 || 30.755 5.769 || 59.023 9.206
1 38.288 8.228 || 1.770  4.989 || 40.058 9.143
OB 0 6l 39.244 8.831 || 23.332 4.877 || 62.576 9.063
1 46.726 8.488 || 6.683  6.479 || 53.409 9.280

4.1.3 Sequences Identify Their Structures

One important question concerning the potentials quality is if a natural sequence
recognizes its native structure, and discriminates a different fold [29]. This feature
can be tested by assigning pairs of proteins with the same length the sequences
of each other. Table 8 shows the results for the corresponding calculations. The
protein examples were essentially taken from [41].

The calculations were all performed using the 20-letter alphabet and using a po-
tential calibrated for the pdb-select database released in July 1998. The potential
as well as the z-score were generated applying the filter to the tessellation for
the C* atoms of the proteins. It can be seen, that in the given range of sequence
lengths between 36 and 293 amino acids there is a severe discrimination between
the corresponding pairs. The combined surface and contact potential show almost
always an improvement of the distinction.

Table 7 shows an extended approach to thread natural sequences of length 108 as
well as random sequences to the 2trx structure of Thioredoxin. In all observed
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cases the scores for any other than wild type sequence was out of the range of
being considered wild-type like. The maximum difference to the wild-type z-score
was about 10.

The comparison with PROSA score differences shows, that there is still room for
improvement at the tessellation potential. The differences between native and
non-native score are generally more distinct if PROSA was used for threading.

TABLE 7: Threading sequences of length 108 through 3d-structure of 2trxA
‘ Name H Econt ‘ Zcont H Esurf ‘ Zsurf H Eecomp ‘ Zcomb ‘
2trxA || 16.432 | 5.644 | 6.260 [ 5.906 [| 22.693 [ 7.213 |

ledp || -12.652 | -0.752 || -4.688 | 1.316 || -17.340 | -0.081
lcew -9.128 | -0.129 || -8.133 | -0.925 || -17.261 | -0.487
1chj -19.448 | -0.352 || -3.254 | 0.825 || -22.702 | -0.007
1cih || -14.071 | 0.284 || -6.330 | -0.253 || -20.401 | 0.148
leri -16.575 | -0.213 || -4.723 | 0.137 || -21.298 | -0.132
irro -25.261 | -1.277 || -5.619 | -0.080 || -30.880 | -1.184
randl || -20.243 | -2.648 || -5.118 | -0.916 || -25.361 | -2.611
rand2 || -16.707 | -1.228 || -3.202 | -0.762 || -19.909 | -1.343
rand3 || -11.772 | -1.309 || -8.898 | -2.126 || -20.670 | -2.000
rand4 || -18.632 | -0.918 || -5.398 | 0.501 || -24.030 | -0.619
rand5 || -11.969 | -0.298 || -11.067 | -2.038 || -23.036 | -1.107

TABLE 8: For pairs of example proteins with the same sequence length z-score were calculated
for the native sequence of the structure and for the sequence belonging to the different protein
of equal length. A comparison of z-score shows, that each sequence is able to identify its native
structure and, combined potentials increase the discriminating power. The last columns show
PROSA scores, to facilitate comparison the negative score is shown here.

Sequence Zcomb Zcontact PROSA —Zcomb
PDBid. [l | A | B | A [ B | A | B
A: 1cbh 36 7.81 | -0.98 || 7.78 | -0.44 || 4.76 1.12
B: 1ppt 268 | 1.67 || -1.81 | 1.03 || -0.13 | 2.79
A: 1fdx 54 5.65 | -0.38 || 4.76 | -0.00 || 7.46 1.29
B: 5rxn -0.07 | 2.53 || -0.23 | 2.92 1.38 5.87
A: 1ubq 76 8.81 | -3.47 || 8.73 | -2.38 || 9.25 | -0.30
B: 4icb -1.25 | 6.32 || -1.29 | 5.26 1.05 | 10.06
A: 2trx 108 9.28 |-1.36 || 8.48 | -1.92 || 7.04 0.61
B: 1rro -2.43 | 6.08 || -2.20 | 4.87 || -0.13 | 10.88
A: 1rhd 993 3.67 | -0.59 || 2.88 | -0.34 || 10.29 | -0.46
B: 2cyp -0.51 | 2.23 |[-0.49 | 7.26 | 0.85 | 10.21
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FIGURE 12: Proteins with length 108: threading the sequence of these structures into the 2trxA
structures shows that the potential is able to recognize the correct pair. The proteins are:
(pdb-id’s starting left top) lcdp: Parvalbumin B, 1cew: cystatin, 1chj: cytochrome C, 1cih:
cytochrome C, lcri: cytochrome C, irro: rat oncomodulin, 2trxA: thioredoxin)
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4.1.4 Influence of the combining factor

Furthermore the weighting factor for the surface potential term has been te-
sted. The influence shows nothing unexpected: increasing the factor emphasis
the surface term inadequately until it is predominant. It is not appreciated to
overestimate the surface contributions, therefore the combining factor in further
calculations is set to 1. A plot showing the scores as a function of the factor for
four different proteins is shown in figure 13.

—— 1bpti.pdb
5 1bnr.pdb
6.000 _—-—- \\\\ - -~ 1lhab.pdb
~. — - — lthx.pdb

4.000 -

combined z-score

2.000 -

0.000 s
0 1 10 100 1000

Factors to combine surface and contact terms

FI1GURE 13: The variation of the combining factor shows nothing unexpected. First the contact
term is predominating, with increasing weight the surface term supersedes.

4.2 Visualization of a four point potential

The result of the calibration process is a set of log-likelihoods for the distinct con-
tacts. This (long) list of parameters contains all the information of the extracted
database. An analysis of this data can show that known biophysical properties of
proteins are indeed content of the empirical potential. For instance hydrophobe
interactions of certain amino acids have to yield a higher liklihood for finding
them in neighborhood.

The distribution of the g;;;; values is shown as histogram for the 201 alphabet
in figure 14. The plot is not scaled, therefore each peak represents the absolu-
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te frequency of occurrence. The hull over all peaks is approximately Gaussian,
with the maximum at 0 as expected. There are few outliers, indicating a good
correspondence with the model.

Figure 15 shows the distribution of likelihoods for the six letter encoded poten-
tial. Each Delauney class has its own plot. Classes 0 and 1 show a wide standard
deviation, in correspondence for contacts in distant chain regions. Only few ob-
servations could be made in class 4, what is reasonable since a contact of four
serial amino acids is unfavorable due to steric reasons.

occurance

500— —

0— it
-1 05 0 05 1 15 2
q(ijkl)

FIGURE 14: Distribution of g;jz; values: the z-score for the CCCC - contact(3.24) is omitted
since it is out of scale.

Long lists of parameters are ugly to look at and a lot of imagination is needed
to extract relevant information. Because there is no obvious way to plot 4d data
in a plane, I followed Munson et al. [41] and represented energies as graphical
arrays. The plot is organized in a square, each side displaying an amino acid. this
gives the first two of the four contacts. This huge square is further sub-divided
into alphabet-size times alphabet-size sub-squares, each standing for a particular
interaction of two residues, and partitioning the area into the contacts of four
amino acids. The energy for the contact is color coded and normalized to be
in a range between —1 and 1. For the representation all possible permutations
of arranging the alphabet within groups of four are displayed. There was no
observeable difference in the all-over pattern of the plot for C* and C? potentials.

The potential for the 20 letter alphabet is shown in figure 16, the color code in
figure 17. The alphabet was arranged to have the hydrophobe residues at the
beginning, therefor the down left corner shows the broad intensities of apolar
clustering. The most intense contact to be found is the CCCC-quadruple, what
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can be easily interpreted by disulfide bonds in the proteins. Clearly tetrahedra
with both hydrophobe and hydrophil residues are hardly found.

The 61 alphabet is shown for all the Delauney classes in figure 19 for the newly
calibrated potential and in figure 18 for the original Tropsha data. The patterns
are similar in general: Classes 0 and 1 show a pattern similar to the 201 represen-
tation. The classes 3 and 4 representing the other end of the scale are distinctly
different: e.g. v-clusters are highly favorable in class 0, whereas in class 4 they
are unlikely to occur. Biophysically very clear seems to be that a CCXX contact
(“X” stands for anf other amino acid here) in consecutive residues are hardly
found. A comparison with the 615t potential data plot from the original para-
meters (figure 18) shows mainly that the number of all contacts increased (the
overall plot is more intense in color) class 0 contacts for CCXX were additionally
found in the new dataset.
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F1GURE 15: Distribution of g;;z; values for the five Delauney classes of the 61 alphabet: class 0

means all residues are distant, class 4 means residues consecutive
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FI1GURE 16: The 20 letter Tessellation potential, calculated for C* atoms, using the filter pro-
cedure.

T T T
-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0

0.

F1GURE 17: Color coding as used in the plot of the potential
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FIGURE 18: Graphical representation of the 6l potential as provided by A. Tropsha [68]
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FI1GURE 19: Graphical representation of the 61 encoded potential derived from the pdb-select
dataset for C* atoms with filter applied. Each Delauney class is shown in a seperate plot,
starting with class 0 in the top left corner. All scores are normalized to fit the interval —1 <
Zqitks < 1.
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4.3 Inverse-folding
4.3.1 Example: Thioredoxin

The example used in the inverse fold calculation was the 2trx structure of Thio-
redoxin. The structure is represented with the superb resolution of 1.68A from
crystallographic data, the source was Esterichia coli. The asymmetric unit con-
tains two molecules, named “A” and “B”. It has been chosen due to the fact that
it is a well-known globular structure. The secondary structure as calculated by
stride [22] can be seen in figure 20.

Its biological function is electron carrier, it acts as electron donor in the reduction
of ribonucleotides and plays an important role in the dark reaction of photo-
synthesis. It has regulatory capacity on other enzymes by reducing their disulfide
bridges. The active form of Thioredoxin contains two cysteins, which are oxidized
to form a disulfide bridge, when reducing other S-S bonds. It is reactivated by
ferredoxin.

FiGURE 20: Secondary structure for the A molecule of Thioredoxin, as determined by
stride. Sequence (108 amino acids): SDKITHLDDSFDTDVLKADGALVFWAEWCGPCKMIAPILDEIADE-
YQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA
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4.3.2 Previous results

Checking sequences that were optimized to fold into a particular structure by an
adaptive walk using e.g. PROSA with the Tropsha potential showed a consistent
progression. But the main back-draw in the statistical geometry approach was
that if one took sequences that were optimized by the Tropsha potential and
calculated scores for these sequences with other kinds of potentials (e.g. PROSA)
they were considered as increasingly bad.

Viewing adaptive walks using the 61 potentials showed at least that PROSA accepts
the sequences as getting better (figure: 21), but the score reached is far from
native. For the 201 alphabet the situation is even worse, it seems that the scores
go worse while optimizing (figure 22). Especially the PROSA surface scores were
completely unacceptable bad. This was the observation, that gave rise to the use
of a particular surface term. Much better is the acceptance of PROSA optimized
sequences within the Tropsha potential (figure 23)

Prosa z—-score

615t z—score

FI1GURE 21: Data derived from the original potential as provided by A. Tropsha. The sequences
were optimized, using the 615t Tropsha potential, cross check with PROSA. The filter was applied
for tessellation, but not for calibration. The plot shows two runs, the surface score is shown as
dashed line, the normal line represents the combined scores.
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FIGURE 22: Adaptive walk using the original Tropsha potential. The lower curve shows the
PROSA surface scores, the upper curve shows the combined scores. The sequences were optimized,
using the 201 Tropsha potential afterwards cross check with PROSA. Filtering was applied for
tessellation, but not for calibration. Note: positive PROSA scores indicate very bad z-score
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FIGURE 23: Tropsha scores for PROSA optimized sequences: The potential data used was the
original Tropsha derived values. In both potentials C* was used for calibration, PolyProtein:
poly10k.pdb
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4.3.3 Gaining Significance

Probing the potential in a “real life” situation means to perform adaptive walks,
and check the resulting sequences in other force fields. An important criterion
to test is whether a native like score can be reached, and figure 24 shows that
the enhanced tessellation potential does this in a Hamming distance of about 50,
what is less than halve the sequence length for 2trx.

Figure 25 shows the same cross check of PROSA and tessellation sequences as des-
cribed before. It can be seen, that adaptive walks using the enhanced tessellation
potential now show increasing PROSA scores as well, though the PROSA-wild-type
score of the structure is still not reached.

30

z-score

. . . .
0 50 100 150 200
length of @daptive walk

100 150 200 250 300
length of @daptive walk

FIGURE 24: Adaptive walks performed for 2trxA using the tessellation potential:

The left plot shows adaptive walks using the 61 potential, the horizontal dashed line at 7.8
marks the z-score of the native sequence. The adaptive walk was performed using C? atoms,
filtering, PolyProtein: poly10k.pdb

The right figure shows adaptiv walks using the 201 alphabet, the horizontal line at 9.1 marks
the z-score of the native sequence. The walk was performed using the 201 potential, C# atoms,
filtering, PolyProtein: poly10k.pdb
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FI1GURE 25: The upper figure shows adaptive walks performed using PROSA to inverse fold
2trxA. CP atoms and combined scores were used in both cases of z-score calculation. Using the
poly10k.pdb-PolyProtein.

In the lower plot adaptive walks for 2trxA using the tessellation potential are shown. The cross
check was performed with PROSA. Conditions: C? atoms, filter on, 201 alphabet,
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5 Conclusion and Outlook

5.1 Summary

This work shows that extending the Tropsha four point potential provides signifi-
cant improvement in consistency and accuracy. The major goals were to superpose
a specific surface term and to implement C? atoms for backbone representation.
Checking the discriminative power of the potential as well as cross validation ex-
periments showed an increase in reliability. A solid basis for future developments
was laid by the implementation of the calibration tool. It is now easy to adapt
the parameters to different coding schemes and to recalibrate the tessellation po-
tential using revised versions of the pdb-select database. Applications that can
use the parameter sets like tropinverse or tropscore are efficient enough to
make large scale simulations feasible.

Critics on knowledge-based potentials as in [63] have to be judged carefully: The
intention to gain access to “protein-like-energies” by lattice simulation is not
very useful, since a 2-letter (HP) protein would not fold at all, since it’s energy
landscape is much too simple [66]. It has to be emphasized, that inverse folding
does not rely on a “real” energy, but introduces the z-score as a relative scale.
For the purpose of exploring a sequence-structure mapping this is satisfactory.

Nevertheless it is clear that modeling a protein without considering the amino
acids as a chain is far from being accurate. The use of Delauney classes as shown
for the 6 letter alphabet could help to consider chains. Also the effect of volume
exclusion has to be added to improve the potential’s quality. This work shows,
that extending the Tropsha potential by biophysical necessary terms leads to
improvements. The number of extensions can be increased easily if each contri-
bution is kept as an additive term, just as the surface. Otherwise the number of
parameters would explode and the statistical significance of the data would be
lost. These additional “potential parameters” must be calibrated for the set as
well, keeping the same conditions for all superposed terms. This is true due to
the fact that depending probabilities may be factorialized, under respect of their
dependency [4].

5.2 Directions for Future Improvements

The package could serve the scientific community beside PROSA ITI as mean to
check experimental derived protein structures. Also if sequences of high homology
to proteins with known structures are found by experiments, the inverse folding
approach can give first hints for structural relationships.
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To improve the discriminative power and comfort of the knowledge based poten-
tial it is planed to introduce some further terms:

e The only parameter in finding the neighboring set is the cut-off from app-
lying the filter. This could be avoided by using a water shell, as described
by Zimmer et al. [70]. The water molecules would be placed on a virtual
grid around each residue, thereby fulfilling the constrain of a minimum di-
stance to any neighboring residue. The water molecules will be treated as a
further class of residues, having contact to exposed amino acids, and hence
contribute to the overall statistics. Contacts with a certain “water content”
could be excluded this way.

e Though the pdb-select database provided by Hobohm et al. [31] is well sui-
ted for statistics of sequences there are chains within the set that show ab-
normally low z-scores when the native sequence is threaded to its structure.
In most cases this could be attributed to obvious reasons (e.g. membrane
proteins, chains wrenched from the core, etc.). It would be preferrable howe-
ver to exclude these abnormal chains already from the calibrating dataset.
The calibration could be fully automated, as an iterative scheme provided
a reasonable way of pre-processing the pdb-select can be implemented.

e Reduced alphabets showed an improvement in the statistics of the database.
A careful selection of different coding schemes is expected to emphasize this
effect.

e Once a good representation of a volume term is derived, it will be streigh-
forward to use it as an extention of the potential.

e For the user’s comfort a GUI will to be developed. The collection of all tools
will be made available as package via the internet.
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Appendix

A Programs

The efficient implementation of the algorithms described so far was the goal of
this work. The availability of a decent tool to use any dataset for calibrating a
potential force field opens a lot of possibilities for evolutionary and biophysical
studies using energetic parameters. All programs were written in ANSI C for
attaining maximum portability and speed. At the moment only the Linux, SGI
and DEC-Alpha versions exist. An MS-DOS version is not planned, since this
platform is not suited for a serious computing —.

A.1 Calibration of the Potentials

NAME
calibrate — calibrate the tessellation potential
SYNOPSIS
calibrate [-f {0,1}1[-A {20,6}1[-T {CA,CB}][-F list]
[-P path] [-S]
DESCRIPTION

calibrate is a program that reads pdb-files specified in a list or from
a path, performs a Delauney tessellation for each of the proteins and
counts the occurrence of 4-tuples of residues. The log-likelihood of the
quadruples printed to stdout.
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OPTIONS

-f [0,1] switch to turn on(1)/off(0) the filter criterion for
irregular tetrahedra, default is on

-S generate surface potential

-T [CA,CB] use C® or C? atoms for calibration, default is C®

-r reject unsuitable chains and record these files in

the output

-A 20 standard amino acid alphabet is used: default

-A 6 generate parameters for 6 letter alphabet

-7 display short usage message for the program
LIMITATIONS

If improper protein chains are input (e.g. chains with sequence gaps,
rare amino acids etc.) the program stops unless the -r option was
given in which case the files are rejected. Each rejected chain is noted
in the output. Generally notes marked “@” are intended to be read by
other applications (e.g. tropinverse).

Furthermore, the pdb files must fulfill some basic criteria: At least 6
atoms (either C* or C%) must be present, otherwise no useful tessel-
lation is possible. The column order as outlined in the pdb-contents-
guide has to be fulfilled, otherwise parsing is impossible. The only
exception is the atom numbering of PolyProteins, since these num-
bers are greater than 10000 (5 columns are read for this variable).
For the construction of the virtual C? of the bf G residues C*, N and
C coordinates are necessary.

For contact types with zero observations the calculated score will be
—inf. These values have to be replaced in a post-processing step,
before using the potential with tropscore or tropinverse. Useful
values for the replacements are 0 or the minimum score for other
contact types of the class.

Ideally only globular soluble proteins without large ligands should be
used for extracting the potential. Since calibrate cannot automa-
tically recognize unsuitable protein chains, an appropriate selection
should be prepared beforehand. A good strategy is to exclude all
chains that have poor scores using some other existing potential.

PERFORMANCE

The hardware requirements are low: a maximum usage of 10 MB
RAM was observed, processing of a database of 700 proteins takes



A.1 CALIBRATION OF THE POTENTIALS 57

about 10 minutes on an i386 based machine (PentiumPro™ 200MHz),
most time is spent in IO procedures. The program takes input from
command the line, which makes it very easy to script the process. The
detailed algorithm is shown in form of a flow chart in figure 26. The
ghull package used for the tessellation can be found at:
www.geom.umn.edu/software/download/qghull.html.

SAMPLE SESSION

Example: Generation of a 20 letter contact parameter set for the pdb-select release
June 98, using a filter and C? atoms for calibration:

“> calibrate -r -T CB -A 20 -f 1 -F list_pdb_J98

L s s e e s e s e
# CALIBRATE #
#$Id: calibrate.c,v 1.16 1998/10/02 08:01:48 gw Exp gw $#
L s e e
command given:calibrate -r -T CB -A 20 -f 1 -F list_pdb_J98
pdb-file list from: ../data/dir_all_Jun_98

STANDART DELAUNEY POTENTIAL MODE

potential for CB atom of the chains

filter for triangulation is ON

using 20 letter alphabet
R
/scr/pdb/Jun98/1191.pdb_

/scr/pdb/Jun98/1531.pdb_

/scr/pdb/Jun98/1a0a.pdbA

@ © @ H H H

Output :

The parameters as well as comment lines indicated by “#” or “@Q” are sent to
stdout and should be redirected to a file. The list of processed files as well as
warnings and error messages are written to stderr. Parameters for the 20 letter
alphabet output as follows:

#cont obs.freq exp.freq obs/ex q Obs.
AAAA  0.00013638 0.00004207 3.24 0.51081024 76

If the 6letter variant was chosen (option -A 6) the output of the parameters
would be:

#icont class 0 class 1 «class 2 <class 3 <class 4 Obs.
cccc 4.3341 3.1592 0.0000 -0.5000 -0.800 102:19:1:0:0
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The calculation of a surface potential file is as simple, the option -S is required
additionally. After calibration a post-processing has to ensure that all terms are
proper, i.e. the —inf for contacts which were not observed has to replaced by
some estimate before feeding the data into tropscore or tropinverse.

A.2 Additional Tools

Before the pdb-select is parsed for the actual calibration process, a pre-formating
of the heterogenous files is performed. A PERL script has been created for this
task:

NAME
backbonextract.pl — a tool to process pdb files for later use in
calibrate

SYNOPSIS
backbonextract.pl -in path

DESCRIPTION
backbonextract.pl is a PERL script to pre-process pdb-files, for
later use in calibrate. It searches for files with extension .pdb in
the directory path and extracts the backbone of protein chains to
the current directory. Each chain is written into a separate file, by
appending the chain identifier to the original pdb file name. A log
containing a time stamp and information on each protein chain read
is written to the file logfile (overwriting existing files of the same
name).

OPTIONS

-in directory to be searched for pdb files

-7 or --help display short usage for the script
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LIMITATIONS

e PERL-Version 5 is required.
e nucleotides are omitted.

e theoretical models and files with nucleic acid content are skipped.
Only the first model of several (NMR) models is used.

e Chains with less than 30 ATOMS are skipped.
e In case of alternate locations the ’A’ or '1’ version is taken
e Chains with gaps are discarded, identical chains are not detected

e The files must have the extension .pdb

The parameters obtained from calibrate can be conveniently visualized as
shown in figures 16. Such PostScript™ plots are produced by plot_trop:

NAME
plot_trop — generate PostScript™ plots from a tessellation potential
parameter file.
SYNOPSIS
plot_trop parameter_file
DESCRIPTION
plot_trop encodes the log-likelihoods from tesslellation potential pa-
rameter files in either grey-scale or color and writes PostScript™ out-
put to stdout.
OPTIONS
-? or —--help display short usage for the script
-6 the specified parameter file is 6 letter encoded and
uses five Delauney classes
-c color mode (default is grey-scale).
LIMITATIONS

All log-likelihoods are scaled to fit the interval of —1 < g < +1.
Surface parameters can not (yet) be plotted in the current version.
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set alphabet type
C(alpha) or C(beta) ?
surface or contact pot ?

all pdb file done
?

read backbone
coordinates
and sequence

is chain
complete?

no reject file

number encode
sequence

count amino acid
frequency

Tesselate
Coordinates

ghull

potential foi
a surface ?

Find isolated

determine Delauney Triangles in list

reduced alphabe class

surface.c

determine Delauney
surface class

reduced alphabe

count frequency of I

quadruppelijkl
count frequency of

triplette ijk

fina

a=clog Ru
i

print g and ijkl

RETURN

FI1GURE 26: Flow chart of the algorithm implemented for the calibration tool for four point po-
tentials. For tessellating the qhull algorithm is used. See page 55 for command line parameters
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A.3 Tessellation z-score Calculation and Inverse Folding

Routines for calculating z-scores using the potentials created by calibrate have
been implemented in C. Currently, there are two basic applications that make
use of these routines and potentials. Of course the same restrictions for pdb files
as in in calibrate apply to these applications.

The tropscore program calculates z-scores for one or more sequences on a given
structure, using contact potentials, surface potentials or both. Since the tessella-
tion has to be performed only once scores for many sequences can be calculated
in relatively short time.

NAME
tropscore — calculate z-scores using the tessellation potential
SYNOPSIS
tropscore [ -P pot_file and/or -S surf_pot ]
target.pdb polyprotein[.pdb or .tpp]
DESCRIPTION

The tropscore tool uses basically the same routines as tropinverse,
and is thought as tool to calculate z-scores for a list of sequences (e.g.
for cross checking experiments, using sequences optimized with other
knowledge based potentials).

The Program calculates the z-score for a sequence if threaded to the
structure of target.pdb. A PolyProtein is used as library for structures
for the calculation. If it has the extension “.tpp”, it is considered to
be a saved tessellation from a previous run. After the tessellation
(and surface generation if chosen) is proceeded, the program pauses
for input of sequences from stdin. The z-score, energy and sequence
used for calculation are written to stdout. In combined mode all three
scores (contact, surface and combined) are calculated and printed.



A.3 TESSELLATION z-SCORE CALCULATION AND INVERSE FOLDING 62

OPTIONS

-7 or --help display short usage for the script

-P tessellation potential parameter file, if no surface
parameter file is given, the contact mode is chosen,
otherwise combined potential mode

-S surface parameter file, if no contact parameter file
is used, it the surface mode is used

-s name.tpp  save tessellated PolyProtein to name.tpp

-A 6 or 20 alphabet to use, default: 20 letter

-f 0 or 1 switch filter on (1) or off (0), default: on
-T CA or CB  atom type to be used for calculation
-F factor real number used as factor to combine surface and

contact potential terms in combined mode

LIMITATIONS

e target and the sequence specified have to have the same length,
gaps are not allowed.

e Lines in the parameter files starting with “#” or “@” are ignored

e pdb-files have to fullfil the same conditions as for calibrate

The tropinverse program designs sequences with good z-scores on a predefined
structure, thereby solving the inverse folding problem. Sequences are optimized
using adaptive walks with the z-score as fitness function. The evaluation of scores
under the chosen conditions employs the same routines as in tropscore. Again
the tessellation has to be performed only once. It is recommendable to save the
result of the PolyProtein tessellation to disk if more than one run is intended.
Start sequences for the walk can be either provided from stdin or are generated
randomly by tropinverse. An iterative process of mutation and score evaluation
follows, stopping only if the best sequence is found or a certain number of trials
is exceeded. For details of the procedure see the flowchart in figure 27.

NAME

tropinverse — inverse folding using the tessellation potential

SYNOPSIS

tropinverse [options] [-P cont.pot or/and -S surf.pot]
target.pdb polyprotein.pdb
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DESCRIPTION

tropinverse is an implementation of an adaptive walk algorithm for
inverse folding of protein sequences, using the tessellation four point
potential. It uses z-scores as fitness criterion to find sequences that
are likely to fold into a given structure. The start sequence can either
be given from stdin, or is generated by the program. Sequence, scores
and Energies for the individual steps of the walk are printed to stdout.

OPTIONS

-d
-e

-n

or —--help

name.tpp
6 or 20
0 or 1
CA or CB
factor

dump the program to disk

start sequence from random amino acids, given the
“environment” class as defined by Eisenberg [9]
start sequence from random amino acids, using the

mean frequencies as in the Swiss Prot database:
A C D E F

0760 .0176 .0529 .0628 .0401
G H I K L
0695 .0224 .0561 .0584 .0922
M N P Q R
0236 .0448 .0500 .0403 .0523
S T \Y% W Y
0715 .0581 .0652 .0128 .0321

start sequence is purely random

start sequence using the mean amino acid frequen-
cy as in the Swiss Prot, propensities as in Chou-
Fassmann [16].

display short usage for the script

tressellation potential parameter file, if no surface
parameter file is given, the contact mode is chosen,
otherwise combined potential mode

surface parameter file, if no contact parameter file
is used, it the surface mode is used

save tessellated PolyProtein to name.tpp
alphabet to use, default: 20 letter

switch filter on (1) or off (0), default: on

atom type to be used for calculation

real number used as factor to combine surface and
contact potential terms in combined mode
display short usage
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LIMITATIONS

e It is of course impossible to translate a reduced alphabet back
to the 20 letter. If the given sequence is 6l encoded, a random
amino acids is related to the class.

e The parameter files (contact or surface) must have the format of
the calibrate output, again lines starting with “#” or “@Q” are
ignored
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Tropinverse

set alphabet type
CorC

surface or contact pot ?

contact, surface
or combined pot?

read potential data
surface/contact

read backbone

coordinates and segepce

for target protein

get random sequenc TesselateTarget

length = len(target) Coordinates

‘ ghull
Calculate read backbone
Energy for Polyprot coordinates and segefce
tropscore .
for Polyprotein

Calculate Tesselate
Energy target prot. Polyprotein
ghull Coordinates

ghull

calculate zscore[i]

found a sequence

print sequence and
z-score

RETURN

FI1GURE 27: Algorithm for inverse folding of proteins using the tessellation potential as used in

tropinverse
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E PDB Select

These are the IDs of the 900 files provided as pdb-select release in June 1998.
The last letter represents the polypeptide chain.

1UXD_. 1CFE. 1CFH.  1CFO_ 1ULP_.  1CDS_  1BVH_  1BW3_  1VIG_ 1CBA_
1VHP_.  1CDB.  1TUM.  1CTL_ 1CT0- 1CUR. 1TFB_. 1DDF.  1DEC_ 1TIH-
1TSG-.  1CMR.  1TPT.  1TPM_ 1TLE. 1TIT. 1VTX. 1ZTO. 1AZ6_ 1BAK_
1BBO-  1ZDD.  1BCN. 1ZWD. 2BDS.  1AWJ_.  2AT2A 2ADX_.  2ABD. 1AYJ_
1BCT-  1BNB_.  1BOR.  1WKT_ 1WIU. 1BTB. 1VVC. 1WTUA 1ZAQ- 1YUB_
1BFMA 1BGK. 1BHB.  1BIP_ 1DEF_.  INOE. 1HSN.  1NKL.  1NGR_ 1NFA_
1IFE. 1HRYA 10CP.  1HCD. 1HEV_. INRE. 1HMCB 1HQI. 1MSEC 1JVR_
1LEFA 1LEB_. 1KUL.  1KSR_ 1KRT. 1JLI_  1MAK. 1IRL. 1IRSA 1ITF.
1IVA_ 1IYV_. 1GRX_. 1RTNA 1EHS_. 1ERD_. 1R00. 1ROF_.  1EXH_ 1SHCA
1DEG.  1SVQ.-  1SRO.  1DPI_ 1EAL_. 1SKYE 1FBR. 1PIH.  1PFT_ 1PFSA
1PDC_. 1PCE.  1GPT.  1FWP_ 1FDM_  1RES_  1QYP_  1PUT.  1PRR_ 1POU_
1TIV.  1AQS- 2FOW. 2FSP. 2HP8. 2IL6. 1APJ_  1APF_  2VGH_ 1ARK_
3DPA_  1AG2_ 2EZH. 1AG4. 2VIK. 2EZK. 1AP8_ 2RGF. 1AJYA 2PTL_
2NCM_.  2NEF.  2PLDA  2PAC_ 1AH9_  2KTX_  1A0Y. 1AHK_. 2TBD.  2STWA
1AJ3_ 1AAF_  1AT7_. 7GATA 1ACP.  1AA3_ 2CDX_.  1ATY. 4RNPA 5ZNF_
1AB3_. 2BI6H 2ECH.  1AFP_ 1CMYB 3R1RA 2LDB. 1MYPA 1GYLA  1AONO
1IF1B 1GNHA 1YSTH 4HMGA 1RRF. 1SMVC 1FPKA 1ASYA 1AGNA 2MEV4
2MEV1 1KCW_. 1PLR. 1CRKA 1AIPE 1RPT_ 2BPA2 1PDGC 2BPA1  1CNE_
INOM_  4RHV1  1TAHA 1PYP_ 1GLEF 2UCZ_. 1VBA4 1FZAB 1FZAA 1GUKA
1CMKE 1DHX_. 1FC1A 1HWHA 2BCT. 1BCFA 1RUSA 1TFPA 1DKTA 1SERA
1PKN_. 1BLE. 1CDI.  1STD. 1PYSA 4DPVZ 1FRVA 1FRVB 1BMFG  1SQC_
1TNRA 1AVOB 1JRHI  INFDA 2LGSA 1THJA 1CID. 1FGJA 1A0AA  1DKGB
1ASX_. 2BBVA 1PKP_.  1RGS_ 1AGRE 2VAOA 1BCMB 1FOKA 1HLOA 1LFB_
1ATNA 1EBPA 1XXCA 1PREA 1DLHA 10CCE 10CCK 10CCH 10CCC 10CCG
10CCF  10CCD 2DRPA  1MXA_ 1PIOA 1GIN. 1QAPA 1SLY. 1TLK_ 1NPOC
2DMR. 1LIAA 1BTMA 1BIB_ 1YSC_.  1ATIB 1IBCB 1IBCA 1CSGA  1BCPF
1BCPB  1D66A 1AR1A  1ANV_ 10FGA 1ZID_. 1LXTA 1ECRA 1PEX_ 1SMEA
1UDII 3PBGA 1CD1A 1AHJA 1AHJB 1GGTA 1AKJD 1XDTR 1HSTA 1AQ7B
1A0I_ 1JKW. 1KMMB 1AB8A  1AQIA 1SIG.  1DIV.  1LRV_.  2EMO_ 1FDZA
1HCNB 1HCNA  1LKTA 1PS1A 1CBY. 1LXA_  1BVP1 1LNH. 1LL1_ 1AI6A
1P0O4A 1FCDA 1WSYB 1YTFC 1PDNC 1ITBB 1HJP.  1KZUB 1EXNB 1RHOC
1CKNA 1HTMB 1IPSA 1KB5B 1XBRB 1AUA. 1GTRA 1DUBB 1AIHA 1UMUB
1VPFA  1AN9A  1HMY_. IMSPB 1IHFA 1POIB 1POIA 1VDC. 2POLA  1AURA
1KNYA  8ATCB 1FUIA 1HJRA 1HLB. 1PYAB 2STV. 1LPBA 1TC3C 1JACA
1TDX.  1RLW. 1BP1_ 1AFRA 1DAR. 1HULA 1JMCA 1LGHA 1RNL_ 1UBY_
1CNT2 1PYDA 3ULLA 1VDEB 2MPRA 2TRCP 1BNCB 1CHKA  1YTW_ 1ECEA
2LIV_. 2MTAC 1NBBA 3MDDA 1PAX_. 20MF_ 2PFKD 1FKX_ 4AAHA 1STFI
1AK4C 1PYTA 1DJXA  1AK5_ 1AQT- 2DYNA  2MASA 1GTQA 1GGGA 1ITG-
2RSLC 1AROB  1TABI  1INP_ 1AERB 1CYX_ 1SMPI 1PRCC 1JSUC 4PGMB
1YCQA 10PR.  1DHY. 1BNDA 1CFYA 4HTCI 1IPWB 1KIT. 1AM7A  1AORA
1DHR. 1MNMC 1IGNA 1FT1A 1FT1iB 1TIID 1QUF. 1IMHLC 1JXPA 1GPC_
1ZXQ- INOYA 1BEO. 1SMTB 1AIJS 1AAO_. 1GRJ. 1GCB.  1YCSB 1TUPC
1ETPA 2CAE_.  1NSGB 1XVAA 1ECMB 1DRU.  1MAZ_  2BGU.  1LBA_ 1BHMB
1KTE. 1VMOA 1DELB 1FTPA 1HTP. 1TUL. 2PHLA 1BOVA 1GNWA 1GTMA
1GPMB 1JLYA 1TDTC 1HCGB 1GOH- 1DHS_. 1LPN_. 5EAU_  1AYM3  1AYM2
1AWCB  1AUVB  1ANU_  1CFR. 1ASH. 1ABRB 1AUK_. 1THTB 1A4SA 1ACC_
1SFE_.  1P38. 1RMD.  1PEA_ 1VNC.  1AS4B 1IRK. 1CSBB 1AXIB  1GPL_
1AX4A 1RYT. 1PTA_.  2TCT. 10TGA 2DKB_  1RLAA 1FJMA 1VHRA  1DEAA
1EFVA 1EFVB 1SMNA 2HHMA 1ESC. 1TFR.  1A0B. 1BROA 1VDFA 3PCHM
3MINB 3MINA 1AIKC 1AOL_ 1ALY. 1WPOB 1VIN. 1KINB 1FMTB  1HAVA
2LBD. 1GOTB  1GOTG  1CSN_ 1DPGA  1SPUA 1BTN. 1BFTA 1CFB_ 1PBN_
1BBPA  1AF7_ I1MSC. 1ECPA 1HOE. 1BVi_  1TAFA 1TAFB 1CEWI  2PGD_
2PTD. 1FJLB  4MT2_  1SRA_ 1VID_. 1WDCA 1DKZA 1R69. 1POC_ 1A0CA
1GSA- 1JPC_.  INBAB 1LKI. 5CSMA 1LCT_. 1SVPA 1TSP_.  2SCPA  1ALO_
1WHTB  INSYA  1RMG_  1GKY_ 1PII_. 2I1B_.  10YC. 1AQOA 1APYB 1DORA
1FWCA 2HPDA 1PNE. 10BPA 1MKAA 1RVAA 2FIVA 1AA2_ 1TRKA 2RSPB
1GARB 10SPO0  2PSPA  1PTQ- 1AQ6A ILTSA 1FURB 10VAB 1DAAA  1URNA
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1FUA_
1MAI.
7AHLA
2KINB
11S0_
1HGXB
2PII_
1ZNBA
1AKO_
1QNF-
1LMB4
1UNKA
2TGI_
1NAR_
1HAL.
1XJ0_
2CYP_
1PDO_
1FDS.
2HFT_
1AQB.
8RUCI
1DAD.
1ZIN.
3PTE_
1TCA_
10PD.
2HBG_
2END_
1BENB
1AAC.
2SN3_
SRXNA

1RSS_
1CLC_
1FLEI
1SFTA
OFHA_
3TSS_
10NRA
1QBA
1AH6_
1NPK_
1IIBA
1GDOB
1KVEA
3C0X_
1TVXA
1PCFA
1ID0.
1AGJA
1THX
1MWE_
1PHNB
1GVP_
5NUL_
1AJSA
2AYH_
3GRS_
1LUCB
2ENG_
1RPO_
1AWD_
1FUS_
1AMM_
1LKKA

101IS-
1ESFA
1DXY_
1BGP_
1SVB_
2TYSA
1LML_
1TIB_
2SPCA
1AYL_
1AFWA
1AL3_
1KVEB
1CYDA
1XGSA
1AQZB
2BOPA
1PMI_
1MOLA
2CCYA
1CNV_
1ADS_
1A0P_
1LAM_
4XIS_
10RC-
2ARCB
2SNS_
1MBD_
1RCF_
1RRO-
1CSEI
2ERL_

1HSBA
1AD2_
1JDW_
1REC_
1WHO-
1GIFA
1FIT.
2HTS_
1UXY_
1MPGA
2POR_
1GD10
2ACY_
2NACA
1CHD_
1AM3_
1VJS_
1FDR_
2MSBB
1ANF_
119L_
1AAYA
3NUL_
2SIL_
1NOX_
2CBA_
1EZM_
8ABP_
2PHY_
1NXB_
1JHGA
1CSEE
1CEX_

1ECL_
1AGQD
1LATB
1PNKB
1CPO-
1SLTA
1VLS_
1EUR_
1VCAA
1NBCA
1UAE_
2SICI
1BDMA
2BAA_
6GSVA
1BGC_
4PGAA
1MTYD
1LT5D
1DOSA
1CEM_
1JER_
1NWPA
1KUH_
1AWSA
1KPF_
1CKAA
1XNB_
1ECA_
1PPT_
TRSA_
1ARB_
1IXH_

1ATO_
1A0ZA
1NCIB
1GPB_
1AIL_
1EDE_
1DOKA
1GND_
1YTBA
1SLUA
1TML_
1A0QA
1PGS_
1AXN_
1KPTA
1AJJ_
1FVKA
1MTYB
1AKO-
2HMZA
1PHP_
2DRI_
1MRP_
1CSH-
1AKZ_
1AHT7_
1ISUA
1XS0A
1XYZA
1RHS_
1MSI_
1IFC_
1AHO_

1SKZ_
10TFA
1AK1_
3BCL_
1REGY
1ADOA
1PUD_
1UCH-
1LCL_
1NULA
1TYS_
1HXN_
1UBI_
1MZM_
2BBKL
1TADA
1IDAA
1MTYG
1KNB_
3CHY_
1HTRP
1EDG_
1ARV_
2ILK_
1HFC_
5ICB_
2MCM_
2RN2_
1SGPI
5P21_
1WEA_
1RGEA
1NLS_

1NEU_
1YASA
1CEO-
1IDK_
1KVU_
1DUPA
2ABK_
1HCRA
1POT-
1TIF_
1BEBA
1VIF_
1LBU_
2VHBA
2BBKH
1TFE_
1WAB_
1KID_
2GDM-
S5HPGA
1BTKB
1PHC_
3CYR_
1PPN_
1LIT.
1AIE_
3B5C_
1G3P_
256BA
1UTG-
1YCC_
1IGD-
2FDN_

1MLDA
1EDT_
2CHSA
1LIS_
1CHMA
1YATA
1PTY_
1V39_
1MSK_
1WBA_
2SAK_
1GUQB
1AMP_
1BRNL
1THV_
1XIKB
1VHH_
10NC_
1VSD_
1ERV_
1WER_
1BKF_
INIF_
1BFG_
1AVMA
1WHI_
1EDMB
1VWLD
2CTC_
5PTP_
1JETA
1CTJ_
3LZT.

1STMA
10PY_
2KINA
1RSY_
1VPSA
1BYB_
1MUCA
1NFN_
1MML_
1BDO-
1FNA_
1ATZB
1ATLA
1PDA_
3CLA_
1KAZ_
6CEL_
1SBP_
1GAI_
1YVEI
1VCC_
1SMD_
1MRJ_
153L_
1RAO_
1RIE_
1POA_
1ABA_
3SDHA
1PLC_
2PTH_
SPTI_
1CBN_
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