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Abstract

The aim of the work described in this thesis was the creation of a software tool

to support the rational design of RNA molecules capable of forming two or more

alternative metastable structures. This required the creation of a logical informa-

tion model, thus isolating relevant aspects of the biological problem as posed, and

incorporating these into a graph-based mathematical model. The algorithm we

developed based on this model reduces the problem to vertex coloring the union of

all prescribed outerplanar secondary structure graphs, called dependency-graph.

Starting from a decomposition of this dependency graph, colorings are then pro-

duced by a dynamic programming procedure. In the final step sequences can then

be optimized for particular properties by means of standard optimization heuris-

tics. The connection between sequence design and vertex-colorings has hitherto

not been described in literature.
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1 Introduction

1.1 Functions of single-stranded Nucleic Acid Molecules

DNA and RNA were long considered to have little cellular importance beyond

their essential role in carrying and transmitting genetic information. However

the discovery of special self-splicing RNAs led to increasing recognition that par-

ticularly RNAs play roles in many more and far more diverse cellular processes

than had previously been considered.

The 1989 nobel prize for chemistry was awarded to Tom Cech and Sid Altman

”for their discovery of catalytic properties of RNA”, work which had taken the

concrete form of characterizing the Tetrahymena Group I Introns and researching

the role of RNA in RNAseP thus laying the foundations for the concept of cat-

alytically active RNA [42, 28]. Although reactions catalyzed by RNA in vivo are

often aided by protein interaction, in-vitro studies have shown that even without

the help of proteins, RNAs can play a wide range of catalytic roles while being

sequence specific and working much faster than expected. Research over several

decades has shown that these specific RNAs, called ribozymes and initially known

for phosphorylation reactions inside the cell, can do a lot more: In-vitro selection

demonstrated that RNAs can catalyze acyl-transfer, Diels-Alder reactions, func-

tion as kinases etc. [89]. Interestingly, the activity of these ribozymes can also

be controlled allosterically through binding of another RNA-strand, a property

reminiscent of proteozymes. The abundance of short nucleotides as cofactors of

many naturally-occuring enzymes has been interpreted as indicating that these

cofactors date from an era when nucleotides were the main agents of cellular

catalysis - the so-called ”RNA-world”. As more and more ribozyme functions are

discovered, the hypothesis of a pre-biotic world in which RNAs performed the

tasks of today’s enzymes is gaining ground. Accordingly, the catalytic activity of

RNAs has been assigned great evolutionary importance.

Very recent publications (reviewed in [34]) concerning non-coding RNAs (ncR-

NAS) suggest that the role of ribozymes in the regulation of vital cellular func-

tions may even be as important as that of proteins. Two large classes of ncRNAs

have been identified: (i) small nucleolar RNAs (snoRNAs [41]); and (ii) microR-

NAs (miRNAs) and small interfering RNAs (siRNAs). The assignment of the
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myriad of as-yet-unclassified candidate ncRNAs to categories constitutes another

avenue of research. The cellular functions of these ncRNAs are diverse and im-

portant. While snoRNAs have been shown to be involved in rRNA modification

and were proposed as RNA chaperones, miRNAs and siRNAs have been demon-

strated to inhibit the translation of target mRNAs. Other functions including

gene regulation at the level of imprinting, transcriptional interference and methy-

lation modification have been postulated for other, as yet unclassified, ncRNAs.

Moreover ligand-induced ncRNAs have been found that switch conformation and

ultimately result in change of downstream regulated genes, and further research

is ongoing to determine how common this phenomenon is. The near future should

reveal how big the overall contribution of ncRNAs really is to the genetic activity

of living organisms.

Against this background, research on ribozymes is no longer of purely mech-

anistic and evolutionary interest. Besides being necessary for understanding

cellular activity this new knowledge even indicates possible therapeutic appli-

cations. siRNAs and miRNAs can both be considered as molecular switches

capable of regulating gene expression. siRNAs can be easily administered to cells

by lipotransfection[17], thus allowing the expression of certain targeted disease

related genes to be suppressed. Clinical trials using such ribozymes in this way

are already being conducted with promising results [69, 47].

1.2 Molecular Switches

The function of a nucleic acid molecule is largely determined by its three-dimensional

structure, which in turn is influenced by the folding path of the molecule. Recent

years have seen an accumulation of evidence indicating that the folding process

of RNA is hierarchical in nature. At first, stable secondary structural elements

are quickly formed which go on to determine the assembly of tertiary contacts

[12, 75]. The fraction of Free Energy of the complete folding process involved

in the formation of secondary structures is relatively large compared to that of

the tertiary assembly [22]. Thus the secondary structure can serve as a model

of the actual RNA structure that, although simplified, is both practical and

representative and which has the added bonus of being computationally cheap.



1.2 Molecular Switches 6

Several efficient algorithms have been designed for the prediction of RNA sec-

ondary structures (see for example [66]). which allow for the fast computation of

thermodynamic properties as well as the detailed exploration of conformational

landscapes.

Thorough analysis of conformational energy landscapes of RNA molecules shows

that non-native conformations with energies comparable to the ground state can

exist, but may be separated from the native state by high energy barriers. The

occurrence of such (meta-) stable conformations with considerable life spans has

also been experimentally verified [18, 25, 31]. Furthermore it has been demon-

strated that stable alternative conformations of the same RNA molecule can also

fulfill completely different functions [6, 59]. This feature of RNA is used in na-

ture to regulate and control a variety of biological processes. RNA molecules

with two ore more (meta-) stable structures can thus be understood as molecular

switches. The time-dependent behaviour of such a switch is mainly determined

by the height of the energy barrier that has to be overcome by the molecule to

change from one conformation into to the other. The barrier height can be mod-

ulated by external signals such as for example temperature changes or binding of

other molecules (proteins, antisense-RNA etc.).

1.2.1 Examples of Riboswitches

A good example of a simple and nautrally-occuring temperature sensitive switch

is SV11, a relatively small RNA molecule that is replicated by Qβ replicase [9, 8].

It has two dominating conformations- one is metastable and functions as the

replicase’s template and the other is the ground state that is not recognized by

Qβ. Melting and rapid quenching reconverts this molecule from the inactive and

stable ground state to its meta-stable active state [88]. Several other thermosen-

sitive switches have been suggested (e.g. [37, 53]. For example some genes that

encode small heat shock proteins were found to contain a conserved sequence in

their 5’ untranslated regions referred to as the ROSE (repression of heat shock

gene expression) element [56]. The SD box and AUG start codon are normally

hidden in a stem structure, melting at heat-shock-inducing temperature makes

these sequences accessible and thus allows for the translation of the associated

mRNAs [58].

In 1997 J. Tang and R. Breaker demonstrated for the first time that engineered
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RNAs can function as allosteric molecular switches and respond to small metabo-

lites [73]. Since then, several natural metabolite-dependent riboswitches have

been identified that control the expression of adjoining genes without the in-

volvement of a protein factor. The list of metabolites known to modulate such

switches includes coenzyme − B12 [55], Thiamine pyrophosphate (TPP), flavin

monocucleotide (FMN) [52], guanine [49].

Animal and plant miRNAs and siRNAs both influence gene expression by making

use of an antisense mechanism (see [5] for an overview). A large group of miRNAs

in Drosophila, for example, have been shown to form RNA duplexes with certain

classes of sequence motifs. These miRNAs exhibit perfect complementarity to

3’UTR sequence motifs which in turn have been proven to mediate negative

post-transcriptional regulation [44].

1.3 Graph Theory in the Context of Biopolymers

1.3.1 The Significance of Graph Theory

Graph Theory is a branch of mathematics that investigates the properties of

graphs and their relations. At first glance it may seem to be a rather abstract

and theoretical mathematical field that came into existence when Leonhard Euler

solved a much celebrated problem known as the Königsberg Bridges Problem in

1736 [19]. Since then it has been exploited for the solution of numerous problems

and to this day practical aspects of graph theory have found a wide range of

applications.

Structures that can be presented as graphs are ubiquitous and many problems

of practical interest can thus be modelled as graph theoretical problems. In the

early days, graph theory was used for example by Kirchhoff to study electrical

circuits [40] and Cayley to enumerate chemical isomers [14]. Nowadays it is an

important tool in computer sciences as many algorithmic problems can be un-

derstood as graph problems and conversely many solutions to graph theoretical

problems are based on algorithms. Network analysis and computational com-

plexity theory are two more examples where graph theory plays a central role. In

physics, graph theory is used to simulate complicated three dimensional atomic

structures [24]. In chemistry we find two main types of correspondency between

graphs and chemical categories: (i) The structural or constitutional graph that
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corresponds to a molecule or a group of molecules, where the nodes symbolize

the atoms and edges symbolize covalent bonds (see Fig.1). It was this type of

graph that inspired Cayley to develop a procedure for counting the constitutional

isomers of alkanes [14], and (ii) the reaction graph that corresponds to a reaction

mixture, where points symbolize chemical species and lines represent conversions

between them (see Fig. 2). Vol’kenshtein and Gold’shtein were the first to use

reaction graphs for kinetic studies (see [80, 81, 82, 83]). One of the pioneers in the

field of reaction graphs is A.T. Balaban who reviewed the topic in [4]. This kind

of graph plays an ever increasing role in explaining and rationalizing chemical

rearrangements.
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Figure 1: Organic carbon compounds may exhibit elaborate polycyclic structures.

The example shown here is Compound 8 from [39] (aromatic “double bonds” are

indicated by thick lines).

2NO 2NONO3 NO3

O3 O2 O3 O2

Figure 2: Representations of the reaction NO2+O3 → NO3+O2 in hypergraph form:

(left) the equivalent directed bipartite graph (right) as part of a substrate graph.

1.3.2 Graphs of Biopolymers

Biopolymers such as RNA, DNA or proteins fold into well-defined three dimen-

sional structures that are of the utmost importance for their biological functions.

The most fundamental features of the 3D shape of these molecules are captured
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Figure 3: RNA secondary structure representation

in so-called connection graphs which have the atoms of small molecules or the

monomers of a biopolymer as their vertices and the connections between spatially

adjacent objects as their edges. Obviously, this simplification discards many

structural details, yet it retains and exposes a wealth of structural information

that can be gained from a variety of experimental and computational methods.

Biopolymers share a number of common features that distinguish them from other

classes of molecular contact graphs. They have a spanning path that corresponds

to the covalent backbone and the remaining non-covalent bonds determine the

fold of the 3D structure of the molecule. Nucleic acids in particular form a

special type of contact structure called secondary structure (see Fig. 1.3.2 for the

conventional representation).

1.3.3 The Structure of Single Stranded Nucleic Acid Molecules

The monomers of nucleic acids are called nucleotides and consist of three compo-

nents: A phosphate group, a pentose sugar and a nitrogenous heterocyclic base

(either a purine or a pyrimidine). The periodic chain of phosphates and pentose

sugars forms the backbone of the nucleic acid molecule and a base is bound to

the χ position of each of the sugars (see Fig. 1.3.3).

References in the following text to ”RNA” refer to nucleic acids in general. Ac-
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Figure 4: DNA and RNA structure and differences (from [86] and translated)
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Figure 5: Secondary structure of an RNA molecule. As the molecule folds back onto itself,

several secondary structure elements are formed: A) bulge, B) multi-loop, C) external vertex

D) internal loop E) stacked basepairs F) hairpin loop.

cordingly, all definitions given for single stranded RNA apply equally to sin-

gle stranded DNA with the exception that DNA consists not of ribose sugars,

but of 2’deoxyribose sugars and that the alphabet of bases is guanine(G), ade-

nine(A), thymine(T) and cytosine(C) for DNA and guanine, adenine, cytosine

and uracil(U) for RNA. DNA molecules can form the Watson-Crick base pairs

GC, CG, TA and AT, since RNA uses uracil instead of thymine it can also form

the ”wobble”-base pair GU, UG [16, 43]. Usually, DNA forms a double heli-

cal structure with a complementary strand [85] within the living cell, whereas

RNA mostly occurs in the single stranded form and folds back onto itself. The

stacking energy of the base pairs is the major driving force of the RNA structure

formation.

The primary structure of RNA is simply the sequence of nucleotides, the sec-

ondary structure is represented by a graph where the vertices are the bases and

the edges depict the contacts (hydrogen bonds) between these bases and the

backbone along the sequence (see Fig. 1.3.3). Thus the secondary structure is

actually a topology that indicates which sequence positions are adjacent, but says

nothing about the spatial distances between the positions. Therefore, it is not

a real two-dimensional representation of the structure. The so-called tertiary

structure depicts the spatial arrangement of the secondary structure elements,

i.e. the real three dimensional fold of the molecule (see Fig. 1.3.3).
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Figure 6: Primary, secondary and tertiary structure of a tRNA molecule. The secondary

structure shows the typical clover-leaf structure of tRNAs and the tertiary structure depicts

the L-shape three-dimensional fold characteristic of tRNAs.

1.4 Sequence Design and its Applications

Nucleic acid design presents a key-step in many biotechnological applications.

DNA microarrays for example consist of target-specific oligonucleotides that are

immobilized on a surface and are used for experiments including genotyping and

polymorphism analysis [21]. They require diligent design of probes, since they

have to show maximum specific hybridisation with complementary targets in a

complex solution while minimizing unspecific cross-hybridisation. Furthermore,

DNA can be used as a template for organic synthesis, processes which rely on

the rational design of DNA strands that direct the production of a library of

small polymers [26, 30]. Another interesting field of design applications are

DNA computing experiments where calculations are carried out at the molec-

ular level [1, 46, 10]. Further motivation for nucleic acid design results from the

fact that ribozymes provide new paths to drug design [77, 64] and can be used

for engineering ligand-specific biosensors on microarrays based on the work of

Breaker et al. [68].
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There are numerous biocomputational approaches to address the requirements

of this wide range of design tasks. Several tools have been implemented that

use thermodynamic and combinatorial models to design both DNA probes for

microarrays [7, 76, 38] and oligonucleotides than can be utilized as information

storage media in biomolecular computations [72]. Software packages and tools

have been created that deal with RNA secondary structure prediction [32, 91] and

new variants of algorithms constantly emerge to keep step with the development

of new tasks [3, 2].

That biocomputational methods can facilitate experimental research is demon-

strated by the many instances in which nucleic acid design has been successfully

applied. An excellent design example of a riboswitch that was also verified ex-

perimentally is described in the work of Bartel et al. [65]. Two ribozyme folds

were selected that share no evolutionary history and not even a basepair in the

secondary structure: the synthetic class III self-ligating ribozyme and the hepati-

tis delta virus (HDV) self-cleaving ribozyme. A sequence was then designed that

can fold into both predescribed strutures and fulfill both respective enzymatic

reactions (see Fig. 7). These results provide new insight into the possible mech-

anisms of ribozyme evolution, since it suggests that RNAs with novel structures

and activities could arise from previously existing catalytic RNAs without an in-

termediate step of a non-functional sequence. Nucleic acid design also has prac-

tical applications in demonstrating the functionality of certain RNA structures

as described for instance in [45]. By means of comparative sequence analysis and

free energy calculations Lanz et al. studied and determined structured regions in

SRA (steroid receptor RNA activator) and then went on to prove their functional

importance by site-directed mutagenesis. Since all mutations that disrupted the

secondary structure of the proposed SRA motifs were ”silent” mutations, i.e. did

not alter the coding sequence, SRA-mediated coactivation was shown to occur on

the RNA level through distinct RNA motifs and not to be executed by encoded

proteins.

1.5 Organisation of the Thesis

Graphs of secondary structure form the basis and starting point of the design

program presented in this work. In chapter 2 we describe the secondary struc-

ture of nucleic acids in more detail and provide the most important concepts of
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Figure 7: Design of a riboswitch with two functions. (left) Secondary structures of the prototype ribozymes: the synthetic class III self-ligating

ribozyme and the hepatitis delta virus (HDV) self-cleaving ribozyme. (right) The designed sequence that can fold into both secondary structures

(taken from [65])
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graph theory that will be used throughout this thesis. Furthermore, we introduce

some basic algorithms that were essential for this work.

In chapter 3 we proceed with the introduction of the theorems which lay the foun-

dations for our approach. We briefly describe how the design task for bistable

switches has previously been solved and then present the complications that arise

for multi-stable switches.

The following chapter describes in detail all the steps of the design program for

multi-stable switches and introduces the mathematic background for a dynamic

programming algorithm that can be used to count sequences compatible with a

block given an ear-decomposition.

WIRD NOCH VERVOLLSTAENDIGT

Chapter 5 Optimization

Chapter 6 Computations and Discussion

Chapter 7 Summary and Outlook
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2 Basic Definitions

2.1 Secondary Structures of Nucleic Acid Molecules

The primary structure of a single stranded nucleic acid molecule is by definition

the linear sequence of nucleotides x = x1, x2, ..xn of the length n where ai ∈

A,U, C,G. As previously mentioned, the secondary structure is a graph with the

bases as vertices and the contacts between the bases as edges. There are two

kinds of contacts: (1) the covalent ribophosphate bridges between consecutive

bases which form the backbone and (2) the set of base pairs formed by hydrogen

bonds. The backbone is of little interest since it is defined by the sequence, it’s

the set of base pairs that characterizes a secondary structure. A sequence can

form various secondary structures which differ according to their energies.

Definition 1. Secondary Structure

A nucleic acid secondary structure can be understood as the set Θ of

base pairs. The graph of the secondary structure consists of a set of

vertices (bases) V = 1, 2, ..., i, ..., n and a set E of edges i · j, 1 ≤ i ≤ j ≤ n

with the following constraints:

(i) (backbone) ∀i < n: i · (i+ 1) ∈ E and

(ii) (binary pairing) for each i there is at most one k 6= i− 1, i+1 where

i · k ∈ E, and

(iii) (pseudoknots are not allowed) if i · j ∈ E and k · l ∈ E and i < k < j

then i < l < j.

According to this definition the set of vertices just contains the enumerated set

of nucleotides of the sequence of the length n. The set of edges contains the

backbone of the chain and the base pairs where base pairing between consecutive

positions i and i+1 is ruled out. In practice, this does not represent a limitation,

since steric reasons make it almost impossible for the bases i and i + 1 to form

a basepair. To be able to compute secondary structures we now have to define a

set B ⊂ A×A of allowed basepairs for the alphabet A of riobonucleotides. These

are the Watson-Crick pairs AU,UA,GC,CG and the wobble pair GU,UG.

Criterion (iii) of our definition rules out the occurrence of so-called pseudoknots

(see for example [70]), i.e. crossing basepairs, the reason being that most efficient

RNA-folding algorithms can’t deal with them.
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Figure 8: RNA pseudoknots and base triples are excluded by our secondary structure definition.

This figure shows an H-type pseudoknot (left), kissing loops (middle) and a base triplet (right).

2.2 Representations of Secondary Structure

There are several kinds of secondary structure representations, Fig. 9 presents

an overview of the graphs.

The dot-bracket or string-representation depicts unpairing positions as dots ’.’

and opening and closing positions of pase pairs as parentheses ’(’ and ’)’.

The dot plot presents base pairs (i, j) as predicted by the McCaskill algorithm [51]

in the form of squares in row i and column j in the upper right side of the plot.

The size of the square is proportional to the predicted base-pairing probability. A

square in row j and column i on the lower left side of the dot plot indicates a base

pair (i, j) which is part of the minimum-free-energy structure of the sequence.

The mountain representation is especially useful for comparing large structures [33].

The directions ”horizontal”, ”up” and ”down” are used analogously to the sym-

bols ’.’, ’(’ and ’)’ in the string representation. It follows that slopes depict the

opening and closing basepairs of stems, plateaus show the unpaired bases in loops

and valleys indicate unpaired regions between branches or external bases if the

height is zero.

The representation of particular importance to this thesis is the cycle repre-

sentation in which the 5’ - 3’ nucleotide sequence is depicted as a circle and the

basepairs appear as chords between pairing positions. The pseudoknot constraint

means that no crossing chords may occur in the graph.
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Figure 9: Different representations of RNA secondary structure, the individual secondary struc-

ture elements are depicted in the same colours in all representations.
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2.3 Graphs

Informally, a graph consists of points or dots and lines or arrows that connect

the points. The shape or length of lines and the angle between lines are usually

not of any importance, so a graph can rather be considered as a topological than

a geometric object.

Scientifically speaking, a graph G = (V,E) consists of two sets: a finite set

of vertices V (the points) and a finite set of edges E (lines, arrows) that link

together the vertices. We distinguish between undirected graphs, where edges are

non-ordered pairs of vertices and directed graphs, where edges are considered as

ordered pairs.

The degree d(v) of a vertex v is the number of edges with which it is incident.

Two vertices are adjacent if they are incident to a common edge. The set of

neighbours, N(v), of a vertex v is the set of vertices which are adjacent to v.

A walk in a graph is a finite alternating sequence of vertices v0, v1, v2, ...., vk such

that (vi−1, vi), 1 ≤ i ≤ k, is an edge in the Graph G. A walk is open if its

end vertices are distinct, otherwise it is closed. A walk is a trail if its edges are

distinct. An open trail is a path if all its vertices are distinct. A closed trail is a

circuit or cycle if all its vertices except the end vertices are distinct.

A graph G′ = (V ′, E ′) is a subgraph of a graph G = (V,E) if V ′ ⊆ V and

E ′ ⊆ E. The subgraph of G induced by V ′ is the grpah H = (V ′, F ) where

F = (u, v) ∈ E | u, v ∈ V ′.

A graph is called acyclic if it has no circuits. A tree of a graph Gis a connected

acyclic subgraph of G. A spanning tree of a graph G is a tree of G having all the

vertices of G.

Furthermore, an undirected graph G = (V,E) is bipartite, if its vertex set V can

be partitioned into two subsets V1 and V2 such that each edge E has one end

vertex in V1 and one in V2.

2.3.1 Components of Graphs

An undirected graph G is connected, if there exists a path between every pair of

vertices in G. A connected component of a graph G is a maximal induced sub-
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graph of G which is connected. A vertex v of a connected graph G is a cut-vertex

if and only if there exist two vertices u and w distinct from v such that v is on

every u− w path. A connected graph is biconnected if it contains at least three

vertices and has no cut-vertices. A biconnected component or block of G is a

maximal induced subgraph of G which is biconnected.

2.3.2 Graph Colouring

A graph colouring is a consecutive assignment of “colours” to certain objects

in a graph: these objects can be vertices, edges or faces or a mixture of all of

them. Most important for our purposes is the vertex colouring, usually assuming

that no two adjacent vertices are allowed to be assigned the same colour. A

colouring of the graph G with k colors is called a k− colouring and is a function

f : V (G)− > 1, 2, ..., k, such that no edge e = (u, v) has f(u) = f(v).

2.4 Basic Algorithms

2.4.1 Testing for Biconnectivity

The procedure for determining biconnected components is based on a depth first

search that incorporates a criterion to identify cut-vertices. A depth first search

(DFS) is an algorithm for traversing a graph in such a manner that starting

from the root vertex one explores as far as possible along each branch before

backtracking. The DFS progresses by expanding the first child of a search tree

that appears and thus goes deeper and deeper, until a goal state is found or it

hits a node that has no children. Then the search backtracks and starts off on

the next node with children.

Algorithm 1 is a recursive procedure starting from a root vertex r, all vertices are

white (unvisited) initially, grey if they have been visited and black if they have

been fully explored. The dfs− counter variable labels each vertex with a depth

first search number (DFN(u)) in the order it was found. A vertex v 6= r is a

cut-vertex of G if and only if v has a son s sucht that low(s) ≥ v. The function

low(u) thus introduces the criterion for identifying cut-vertices in our algorithm

and is defined as follows
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Algorithm 1 Algorithm for finding cut-vertices: CUT(u)

Require: root u ∈ V

1: dfs-counter++

2: color[u]← GRAY

3: low[u]← dfs-counter

4: DFN [u]← dfs-counter

5: for all vertices v ∈ Adj[u] do

6: if color[v] = WHITE then

7: π[v]← u

8: call CUT(v)

9: else if v 6= π[u] then

10: if v 6= π[u] then

11: low[u]← min{low[u], DFN [v]}

12: end if

13: end if

14: end for

15: color[u]← BLACK

16: if low[u] ≥ DFN(π[u]) then

17: add π[u] to the list of cut-vertices

18: end if

19: low(π[u])← min{low(π[u]), low[u]}

low(u) = min({u} ∪ {low(s)—s is a son of v} ∪ {w|(v, w) is a back edge})

2.4.2 Breadth First Search

A breadth first search (BFS) is another way of searching a graph starting from

a root node, but in contrast to traversing the graph “vertically” as in the DFS

algorithm, it is explored “horizontally”, visiting all the neighbouring vertices.

Then one continues by searching for all the unexplored neighbour nodes to each

of those nearest nodes and so on, until the goal is met.

Algorithm 2 uses two colour-attributes for each vertex u: (i) BFS-color(u), which

tells if a vertex has not been visited (white), has been visited, but not all its

adjacent vertices Adj(u) (gray), or if it has been fully explored (black); and (ii)

color(u) for 2-colouring the graph. The vertices are all white at the beginning
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Algorithm 2 Breadth First Search BFS(u)

Require: root u ∈ V

1: enqueue start-vertex u

2: while queue not empty do

3: fetch Adj[u]

4: for all vertices v ∈ Adj[u] do

5: if BFS − color[v] = WHITE then

6: BFS − color[v]← GRAY

7: if color[u] = RED then

8: color[v]← BLACK

9: else

10: color[v]← RED

11: enqueue vertex v

12: end if

13: else if color[u] = color[v] then

14: exit {graph is not bipartite}

15: end if

16: end for

17: BFS − color[u]← BLACK

18: dequeue vertex u

19: end while

and then coloured red and black alternatingly. The program exits if two adjacent

vertices have the same colour red/black.

2.4.3 Ear Decomposition

An ear decomposition is a graph searching method for biconnected components

that decomposes a block into a collection of labelled paths. An undirected graph

G = (V,E) has an ear decomposition if and only if it is biconnected [87].

An ear decompositionD = [P0, P1, ..., Pr−1] of an undirected graphG = (V,E) is a

partition of E into and ordered collection of edge-disjoint simple paths P0, ..., Pr−1

such that P0 is an edge, P0 ∪P1 is a simple cycle. Each endpoint of Pi, for i > 1,

is contained in some Pj, j < i and none of the internal vertices of Pi are contained

in any Pj, j < i. We call the paths in D ears.
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Algorithm 3 Ear Decomposition EAR(G, u)

Require: connected graph G = (V,E), root u ∈ V , |V | = n

1: color[u]← GRAY

2: DFN [u]← counter

3: counter ++

4: for each vertex v ∈ Adj[u] do

5: if color[v] = WHITE then

6: π[v]← u

7: call EAR(G, v)

8: if low[v] ≥ DFN [v] then

9: ear(π[v], v)← (∞,∞)

10: else if low[v] ≤ DFN [v] then

11: ear(π[v], v)← ear[v]

12: low[u]← min{low[u], low[v]}

13: ear[u]← lexmin{ear[u], ear[v]}

14: end if

15: else if color[v] = GRAY then

16: if v 6= π[u] then

17: low[u]← min{low[u], DFN [v]

18: ear(v, u)← (DFN [v], DFN [u])

19: ear[u]← lexmin{ear[u], ear(v, u)}

20: end if

21: end if

22: end for

23: color[u]← BLACK

24: {sort the earl labels of the edges in non-decreasing order and relabel distinct

labels in order as 1,2,..;}
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The algorithm (see Alg.3) used in this thesis was taken from a chapter of the

book Synthesis of Parallel Algorithms written by V. Ramachandran [61] and

based on [74]. This recursive procedure computes an ear decomposition (i.e. ear

labeling of the edges) while constructing a depth-first search tree of the graph

G. Initially all vertices are unvisited (white). As in the DFS-procedure, gray

indicates if a vertex has been visited and black if it’s been fully explored. π(u)

denotes the parent of the vertex u in the DFS-order, the counter variable labels

each vertex in the DFS-order it was found. The functions low(u) and ear(u) are

defined as follows, assuming that the vertices are numbered in the DFS order and

that the graph has n nodes:

low(u) =min({v|v lies on the fundamental cycle of a nontree edge incident on a

descendant of u} ∪ {n})

ear(u) =lexmin({(v, x)|(v, x) is a nontree edge with x a descendant of u} ∪

{n, n})

2.4.4 Dynamic Programming

Dynamic Programming is an extremely important and useful technique for solving

optimization problems. It can be applied for problems that exhibit the properties

of optimal substructure, which means that the optimal solution of subproblems

can be used to find the optimal solution of the overall problem. In general, we

can solve a problem with optimal substructure using a three-step process:

(i) Break the problem into smaller subproblems.

(ii) Solve these problems optimally using this three-step process recursively.

(iii) Use these optimal solutions to construct an optimal solution for the original

problem.

The subproblems are, themselves, solved by dividing them into sub-subproblems,

and so on, until we reach some simple case that is easy to solve. The procedure

thus makes use of a bottom-up technique, in which the smallest sub-instances

are explicitly solved first and the results of these used to construct solutions to

progressively larger sub-instances. The subproblems need not be independent
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from each other, it is only important that optimality at any given point of time

t does not destroy the optimality of previously found solutions.

The advantage of dynamic programming over other prodecures, like for example

the divide-and-conquer method, lies in reducing the runtime of algorithms, since

it avoids the repeated computation of identical sub-instaces that arise when the

subproblems are not independent. The method accomplishes this by maintaining

a table of sub-instance results.

Well-known examples for dynamic programming algorithms in biocomputing are

sequence alignment algorithms [57, 67] and the maximum matching algorithms

for finding RNA secondary structures [92].
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3 Sequence Design

3.1 The Dependency Graph

Each of the structures that are predefined in our design task can be illustrated

by a cycle representation as described in chapter 2. We now superimpose all

these graphs of secondary structure in a composite graph- the dependency graph

(Fig. 10), which forms the starting point for the development of our algorithm.

The dependency graph Ψ of a collection of secondary structures {Θi} with n

nucleotides consists of n vertices and edges connecting k with l if and only if

(k, l) is a basepair in at least one of the secondary structures Θi.

Our approach is based on the following theorem (described in the sections 3.2

and 3.3) that incorporates the concept of the depency graph and characterizes

the realizability of a collection of M distinct secondary structures by a single

RNA sequence. We start off by describing the mathematical background of the

solution for designing bistable switches as presented in [23] and then generalize

the problem for switches with more than two predefined structures.
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Figure 10: The dependency graph Ψ. (left) Circle representation of secondary structures 1 and

2. (middle) The dependency graph is constructed by super-imposing the circle representations

of the two structures. Edges that can only be found in structure 1 are green, those only in

structure 2 red, edges contained in both structures are black. (right) Paths are coloured blue

and green, cycles red [23].

3.2 RNA Structures and Compatible Sequences

As previously defined, we denote Θ as the set of base paired sequence positions

and Υ as the set of unpaired positions. The base pairing rules for RNA allow only
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6 types of base pairs out of the 16 possible combinations, thus given a secondary

structure Θ our choice of sequences compatible with Θ is restricted, since for each

pair i, j ∈ Θ and each sequence x, the positions xi and xj must be able to form

one of the permitted base pairs. We write C[Θ] for the set of all sequences that

are compatible with Θ in the sense that every basepair (i, j) ∈ Θ is realized by a

pair (xi, xj) ∈ B of pairing nucleotides. It follows that the number of sequences

compatible with a given structure | C[Θ] | is

| C [Θ] |=| A ||Υ|| B ||Θ| (1)

since for each i ∈ Υ we can choose any random letter of the nucleic acid alphabet

and for each pair we may choose one of the possible base pairs.

The first obvious question that arises when trying to design multi-stable sequences

is: Can sequences be found that fold into two (and consequently more) predefined

structures and if so, how many, i.e. what is the size of the cardinality of the inter-

section of two given secondary structures? This is answered by the Intersection

Theorem.

Theorem 2. Intersection Theorem: If the nucleic acid alphabet admits at least

one type of complementary base pairs, then, for any two secondary structures Θ1

and Θ2 there exists at least one sequence that is compatible with both structures,

in symbols:

C[Θ1] ∩C[Θ2] 6= ∅ (2)

This means whenever we have symmetric base pairs, i.e. XY ∈ B implies Y X ∈

B, we can always find sequences that can fold into both Θ1 and Θ2. An abstract

group-theoretical proof can be found in [63], for a purely combinatorial proof see

[23].

3.2.1 The Size of the Intersection

In order to determine the cardinality of the intersection of Θ1 and Θ2 we dis-

play the graph Ψ as the conjunct union of its connected components: Ψ = ˙⋃ψ.

Depending on the predefined structures there can be found three kinds of com-

ponents:
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(i) Positions that are unpaired in both structures correspond to isolated ver-

tices in the graph.

(ii) Positions that are paired in both secondary structures correspond to paths

of the length one.

(iii) Base-pairing positions that occur only in one of the two different structures

are part of paths or cycles.

Using this definition we can write:

|C[Θ1]
⋂

C[Θ2]| =
∏

components ψ of Ψ

F (ψ) (3)

where F (ψ) describes the number of sequences compatible with a connected com-

ponent ψ of Ψ. For (i) an isolated vertex K1 we get F ({i}) = F (K1) = |A|,

i.e. the number of nucleotides in the alphabet, for (ii) paths of the length 1

F (K2) = |B|, the number of allowed base pairs, for (iii) the compatible sequences

of paths and cycles can be counted by using recursive formulae called Fibonacci-

numbers (paths) and Lucas-numbers (circles):

F (Pn) = 2(Fib(n) + Fib(n+ 1)) = 2Fib(n + 2) (4)

F (Cn) = 2(Fib(n− 1) + Fib(n + 1)) = 2Lucas(n) (5)

3.2.2 Finding Random Sequences in C[Θ1]
⋂

C[Θ2]:

The recursive counting formulae shown in the previous section can be used in-

versely for creating a generator of uniformly distributed objects- in this case for

sequences of the intersection C[Θ1]
⋂

C[Θ2]: Each connected component ψ of

Ψ is independent from all others, since sequence constraints are only defined by

the edges in Ψ. Hence, the task of generating a sequence in the intersection is

reduced to assigning sequences to each separate connected component. (For an

implementation see [23].)

3.3 The Generalized Intersection Theorem

The intersection theorem as postulated in the previous section does not directly

generalize to more than two sequences. However, in [23] it was shown that based
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on the conecpt of colouring the dependency graph we obtain the following:

Theorem 3. Generalized Intersection Theorem: Suppose B ⊆ A × A contains

at least one symmetric base-pair then:

1. C[Θ1]∩C[Θ2]∩· · ·∩C[Θk] 6= ∅ if the dependency graph Ψ = Θ1∪Θ2...∪Θk

is bipartite.

2. There are

∏

components ψ of Ψ

F (ψ) sequences in
⋂

j

C[Θj ]

where F (ψ) is the number of sequences that are compatible with a connected

component ψ of Ψ.

3. For the biophysical alphabet holds:
⋂

j C[Θj] 6= ∅ if and only if Ψ is a

bipartite graph.

It follows that designing switches with more than two metastable structures is

much more complicated than the bistable case: Firstly, according to the Gener-

alized Intersection Theorem the dependency graph Ψ has to be bipartite. It was

proven in [23] that the dependency graph of bistable switches is always bipar-

tite, if we predefine more than two structures then this is not the case anymore.

Loosely speaking, a graph is bipartite if we can divide the set of vertices into two

subsets, so that all edges have one vertex in one subset and the other vertex in the

other. This means that no edges may occur within one subset. The constraint

of bipartiteness arises simply from the base pairing rules. The simplest case of a

non-bipartite graph is a triangle, let us call into mind that the basepairing rules

demand that each purine base can only pair with a pyrimidine and vice versa.

If we try to assign a sequence to a triangle (choose one color for pyrimidines,

another one for purines), we immediately see that this task cannot be solved,

since there will always be either two purines or two pyrimidines connected by an

edge (see Fig. 11).

Secondly, the dependency graph of more than two predefined structures is more

complicated and thus the design task not merely a trivial extension of the bistable

case. The main complication arises from the fact that we additionally find blocks
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Figure 11: The bipertite property. (left) The square is a simple form of a bipartite graph,

its vertices can be assigned to two subsets in such a manner that no edge occurs within one

subset(below). (right) The triangle is the simplest form of a non-bipartite graph. Its edges

cannot be assigned to two subsets without an edge occuring within one subset (below).

in these dependency graphs that are connected by cut-vertices and thus the bi-

connected components are not independent anymore (see Fig.12).

3.3.1 The Dependency Graph of Multi-Stable Switches

As with the bistable case, we are again interested in finding recursions that can

be used for determining the size of the intersection. For this purpose we first

identify connected components and then have to decompose or split these into

their biconnected components. If we explore the graph along the cut-vertices we

obtain a tree-like structure (see Fig. 12). The number of sequences compatible

with the graph Gi given the base X at the cut-vertex x is thus the result of
∑

X∈A

∏

ψ⊂Ψ

F (Gi|x = X) (6)

For the case pictured in Fig. 12 we can write the following:

∑

X∈A

F (G1|x = X)F (G3|x = X)
∑

Y ∈A

F (G′
2|x = X ∧ y = Y )F (G′′

2|y = Y ) (7)

G1 and G′
2 are paths of the length 1, G3 is a cycle of the size 4. For these

components we have already found recursions in the previous section. Graph
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Figure 12: The dependency graph Ψ of more than two structures may consist of several and

more complicated connected components that need further decomposition. (top) This shows a

dependency graph of four superimposed secondary structures with two connected components:

a path (yellow) and a complex component (blue, green, cyan). (below) The second connected

component of the dependency graph above is represented here. It is decomposed at the cut-

vertices x, y into two paths of the length 1, a circle of the length 4 and a block.

G′′
2 is a complex block and therefore has to be dealt with in a new and different

way: Structural characterizations of graphs are often based on so-called ear de-

compositions as described by Whitney [87]. In essence, this procedure assembles

a given graph by starting off with a simple sub-graph (e.g. a circle) and pro-

ceeds by repeated attaching of simple elements, the ”ears” (e.g. paths), until the

graph is complete [87, 48]. Inversely, we can decompose a graph by successive

removal of the ”ears” until a simple object is left, see Fig. 13. In the next chapter

we describe in detail how the splitting operation of the graph works and how

compatible sequences can be found using the ear decomposition.
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Figure 13: The ear decompositon: In each step a path is removed until a simple object (circle)

is left.



33

4 The Design Algorithm

In detail, the algorithm consists of the following steps:

1. INPUT: Predefine a set of secondary structures.

2. Draw the dependency graph Ψ.

3. Test for the bipartite property of the graph Ψ using a simple breadth-first

search.

4. Decompose the graph into its connected components, then further into the

biconnected components and finally decompose also the blocks by Whit-

ney’s Ear Decomposition.

5. Count the number of compatible sequences.

6. Generate sequences with uniform distribution on the set of compatible se-

quences.

7. Optimize the sequence according to an energy criterion.

8. OUTPUT: Optimized nucleic acid sequence compatible with all predefined

structures.

4.1 Testing for Bipartiteness

According to criteron (i) of the Intersection Theorem we can only find sequences

compatible with all predescribed structures if the resulting dependency graph is

bipartite. Consequently, the first task in our program is to test for bipartiteness

which we achieve by two-colouring the graph using a simple breadth-first search

(see section 2.4.2).

4.2 Decomposing the Graph

In order to be able to design sequences without a priori bias in the sequence com-

position, we need to count and sample uniformly from the sequences compatible

with a set of structures. According to assertion 2 of the Generalized Intersection

Theorem each connected component can be treated independently and all their

combinations are used to compute the cardinality of the intersection. Thus the
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next task of our algorithm is to identify connected components and find recursions

to count compatible sequences. For this purpose we use the biconnectivity algo-

rithm for finding cut-vertices (see section 2.4.1) and then decompose or split the

connected components further into their biconnected components. At this point

we want to call to attention that by definition paths of length n are decomposed

into n subpaths of length 1, since each subpath presents a biconnected compo-

nent. It is a lot more efficient to avoid this fragmentation, as paths of arbitrary

length can be coloured in a more effective manner by our recursive algorithms

explained in sections 4.4.1 and 4.4.2. Therfore, we only split our graph at cut-

vertices c(k) if deg(c) ≥ 3, which means we screen for cut-vertices at bifurcation

points and ignore those that are contained in paths.

4.2.1 The Splitting Operation

For two graphs G1(V1, E1) and G1(V2, E2) we define the the union (G1∪G2)(V1∪

V2, E1 ∪ E2). Intersection, difference, etc. are defined analogously. Furthermore,

G1 is a subgraph of G2, in symbols G1 ⊆ G2, iff V1 ⊆ V2 and E1 ⊆ E2. We

sometimes write V (H) and E(H) or VH and EH for the vertex and edge set of a

graph H .

Let G(V,E) be a connected graph and let A ⊆ V . The splitting of G at A is

the graph G〉G〈 obtained from G by (i) replacing each vertex in A by degG(x)

copies, one attached to each edge incident with x, and (ii) identifying again those

copies of x that are contained in the same connected component after step (i).

See Fig. 14 for an illustration of the splitting operation. If follows that either

G〉G〈 is not connected any more or G〉G〈 = G.

The classes of biconnected components we thus get by decomposing the graph at

its cut-vertices are paths, cycles and complex blocks. For the case of paths and

cycles, the counting and sampling problem is solved in [23]. The blocks are now

decomposed by means of ear decomposition.

4.2.2 Sequence Design as Graph Coloring

The important observation is that a sequence that is compatible with all sec-

ondary structures can be viewed as a colouring of the vertices of the dependency

graph Ψ such that adjacent vertices have colours (a, b) ∈ B, the alphabet of
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Figure 14: Splitting of G proceeds in two steps. (i) replacing each split vertex x ∈ A by end

points of its incident edges, and (ii) identifying copies of x that reside in the same connected

component of the intermediate graph. The resulting graph is G〉G〈.

base-pairs. In the following sections we describe how we developed a dynamic

programming algorithm that counts the compatible sequences of a block and

produces colourings during the backtracking procedure. For this purpose we ap-

proach the task from a more abstract graph theoretical perspective.

4.3 Ear Decompositon and Associated Graphs

Let G(V,E) be a finite 2-connected graph with vertex set V and edge set E. Let

E = (P0, P1, . . . , Pµ) be an ear decomposition of G, i.e., a sequence of paths Pi

such that

(E0) P0 is a single vertex.

(E1) The endpoints of Pi are contained in the union of the paths Pj , j < i

(E2) The graph G is the union of all paths in E.

It is well known that a graph has an ear decomposition if and only if it is bi-

connected [87]. Furthermore µ = |E| − |V | + 1, the cyclomatic number of G

[20].

We define two series of partial graphs associated with the ear decomposition E:

Gk =

k
⋃

i=0

Pi Gk =

µ
⋃

i=k+1

Pi Ak = Gk ∩Gk (8)
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We observe that Gk is biconnected for all k > 0. Be definition G0 = P0, G1 = P1,

Gµ = G, G0 = G and Gµ = ∅, the empty graph. We therefore have

Gk = Pk+1 ∪Gk+1 (9)

The graphs Gk are the complementary graphs of each decomposition step and

are not necessarily connected. The graphs Ak are disconnected and consist of the

attachment points of Gk on Gk.

Furthermore we define the width α(E) of an ear decomposition E of G as

α(E) = max
0≤k≤µ

|Ak| (10)

i.e., the maximal number of attachment points along the decomposition sequence.

It seems natural to define the ear width of a graph as

α(G) = min
E

α(E) (11)

and to ask whether this parameter can be determined (efficiently).

4.4 Colourings

A vertex colouring of G is a map V → A : c 7→ cx where A is an “alphabet” of

colours and cx denotes the colour assigned to the vertex x. We will write this

map as c. Let H ⊆ G. A partial colouring cW of H is a map W → A for

some subset W ⊆ V (H). Our interpretation of a partial colouring is that all

colour assignments are considered on the vertices V (H) \W . If U ′∩U ′′ = ∅ then

cU ′∪U ′′ = cU ′ ◦ cU ′′ , the concatenation of the colouring map on U ′ and U ′′, i.e.,

the map consisting of colouring both U ′ and U ′′. Two colourings on U ′ and U ′′,

respectively, are consistent if their restrictions to U ′ ∩ U ′′ are identical.

Let X be a set endowed with two operations ∧ and ∨ that are associative and

commutative. We consider an abstract evaluation Ω of partial colourings on

subgraphs of G with values in X that satisfy the following conditions:

Ω(H, cU) =
∨

cW\U

Ω(H, cU ◦ cW\U) for all U ⊆W

Ω(H, cU) = Ω(H1, cU∩V (H1)) ∧ Ω(H2, cU∩V (H2))

for all H1, H2 ⊆ H and all U such that V (H1 ∩H2) ⊆ U

(12)
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Table 1: A few colouring problems.

Question Ω(e; c′, c′′)
∧ ∨

minimal number of colour conflicts δ(c′, c′′) + min

number of conflict free colourings 1− δ(c′, c′′) × +

partition function of colourings exp(−δ(c′, c′′)) × +

list all conflict free colourings† [c′, c′′|c′ 6= c′′] ◦ ∪

count compatible RNA sequences 1 ⇐⇒ {c′, c′′} ∈ B × +
†The concatenation ◦ of two lists of colourings is defined as the concate-

nation of all pairs of colourings.

The second equation allows in particular to write Ω(H, cV (H)) in terms of the

edges of H :

Ω(H, cV (H)) =
∧

e∈E(H)

Ω(e, ce) (13)

where Ω(e, ce) = Ω(e, cx, cy), is the evaluation of a particular colouring of the two

end points x, y, of the edge e = {x, y}.

It follows that we can evaluate the set of all colouring on a graph formally as

Ω(G,∅) =
∨

cV

Ω(G, c) =
∨

cV

(

∧

e∈E

Ω(e, ce)

)

(14)

Note that this is by no means surprising since
∧

e∈E tells us to consider all edges

of G and
∨

cV
means to consider all |A||V | colouring maps. The question hence

becomes whether we can use equ.(12) to compute Ω(G,∅) more efficiently than

the brute-force approach of equ.(14).

Graph colouring is a well known NP-complete problem ([36]). Of course our

approach cannot overcome this in general. We can, however, search for a decom-

position of G that allows us to apply equ.(12) with acceptable resource require-

ments.

A few colouring problems, like for example the number of conflict free colourings

given a graph and a set of colours, are summarized in Table 1.

Erlaeuterung der colouring-probleme wird eingefuegt

Let us now return to the ear decomposition of G. We are interested in evaluating

a colouring scheme for G. We do this iteratively for the subgraphs Gk, starting
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with Gµ−1 and proceeding towards G0 = G.

We consider the step from Gk+1 to Gk. The attachment vertices of Gk are Ak =

Gk ∩ Gk. Recall that Gk = Pk=1 ∪ Gk+1. We have to distinguish two classes of

attachment of Gk+1 points:

(1) The set Ak+1 \ Ak contains those attachment points of Gk+1 that are buried

in the interior of Pk and hence will not play a role in further steps.

(2) The set Ak+1 ∩ Ak contains those attachment points of Gk+1 that are also

attachment points of Gk. These points either are the end-points of the path Pk

or they are not contained in Pk at all.

The points of Pk are divided into the interior points Ak+1 \Ak and the end-points

A′
k of Pk.

We can now directly apply the recursion (12) to obtain the general recursion for

passing from Gk+1 to Gk:

Ω(Gk; cAk
) =

∨

cAk+1\Ak

[

Ω(Gk+1; cAk+1\Ak
◦cAk+1∩Ak

)∧Ω(Pk; cAk+1\Ak
◦cA′

k
)

]

(15)

The path Pk is subdivided by the points in Ak+1 \ Ak into |Ak+1 \ Ak| + 1 sub-

paths for which the weights can be computed recursively. Suppose the vertices

x ∈ (Ak+1 \ Ak) ∪ A
′
k are ordered linearly along the path so that x0 is the inital

vertex and xL is the terminal one. Thus

Ω
(

(x0, ..., xL); c{xi|0≤i≤L}

)

=

L
∧

k=1

Ω(ek; ck−1, ck) (16)

It follows that effort for this step is α|Ak+1∪Ak| since we need to evaluate all

possible colouring of the interior attachement vertices (x ∈ Ak+1 \ Ak) for all

possible colourings of the exterior attachement vertices (x ∈ Ak). The evaluation

of Ω(Gk+1; . . . ) is a single table lookup, while the evaluation of Ω(Pk; . . . ) requires

L ≤ |Ak+1| + 2 table lookups and ∧ operators. The performance of this way of

colouring the graph is therefore determined by the maximal number of attachment

vertices in a decomposition step for 0 ≤ k ≤ µ, which is represented by the width

α(E) of the ear decomposition of the graph.

4.4.1 Implementation- Forward Recursion

Now that we have the fully decomposited graph and have obtained the ear de-

compositions of the blocks we initiate the counting and colouring routine of each
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connected component ψ of the dependency graph Ψ. We start by colouring blocks

and then proceed outwards towards the paths that are connected via cut-vertices

until each connected component is completely coloured. The cut-vertices are

treated just like attachment points, since the mechanism of counting, colouring

and concatenation is exactly the same.

The compatible sequences of blocks are counted recursively starting from the

utmost ear proceeding inwards to the central circle. In each step of the counting

procedure while concatenating the ears, we have to compute and memorize the

number of compatible colourings of paths given each consistent assignment of the

attachment points Ak.

Algorithm 4.4.1 summarises in pseudo-code the recursive dynamic programming

procedure for determining the number of sequences that start with a certain base

i and end in a certain base k for all path lengths l ≤ n (n is the maximum path

length in our graph). We generate the matrix entries in the following manner:

The number of paths with length l that start with base i and end in base k is

the sum over all path matrix entries PM(i, j) of the path length l − 1 times 1,

if (j, k) is an allowed base pair, and times zero if (j, k) cannot form a basepair.

The solution to the smallest subproblem of this dynamic programming algorithm-

finding assignments for paths of the length one- is clearly the base-pairing matrix.

Proceeding bottom-up from this sub-instance we can generate the path matrices

for paths of arbitrary length.

The implementation of this counting procedure proved to be very complex al-

though it is based on a dynamic programming algorithm. The generation of the

path colouring tables themselves is rather straight forward as the algorithmth 4.4.1

implies. It is the upkeep and update of the colouring matrices that store con-

sistent assignments for attachment points and their multiplicity that result from

each concatenation step which require a sophisticated table management. The

reason is that as we concatenate the ears of the graph the table size does not al-

ways grow steadily but also decreases again when colourings become impossible

due to constraints of attachment vertices in later steps.

When counting on the blocks is finished, the counting procedure continues in an

analogous manner on all remaining biconnected components of each connected

component, with the exception that path concatenation now considers fixed as-

signments of cut vertices rather than attachment points. The result is a table of
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Algorithm 4 Counting Algorithm - constructing path matrices

Require: list of base-pairs B, alphabet of bases A, maximal path length n

1: while length ≤ n do

2: for k ← [A,U,G,C] do

3: for i← [A,U,G,C] do

4: for j ← [A,U,G,C] do

5: entry =
∑

PM(i, j)length−1 ∗ canpair(j, k)

6: end for

7: push entry into new row

8: end for

9: add row to new matrix

10: end for

11: push new matrix into list of path matrices

12: end while

consistent assignments for all attachment points and cutvertices and the number

of compatible sequences, given each assignment, which is then used to sample

colourings with uniform distribution by means of stochastic backtracking.

4.4.2 Stochastic Backtracking

In the backtracking procedure we start off with choosing an assignment for the

first set of attachment vertices a1, a2, ..., an. The probability of choosing a certain

assignment for these vertices is the number of of colourings that are possible given

the chosen colours at the attachment points divided by the number of all possible

assignments.

Za1..an
=

|[a1..an]|
∑

a1..an
|[a1..an]|

(17)

Our task then is to generate internal colors for each path with given begin and

end colors (at the attachmain points). The probability of choosing colour u at

position k given that the colour z was chosen for position k+1 equals the number

of paths that start in x and end in u at step k divided by the number of paths

that start in x and end in z at step k + 1 times 1 if u, z is an allowed base pair
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and times 0 if not (see Fig. 16).

Zk =
|[x, u; k]|

|[x, z; k + 1]|
×

{

1 : if(u, z) ∈ B

0 : otherwise
(18)

x u nz

k+1k

Figure 16: Stochastic Backtracking

At each step we generate a random number ξ that has a value between 0 and 1.

We add up the probabilities Zk until the sum of Zks is greater or equal to ξ.

n
∑

k=1

Zk ≥ ξ (19)

We draw the colour of the respective Zk we reached when the ξ constraint was

fulfilled. This procedure is comparable to turning a roulette wheel where each

colour occupies a segment of the wheel where the size corresponds to the number

of colourings that are consistent with this particular color at step k. It follows

that the color with the largest segment is also the most likely one to be chosen.

The backtracking continues in this way until the whole graph is coloured and the

obtained sample sequence can be fed into the optimization algorithm.

4.5 Applicability of the Design Algorithm

Our algorithm can easily be adapted for different colouring tasks, as outlined

in table 1, by simply defining another set of pairing rules. We can also provide

fast solutions for colouring problems that are not in a biological context. The

important constraint though is that the underlying graph displays a small value

for the graph width α(G). Alternatively to accepting secondary structures and

thus constructing graphs, our design tool also processes files in the GML format-

the standard file format for many graph software packages. The width of the input

graph can be calculated by means of the design program and thus determined

whether the graph can be coloured efficiently using our algorithm.
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Figure 17: The width of an ear decomposition α(E), i.e. the maximal number of attachment

points in a decomposition step, depends on the selected spanning tree. Bold lines illustrate

the tree edges in the graph, the root vertex of the ear decomposition is coloured red and the

respective attachment points green. The numbers show the labels of each ear-edge. If one of

the outer squares is the central circle of the decomposition, α(E) = 2. If the central square also

reprensents the central circle of the decomposition, then α(E) = 4.

The width of an ear decomposition α(E) is directly associated with the spanning

tree that generates the ear-labeling. Fig. 17 illustrates how different spanning

trees imply different ear decompositions and thus a different number of attach-

ment points in each decomposition step. Therefore, a tool that finds spanning

trees that minimize α(E) would help cutting down on computation time and make

our algorithm even more efficient. In chapter 7 we describe possible approaches

for solving this task.
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5 Optimization

Uniform samples of colouring (i.e., sequences that are compatible with all pre-

scribed secondary structures) can be obtained by means of a standard backtrack-

ing procedure when the numbers of colourings with given colors on the Attach-

ment vertices Ak and cut-vertices are tabulated for each k. These sequences must

then be used to initialize optimization heuristics.

The RNA folding problem has been solved by dynamic programming proce-

dures [92, 90, 51] that make use of a so-called nearest neighbour model for which

most energy parameters were carefully measured [35, 84, 50]. The Vienna RNA-Package

for example evaluates a folding function Φ to compute the secondary structure

Φ(x) of a given sequence x [32]. It is straight forward to invert this combinatoric

problem and look for a sequence x given a certain secondary structure Θ. Thus

we write for the inverse folding problem:

Find x ∈ C[Θ] such that Ξ(x) = D(Θ,Φ(x))→ min. (20)

which means that the sequence x can only fold into the structure Θ, i.e. Φ(x) =

Θ, if the structural distance D(Θ(x),Φ(x)) equals zero (implemented in the

RNAinverse program of the excellent Vienna RNA-Package). For most design

purposes is it sufficient to just minimize the distance.

The combinatorial optimization problem can be easily solved by means of adaptive

walks that search the set of compatible sequences for those that optimize a cost-

function Ξ. The algorithm starts with a random colouring sample and then

mutates single nucleotides at unpaired sequence positions Υ or exchanges base

pairs in Θ. A mutant is accepted, if the value for the cost function Ξ(x) decreases.

For example we can modify equation 20 in such a manner, that the ground state

is more stable than any structural alternative. Be E(x,Θ) the energy of the

structure Θ of sequence x and G(x) the Free Energy of sequence x that can be

computed using the McCaskill-algorithm [51], then we can find suitable sequences

by minimizing the following equation:

Ξ(x) = E(x,Θ)−G(x) = −RT ln p (21)

where p denotes the probability of the structure Θ in the Boltzmann-ensemble of

the sequence x.
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Figure 18: Example of a bistable switch molecule. (top from left to right) Dotplot: both struc-

tures have approximately the same statistical weight within the thermodynamic equilibrium;

MFE structure; Metastable structure; note that the two structures have no base pair in com-

mon; (below)Tree of local minima: Shown are the two (meta-)stable conformations, that are

seperated by an energy barrier of ∼ 11.2kcal/mol.

The function Ξ encapsulates desired properties of the molecule, so we can modify

equation 20 in a similar manner to construct cost functions Ξ for more compli-

cated design problems such as (nearly) equal energies for all prescribed secondary

structures and constraints on the energy barriers between these metastable states.

Ξ is only definded for sequences that fold into all predescribed structures, thus

the optimization should be restricted to the interesection
⋂

j

C[Θj ] for j given

structures. An example of such a designed RNA switch is shown in Fig. 18.

Having optimized our output sequences we want to determine if our design goal
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was also met with regard to thermodynamic properties. Thus, we need a means

of evaluating our results. In the next section we describe how the energies of

RNA secondary structures are determined and how they are visualized by energy

landscapes and barrier trees.

5.1 Energy Landscape of RNA Molecules

RNA secondary structures can be decomposed uniquely into a set of loops of

different types: stacked base pairs, bulges, interior loops and multi-branched

loops 1.3.3. The standard energy model ?? describes the energy of an RNA

secondary structure as a sum of sequence-dependent contributions for each loop.

Dynamic programming algorithms are known to exactly and efficiently compute

the minimum free energy structure ??, the base pairing probability matrix ??,

the density of states ??, certain sub-optimal structures ?? or all structures with

an energy below a threshold value ??. A suite of these algorithms is implemented

in the

Vienna RNA package

, which was used to evaluate the success of our design algorithm ??.

Within the framework of the folding landscape we can meaningfully speak of

local minima or metastable states, their basins of attraction, and the saddle

points separating them. Formally, a structure x ∈ X is a local minimum of E

if E(x) ≤ E(y) for all its neighbors, (x, y) ∈ M. A gradient walk is defined as

follows: starting from x ∈ X we move to its neighbor y with minimal energy if

E(y) < E(x). If the minimum energy neighbor y of x is not uniquely defined we

use a deterministic rule to break the tie, for instance, by choosing the structure

that comes lexicographically first. The step from x to y = γ(x) is repeated until

we reach a local minimum where the walk terminates, γ(x) = x. The local minima

are therefore the attractors of the map γ : X → X and each x ∈ X is mapped to

a unique local minimum z = γ∞(x) = γt(x) by a finite number t of applications of

γ. The basin of attraction of a local minimum z, B(z), consists of all structures

that are mapped to it by the gradient walk, i.e. B(z) = {x ∈ X|γ∞(x) = z}.

Below we will need the (trivial) fact that these “gradient basins” of the local

minima form a partition of X.
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Let us now turn to the transitions between local minima. The energy of the

lowest saddle point separating two local minima x and y is

E[x, y] = min
p∈Pxy

max
z∈p

E(z) (22)

where Pxy is the set of all paths p connecting x and y by a series of subsequent

moves. The saddle-point energy E[ . , . ] is an ultra-metric distance measure on

the set of local minima, see e.g. [62].

In the simplest case the energy function is non-degenerate, i.e., f(x) = f(y)

implies x = y. Then there is a unique saddle point s = s(x, y) connecting x

and y characterized by E(s) = E[x, y]. This definition of a saddle point is more

restrictive than in differential geometry where saddles are not required to separate

local optima. [78]. For each saddle point s there exists a unique collection of

configurations V(s) that can be reached from s by a path along which the energy

never exceeds E(s). In other words, the configurations in V(s) are mutually

connected by paths that never go higher than E(s). This property warrants to

call V(s) the valley below the saddle s. Furthermore, suppose that E(s) < E(s′).

Then there are two possibilities: if s ∈ V(s′) then V(s) ⊆ V(s′), i.e., the valley

of s is a “sub-valley” of V(s′), or s /∈ V(s′) in which case V(s) ∩ V(s′) = ∅,

i.e., the valleys are disjoint. This property arranges the local minima and the

saddle points in a unique hierarchical structure which is conveniently represented

as a tree, termed barrier tree (see Fig. ??). Since saddle points separate local

optima, each valley V(s) contains (in the non-degenerate case at least two) local

minima z1, . . . , zk. Conversely, V(s) ⊆
⋃

k B(zk), i.e., the valley of s is contained

in the union of the basins of attraction of the metastable states “below” s. The

metastable states therefore form the tips (or leafs) of a tree. We calculate this

barrier tree by a software package called

barriers

. This program constructs the barrier tree directly from an energy sorted list of

all configurations ??. Starting with the lowest energy configurations,

{barriers}

explicitly builds the valleys V(s) and subtrees by checking for each configurarion

whether it (a) is a local minimum, (b) uniquely belongs to the basin of a local
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minimum that was encountered earlier in the list or (c) merges two or more basins

(which equals a saddle point). The

{Vienna RNA package}

also forms the basis for the computations of the barrier algorithm.
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6 Computational Results and Discussion

In the previous chapters the theoretical background as well as the underlying

models and algorithms were introduced. We will now give some examples of our

calculations on this basis.

6.1 Feasibility of Mulit-stable Switches

In order to get at least a rough idea on how easy or hard it is to design multi-stable

switches we consider the probability that the intersection
⋂

i C[Θi] is non-empty

for random samples of n secondary structures. Otherwise, corresponding switches

obviously do not exist. As proven in [23] the dependency graphs of bistable

switches are always bipartite, consequently, compatible sequences can always be

found. The ease of designing bistable switches indicates that RNA switches are

equally easily accessible in evolution which is also confirmed by experimental

data, see e.g. [9, 8, 18, 60, 15, 13] for a wide variey of experimentally known

bistable self-induced RNA switches. Self-induced RNA switches thus seem to

be a wide-spread and elegant way to regulate biological activity that has to be

limited to a certain time window.

The situation is different with s ≥ 3 structures since it is simple to construct

triples of structures with conflicting base-pairs that lead to a triangle in Ψ (and

thus a non-bipartite graph). In order to estimate the probability of a non-empty

intersection we sample random structures (generated by means of stochastic back-

tracking as described in [71]) and check whether their intersection graph is bipar-

tite. For s ≥ 3 we find an exponential decrease with sequence length, see Fig. 19.

The exponent is very small for s = 3, however, so that tri-stable switches do not

seem to be evolutionary inaccessible.

So far no naturally occuring self-induced s-stable RNA switches with s ≥ 3 that

are completely self-induced have been described in literature. One switch system

that comes close to a self-induced tri-stable RNA switch is the Hok/Sok system

of plasmid R1 in E.coli [29, 27], which regulates gene expression via an intricate

cascade of secondary structural rearrangements. The Hok/Sok system mediates

plasmid maintenance by expressing the Hok toxin which kills plasmid-free seg-

regates. The plasmid encodes for a highly stable mRNA, which is translated
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Figure 19: Statistics of the fraction of bipartite graphs versus the sequence length. Shown here

are the results for switches with different numbers s of pre-defined structures. • s = 3, � s = 4,

� s = 5, N s = 6 and H s = 7.

to the Hok toxin if the mRNA is in its activated conformation, and a labile

anti-sense RNA (Sok) which acts as an antidote by binding to the activated hok

mRNA, leading to rapid degradation of the resulting duplex. When completely

transcribed, the hok mRNA switches from the unfavourable inactive structure

it adopted during transcription to a more stable structure without the help of

any effector molecule and thus forms a pool of stable inactive mRNAs. The next

switching step is induced in trans by the RNA degradation machinery which, in

time, truncates the 3’-end and causes the hok mRNA to refold into yet another

structure that is finally translationally active. Then both locations, the Hok gene

and the Sok binding site, become accessible. If the plasmid was lost, the pool

of antidote Sok is quickly deptleted, since it is conseiderably less stable than the

hok mRNA. Hence, Hok protein is produced and the killing of the cell induced.

For a recent review on self-induced RNA switches see [54, 11].
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6.2 Characterization of RNA Dependency Graphs

Since it is necessary to decompose the dependency graphs of nucleic acid switches

in the course of the design algorithm, we were particularly interested in the

features of these graphs. For this purpose we, again, generated random RNA-

structures as described in the previous section and computed several statistics.

6.2.1 The Width of the Dependency Graphs

The most important feature of the graphs in connection with our algorithm is

the width α(G), as it determines the computational ”costs”. We conducted a

statistic analysis on tri-stable switches for sequence lengths reaching from 30 to

140 nucleotides. The result we obtained showed that the average ear-width α(E)

was almost exactly 2.0 independent from the sequence length. It follows that the

graph width is small enough for our design algorithm to work efficiently.

6.2.2 Tree-likeness of Dependency Graphs

Fig. 20 depicts the number of tree-edges, i.e. edges that are not part of a block

component, which increases almost precisely in a linear manner in dependence

of the sequence length. Switches of three and four predefined structures dis-

play almost the same slope, whereas the increase of tree-edges in switches with

five predefined structures is less drastic. This can be explained by the fact that

switches with s = 5 define much more complex dependency graphs and thus the

ratio of block edges rises. The statistics for s = 5 switches stop at a sequence

length of n = 70 nucleotides, since the probability of defining a bipartite depen-

dency graph dramatically decreases at a bigger sequence length as shown in the

statistics of Fig. 19. Therefore, it cannot be considered reasonable to attempt

designing switches beyond this number of nucleotides.

In Fig. 21 we proceeded by exploring the average number of ear decompositions of

the dependency graphs with s predefined structures, which rises linearly with the

sequence length. Interestingly, we observe one ear decomposition per dependency

graph on average starting from switches of four predefined structures and a length

of at least 60 nucleotides.

The effective number of ear edges, i.e. edges that are part of a block, is depicted
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Figure 20: Statistics of the number of tree-edges in dependency graphs of switch structures

versus sequence length. Shown are the results for switches with different numbers s of predefined

structures: ◦ s = 3, △ s = 4, � s = 5.

in Fig. 6.2.2. Remarkably, the number of ear-edges of switches with four and five

structures is identical. This means that, according to Fig. 20 switches of four

predefined structures have about the same number of tree-edges on average as

switches of three structures, at the same time they display the same number of

ear-edges as switches of five structures, although more ear-decompositions occur

with the latter.

If we compare the number of tree-edges and ear-edges we can clearly conclude

that the dependency graphs of multi-stable nucleic acid switches are primarily of

a tree-like structure.
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versus sequence length. Shown are the results for switches with different numbers s of predefined

structures: ◦ s = 3, △ s = 4, � s = 5.

6.3 Example applications of the design algorithm

6.3.1 Example 1

In order to find a set of three samples for the switch design we generated random

RNA structures of the length n = 40 and obtained the following structures (see

Fig. 23). The respective dependency consists of seven connected components and

21 isolated vertices in this graph. (see Fig. 23). The complex connected compo-

nent is now decomposed into a block and two paths and then all the components

are fed into the colouring procedure.

For the connected component containing the block there are 1072 different colour-

ing possibilities, i.e. 1072 sequences that fulfill the structure constraints. Whereas

these sequences can all theoretically fold into the predescribed structures, the op-

timization steps shows that the secondary structures that generate the block are

not very stable, since the resulting energies are rather unfavourable. Thus, a
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Figure 22: Statistics of the number of ear-decompositions in dependency graphs of

switch structures versus sequence length. Shown are the results for switches with

different numbers s of predefined structures: ◦ s = 3, triangle s = 4, � s = 5.

suitable optimized sequence can not be found. This can be explained by the fact

that the randomly generated structures contain many isolated basepairs, as we

did not put any constraints on the stack-size.

6.3.2 Example 2

Biologically relevant RNA structures usually exhibit a minimum stack-size of at

least three or four basepairs. We therefore generated a new random sample set of

structures that incorporates this constraint. Fig. 24 shows the selected structures,

the resulting dependency graph and the connected components that are fed into

the colouring algorithm.

Expectedly, this time the optimization run was more successful and we could

observe the cost function scores drop during the adaptive walk. Yet, further

examination proved that none of the predescribed structures were minimum free

energy (mfe) structures for the optimized output sequences. We conclude that
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depicted in red.
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in this case an adaptive walk did not present the ideal method of optimization,

since our walk was trapped in a local minimum.

6.3.3 Example 3

As a third sample set we chose the structures shown in Fig.25. We examined

the optimized output sequences with the Barriers software ?? and identified the

candidate CCGCACAGCGGGCAGUGCCC as an ideal switch-sequence for the

predescribed structures. Fig. 26 depicts the output of the Barrier program. The

dotplot shows three (sub)optimal structures on the upper right side and the

mfe on the lower left. These structures are consistent with the three predefined

structures of the design task. The barrier tree in Fig. 26 confirms the results

of the dotplot: There are three minima (numbered 1-3) that correspond to the

pre-described structures, one of them being the mfe structure ((((...)))).........

6.4 Dependency Graphs of Switches with Stack-size con-

straint

6.4.1 Characterization

Since we introduced a new constraint on our sample set, a minimum stack-size

for stems in the secondary structure, we were interested in how this affects the

features of our dependency graphs. In particular we wanted to know whether the

resulting dependency graphs display more complicated connected components.

Therefore, we performed a statistical analysis of the number of ear decomposition

versus the sequence length for dependency graphs of tri-stable switches with

varying stack-size constraints.

Fig. 27 shows that the number of ear decompositions does in fact rise with the

assigned stack-size. Yet, the absolute number of ear decompositions is still so

small that the increase does not change anything about the principally tree-like

nature of our dependency graphs.

Srictly speaking, cycles are also biconnected components, and are thus included in

our previous statistics concerning ear decompositions. Yet, cycles do not have to

be labeled in an ear decomposition in order to generate colourings and it follows
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Figure 27: Comparison of the number of ear decompositions of dependency graphs with varying

stack-size constraint. This calculation was conducted on tristable switches. Depicted are the

fractions of ear-decomposition versus the sequence length for dependency graph with no stack-

size constraint, with a minimum stack-size of three and with a minimum stack-size of four.

that the computational effort to find compatible sequences is far smaller than

with complex components. To get an idea how frequent complex blocks are in

our dependency graphs we issued another statistical analysis that counts ear de-

compositions only on complex blocks and not on cycles. As Fig. 28 illustrates, ear

decompositions are a rather rare event, though they occur much more frequently

in switches with stack-size constraints than in those without. The number of

complex components in tristable switches with no stack-size constraint is in fact

that small (between 1.5 and 4.6 per 1000 switches), that we included the results

for the total number of ear decompositions instead.

6.4.2 Width of Dependency Graphs with stack constraints

As the previous section shows the number of ear-decomposition increases with

a predescribed stack-size, we thus proceeded with investigating the impact on

the width of the graphs α(G). A statistical analysis of dependency graphs of tri-

stable switches with stack-size three and four, respectively, obtained the following
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Figure 28: Comparison of the number of ear decompositions(not including cycles) of dependency

graphs. This calculation was conducted on tristable switches with varying stack-size constraint.

Depicted are the fractions of ear-decomposition versus the sequence length for dependency

graphs with no stack-size constraint, with a minimum stack-size of three and with a minimum

stack-size of four. The number of complex components in tristable switches with no stack-size

constraint is that small, that we included the total number of ear decompositions (including

cycles) in this figure instead.

results: On average, the maximal number of attachment points in a decomposi-

tion step is between 2.5 and 3 for switches of the length n = 30 to n = 140 and

a stack-size constraint of three. The ear-width of switches with a stack-size con-

straint of four lies between 2.9 and 3.8. This analysis implicates that the width

of these graphs is still sufficiently small for our algorithm to work efficiently.

7 Summary and Discussion

Sequence design represents an integral part of research on nucleic acids and is

equally important for industrial applications. The development of new theoret-

ical approaches and hence the implementation of new program packages that

assist with the rational design of nucleic acids is therefore of fundamental ***in-
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terest***. ...

With the discovery of an abundance of riboswitches in recent years the ***inter-

est*** in catalytically active RNA has vastly increased. Riboswitches perform

vital tasks within the cell, they are of evolutionary as well as of functional in-

terest and even lay the way to the development of a new class of drugs that are

extremely target-specific. Against this background...

The aim of the work described in this thesis was the creation of a software tool

to support the rational design of RNA molecules capable of forming two or more

alternative metastable structures. This required the creation of a logical informa-

tion model, thus isolating relevant aspects of the biological problem as posed, and

incorporating these into a graph-based mathematical model. The algorithm we

developed based on this model reduces the problem to vertex coloring the union of

all prescribed outerplanar secondary structure graphs, called dependency-graph,

which represents a completely new approach to nucleic acid design. Starting

from a decomposition of this dependency graph, colorings are then produced by

a dynamic programming procedure. In the final step sequences can then be op-

timized for particular properties by means of standard optimization heuristics.

The connection between sequence design and vertex-colorings has hitherto not

been described in literature.

We have not only solved the design problem in theory, but also provide a software

package that is at free disposal for the scientific community and presents an

excellent tool for many fields of research on nucleic acids. In addition to enabling

the design of biologically relevant riboswitches our algorithm also has applications

in the graph-theoretical field. We can efficiently calculate colourings, given that

the underlying graph of the colouring task displays a small width.

Our design program always delivers solutions to the combinatoric problem of

finding sequences that fulfill the basepairing constraints of the predescribed struc-

tures. As example 2 illustrates, we were not always able to screen for sequences

in the optimization procedure that also showed sufficient thermodynamic sta-

bility when folding into the switch structures. Further progress can be made

by introducing different optimization techniques, to overcome this problem. An

adaptive walk is a relatively cheap method in terms of computation time, but it

has the inherent problem that an optimization run is easily trapped in a local

minimum and thus the basin of the mfe structure, the global minimum, can not
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be found. Several approaches are within reach to address this problem. Simu-

lated annealing, for example, is a technique that enables us to overcome energy

barriers between basins of minimima in the energy landscape. Since our design

algorithm is independent from the optimization method used, our program can

be easily adapted for the optimization technique of choice.

In the next chapter we provide the theoretical basis on how our design algorithm

can be further improved by defining a special kind of ear decomposition, the

woffle decomposition. Since the approach we describe there demands a lot of

additional graph-theoretical background work the exhaustive investigation of this

task exceeded the scope of this thesis, but presents a very promising starting point

for future development. Furthermore we outline how our software can be adjusted

for the design of whole RNA switching networks.
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8 Summary and Outlook

8.1 The Woffle Theory

In the course of researching the graph theoretical background of our design prob-

lem, we found yet another approach to speed up the colouring procedure. For

this purpose we have to identify a special kind of ear decomposition, the woffle

decomposition described in the following section.

There is a natural decomposition of the graph Gk by splitting it at its set Ak

of attachment points, see Fig. 29. We call Gk a woffle if it is connected and all

connected components of G
〉Gk〈

k are the subwoffles of E at step k. We write A(Ψ)

for the attachment points of the woffle Ψ. (See the appendix for the origin of the

name woffle.)

01

Figure 29: Woffles of an ear decomposition. The graph G has an ear decomposition in which

P0 is the vertex marked in red and P1 is the cycle outlined in bold. The graph G1 consists

of one connected component- a woffle- which is split into three subwoffles at the attachments

points shown in green.

The path Pk is contained in exactly one of the woffles at step k. If follows that

each woffle at step k+1 is contained in one of the woffles at set k. More precisely,

if Ψ is a woffle at step k+1 but not a woffle at step k then there is a (unique) woffle

Θ at step k that contains both Ψ and Pk. In this case we call Ψ an immediate

sub-woffle of Θ and write Ψ ⊏ Θ.

Consequently, if Ψ and Θ are two woffles, then either Ψ ∩ Θ = ∅, Ψ ⊆ Θ, or

Θ ⊆ Ψ. Thus the woffles of E are partially ordered w.r.t. set inclusion. The

woffle graph of E is the directed graph corresponding to the Hasse diagram of

this partial order, see Fig. 30. There is a directed edge from Θ to Ψ iff Θ ⊏ Ψ.

If the graphs Gk are all connected and do not contain a separating set of attach-
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Figure 30: A graph G, two different ear decompositions of G and their woffle sequences. The

attachement vertices of the woffles are marked in green. Note that the upper decomposition is

a woffle decomposition since each graph Gk is connected and thus a woffle.

ment vertices then each Gk is a woffle. Let us call an ear decomposition a woffle

decomposition of G if each Gk is a woffle.

Question 1. Does every biconnected graph have a woffle-decomposition.

If not, which graphs do have a woffle decomposition?

Analogously to section 4.3 we define the woffle-width β(E) of an ear decomposi-

tion E of G as

β(E) = max
woffle Ψ

|A(Ψ)| (23)

and the woffle width of a graph as

β(G) = min
E

β(E) (24)

Question 2. How are the ear width and the woffle width of a graph G related to

other graph parameters?

The effort for tabulation can be significantly reduced by decomposing Gk+1 into

its woffles since

Ω(Gk+1; cAk+1\Ak
◦ cAk+1∩Ak

) =
∧

woffles Ψ of Gk+1

Ω(Ψ; cA(Ψ)\Ak
◦ cA(Ψ)∩Ak

) (25)

As the woffles form a tree w.r.t. to inclusion we can write down equ.(15) separately

for each woffle Θ of Gk. Let

A∗ =
⋃

Ψ⊏Θ

A(Ψ) (26)
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be the attachment vertices of all immediate sub-woffles Ψ of Θ; let PΘ the path of

the ear decomposition such that Θ is the union of P and the woffles Ψ satisfying

Ψ ⊏ Θ; and let A′ be the endpoints of PΘ. With this notation equ.(15) becomes

Ω(Θ; cA(Θ)) =

∨

cA∗\A(Θ)

[

Ω
(

PΘ; cA∗\A(Θ) ◦ cA′

)

∧
∧

Ψ⊏Θ

Ω
(

Ψ; cA(Ψ)\A(Θ) ◦ cA(Ψ)∩A(Θ)

)

]

(27)

Equ.(27) admits a rather straightforward interpretation: the terms in the square

bracket are the decomposition of the woffle Θ into the path PΘ and the immediate

subwoffles of Θ into which Θ decomposed when the path PΘ is removed and the

remainder is split at the attachment vertices A(Θ). The
∨

-operation then iterates

over all colourings of the attachment vertices of the sub-woffles that are not

attachment vertices of Θ itself. We obtain an Ω-table indexed by the colourings

of the attachement vertices of the woffle Θ. We may regard equ.(27) therefore as

the recursion of a dynamic programming algorithm on the woffles of G.

In order to estimate the performance of such an algorithm we argue as follows:

Let us recall that α(E) is the width and β(E) is the woffle width of an ear

decomposition. The table Ω(Ψ; cA(Ψ)) describes all colorings of the attachment

vertices of the woffle Ψ. The largest of these tables obviously contains |A|β(E)

entries. There are not more than µ woffles hence, the evaluation of Ω(Gk+1, . . . )

requires not more than µ table lookups and ∧ operators. Clearly |Ak| ≤ 2µ,

thus one recursion step can be performed in at most O
(

µ|A|2α(E)
)

. The iteration

terminates after at most µ steps with the entire graph G. Therefore, we obtain

the following upper bounds on CPU and memory consumption

CPU ≤ O
(

µ2|A|2α(E)
)

MEM ≤ O
(

µ|A|β(E)
)

(28)

where we assume that the table entries Ω ∈ X are “numbers” i.e., require O(1)

memory and access time.

It follows that we can evaluate colorings efficiently on graphs with bounded ear-

width α(G) < α0.

In order to further investigate the questions raised in this section a tool is cur-

rently implemented that generates representative sample spanning trees of bicon-

nected graphs and their respective ear decompositions. As discussed above, the

effectiveness of the design algorithm depends on the width α(E) of the ear de-

composition (see Fig. 17), thus we are interested in finding spanning trees which
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define ear decompositions that minimize the variable α(E). We anticipate that a

probability-driven approach of this kind will help us identify a pattern for deter-

mining the ideal spanning tree that minimizes α(E). Furthermore, we hope that

it will lead to new approaches on how to find woffle decompositions in biconnected

components.

The term woffle has been taken from a short satire on mathematical papers from

the web site http://www.kfunigraz.ac.at/imawww/pages/humor/.

8.2 Small networks

Our design program can easily be adapted for cofolding tasks, which enables

especially the research of genetic switching networks on the basis of alternative

folding of nucleic acids. We can achieve this by incorporating the program

{RNAcofold}

of the

{Vienna RNA package}

into our design algorithm. Thus, we gain an excellent tool for a design kit of

switch topologies and the theoretical exploration of networks as well as for the

development of important models for experimental work.

Fig. 31 shows a simple example of a self-regulating network with negative feed-

back control (similar to the p53-network, see for example [79]). Molecule A has a

conformation in which the promoter region (filled red triangle) can be read and

thus transcription takes place. In this course the molecule A’ is synthesized. A’

is able to cofold with another RNA-molecule B, forming the complex A’:B. B

alone is in a conformation with an inactive promoter (unfilled green triangle),

building a complex with A’ makes the promoter region accessible though (filled

green triangle) and transcription of B’ starts. B’ in turn can cofold with A which

makes the promotor region of A inaccessible and results in the inactivation of

transcription of A.

If A is heavily transcribed, we get lots of prodcut A’, which then forms a com-

plex with B and enables the synthesis of B’. B’ forms a complex with A and so
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Figure 31: Example of the simplest case of an RNA switch network with negative feedback-

loop. The filled triangles depict molecules in the active transcriptional mode, unfilled triangles

represent the inactive mode. Dashed arrows indicate transcription.

further transcription of A is downregulated. Since it’s necessary to transcribe A

to produce sufficient B’, we will not have enough B’ left to inactivate A at some

point of time and therefore the transcription of A increases again.



LIST OF FIGURES 69

List of Figures

1 Organic carbon compounds . . . . . . . . . . . . . . . . . . . . . 8

2 Graph representation of a chemical reaction . . . . . . . . . . . . 8

3 RNA secondary structure representation . . . . . . . . . . . . . . 9

4 DNA and RNA structure and differences. . . . . . . . . . . . . . . 10

5 Secondary structure of an RNA molecule. . . . . . . . . . . . . . . 11

6 Primary, secondary and tertiary structure of a tRNA molecule. . . 12

7 Design of a riboswitch with two functions. . . . . . . . . . . . . . 14

8 RNA pseudoknots and base triples . . . . . . . . . . . . . . . . . 17

9 Different representations of RNA secondary structure . . . . . . . 18

10 The dependency graph Ψ. . . . . . . . . . . . . . . . . . . . . . . 26

11 The bipertite property. . . . . . . . . . . . . . . . . . . . . . . . . 30

12 The dependency graph Ψ of more than two structures may consist

of several and more complicated connected components that need

further decomposition. . . . . . . . . . . . . . . . . . . . . . . . . 31

13 The ear decompositon. . . . . . . . . . . . . . . . . . . . . . . . . 32

14 Splitting of G proceeds in two steps. . . . . . . . . . . . . . . . . 35

15 Graphs associated with an ear-decomposition. . . . . . . . . . . . 37

16 Stochastic Backtracking . . . . . . . . . . . . . . . . . . . . . . . 42

17 The width of an ear decomposition α(E) depends on the selected

spanning tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

18 Example of a bistable switch molecule. . . . . . . . . . . . . . . . 45

19 Statistics of the fraction of bipartite graphs versus the sequence

length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

20 Statistics of the number of tree-edges in dependency graphs of

switch structures versus sequence length. . . . . . . . . . . . . . . 52



LIST OF ALGORITHMS 70

21 Statistics of the number of ear-edges in dependency graphs of

switch structures versus sequence length. . . . . . . . . . . . . . . 53

22 Statistics of the number of ear-decompositions in dependency graphs

of switch structures versus sequence length. . . . . . . . . . . . . . 54

23 Sample set of structures for the design algorithm . . . . . . . . . . 55

24 Second sample set of structures for the design algorithm . . . . . 56

25 Second sample set of structures for the design algorithm . . . . . 58

26 Dotplot and Barrier-Tree after Optimization . . . . . . . . . . . . 59

27 Comparison of the number of ear decompositions of dependency

graphs with varying stack-size constraint. . . . . . . . . . . . . . . 60

28 Comparison of the number of ear decompositions (not including

cycles) of dependency graphs with varying stack-size constraint. . 61

29 Woffles of an ear decomposition. . . . . . . . . . . . . . . . . . . . 64

30 A graph G, two different ear decompositions of G and their woffle

sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

31 Example of the simplest case of an RNA switch network with neg-

ative feedback-loop. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

List of Algorithms

1 Algorithm for finding cut-vertices: CUT(u) . . . . . . . . . . . . . 21

2 Breadth First Search BFS(u) . . . . . . . . . . . . . . . . . . . . 22

3 Ear Decomposition EAR(G, u) . . . . . . . . . . . . . . . . . . . . 23

4 Counting Algorithm - constructing path matrices . . . . . . . . . 41



REFERENCES 71

References

[1] LM Adleman. Molecular computation of solutions to combinatorial prob-

lems. Science, 266:1021–1024, 1994.

[2] M Andronescu, R Aguirre-Hernandez, A Condon, and HH Hoos. RNAsoft:

A suite of RNA secondary structure prediction and design software tools.

Nucleic Acids Res, 31:3416–3422, 2003.

[3] M Andronescu, AP Fejes, F Hutter, HH Hoos, and A Condon. A new

algorithm for RNA secondary structure design. J. Mol. Biol., 336:607–624,

2004.

[4] AT Balaban, D (eds Bonchev, and Mekenyan O). Graph Theoretical Ap-

proaches to Chemical Reactivity. Kluwer Academic Publishers, Dordrecht,

Netherlands, 1992.

[5] D. P. Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function.

Cell, 116:281–297, 2004.

[6] T. Baumstark, A. R. Schroder, and D. Riesner. Viroid processing: Switch

from cleavage to ligation is driven by a change from a tetraloop to a loop E

conformation. EMBO J., 16:599–610, 1997.

[7] A Ben-Dor, R Karp, B Schwikowski, and Yakhini Z. Universal dna tag

systems: a combinatorial design scheme. J. Comput. Biol., 7:503–519, 2000.

[8] CK Biebricher, S Diekmann, and R Luce. In vitro recombination and ter-

minal elongation of RNA by Qβ replicase. EMBO J., 11(13):51129–5135,

1992.

[9] CK Biebricher and R Luce. Structural analysis of self-replicating RNA syn-

thesized by Qβ replicase. J. Mol. Biol., 154:629–648, 1982.

[10] RS Braich, N Chelyapov, C Johnson, PW Rothemund, and L Adleman.

Solution of a 20-variable 3-SAT problem on a DNA computer. Science,

296:499–502, 2002.

[11] RR Breaker. Engineered allosteric ribozymes as biosensor components. Curr.

Opin. Biotechnol., 13:31–39, 2002.



REFERENCES 72

[12] P. Brion and E. Westhof. Hierarchy and dynamics of RNA folding. Annu.

Rev. Biophys. Biomol. Struct., 26:113–137, 1997.

[13] Y Cao and SA Woodson. Refolding of rRNA exons enhances dissociation of

the tetrahymena intron. RNA, 6(9):1248–1256, 2000.

[14] A Cayley. On the analytic forms called trees, with applications to the theory

of chemical combinatons. Rept. Brit. Assoc. Adv. Sci., 45:257–305, 1875.

[15] DM Chadalavada, SM Knudsen, S Nakano, and PC Bevilacqua. A role for

upstream RNA structure in facilitating the catalytic fold of the genomic

hepatitis delta virus ribozyme. J. Mol. Biol., 301(2):349–367, 2000.

[16] FHC Crick. Codonanticodon pairing: The wobble hypothesis. J. Mol. Biol.,

19:548–555, 1966.

[17] SM Elbashir, J Harborth, W Lendeckel, A Yalcin, K Weber, and T Tuschl.

Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mam-

malian cells. Nature, 411:494–498, 2001.

[18] VL Emerick and SA Woodson. Self-splicing of the tetrahymena pre-rRNA

is decreased by misfolding during transcription. Biochemistry, 32(50:14062–

14067, 1993.

[19] L. Euler. Solutio problematis ad geometriam situs pertinentis.

Comm. Acad. Sci. Imp. Petropol., 8:128–140, 1736. (Latin).

[20] L. Euler. Elementa doctrinæ solidorum. Novi Comm. Acad. Sci. Imp.

Petropol., 4:109–140, 1752. (Latin).

[21] JB Fan, X Chen, MK Halushka, A Berno, X Huang, T Ryder, RJ Lipshutz,

DJ Lockhart, and A Chakravarti. Parallel genotyping of human snps using

generic high-density oligonucleotide tag arrays. Genome Res., 10:853–860,

2000.

[22] Christoph Flamm, Walter Fontana, Ivo Hofacker, and Peter Schuster. RNA

folding kinetics at elementary step resolution. RNA, 6:325–338, 2000.

[23] Christoph Flamm, Ivo L. Hofacker, Sebastian Maurer-Stroh, Peter F.

Stadler, and Martin Zehl. Design of multi-stable RNA molecules. RNA,

7:254–265, 2001.



REFERENCES 73

[24] DS Franzblau. Computation of ring statistics for network models of solids.

Physical Review B (Condensed Matter), 44:4925–4930, 1991.

[25] J. R. Fresco, A. Adains, R. Ascione, D. Henley, and T. Lindahl. Tertiary

structure in transfer ribonucleic acids. Cold Spring Habor Symp. Quant.

Biol., 31:527–539, 1966.

[26] ZJ Gartner, BN Tse, R Grubina, JB Doyon, TM Snyder, and DR Liu.

DNA-templated organic synthesis and selection of a library of macrocycles.

Science, 305:1601–1605, 2004.

[27] K Gerdes, AP Gultyaev, T Franch, K Pedersen, and ND Mikkelsen. Anti-

sense RNA-regulated programmed cell death. Annu. Rev. Genet., 31:1–31,

1997.

[28] C. Guerrier-Takada, K. Gardiner, T. Marsh, N. Pace, and S. Altman. The

RNA moiety of ribonuclease p is the catalytic subunit of the enzyme. Cell,

35:849–857, 1983.

[29] AP Gultyaev, T Franch, and K Gerdes. Programmed cell death by hok/sok

of plasmid R1: coupled nucleotide covariations reveal a phylogenetically con-

served folding pathway in the hok family of mRNAs. J. Mol. Biol., 273(1):26–

37, 1997.

[30] DR Halpin and PB Harbury. Dna display i. sequence-encoded routing of dna

populations. PLoS Biol., 2:173, 2004.

[31] E. R. Hawkins, S. H. Chang, and W. L. Mattice. Kinetics of the renaturation

of yeast tRNALeu
3 . Biopolymers, 16:1557–1566, 1977.

[32] Ivo L Hofacker, Walter Fontana, Peter F Stadler, L Sebastian Bonhoeffer,

Manfred Tacker, and Peter Schuster. Fast folding and comparison of RNA

secondary structures. Monatsh. Chem., 125:167–188, 1994.

[33] Paulien Hogeweg and Ben Hesper. Energy directed folding of RNA se-

quences. Nucleic Acids Research, 12(1):67–74, 1984.
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