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Abstract

RNA folding is viewed here as a map assigning secondary structures to se-

quences and hence as an example of general genotype to phenotype mappings.

RNA secondary structures can be represented as planar vertex-labeled graphs

or as trees. We construct recursion formulae enumerating various sub-classes

of these graphs as well as certain structural elements and derive first order

asymptotics for their frequencies. The number of secondary structures at

fixed chain length turns out to be much lower than the number of sequences.

A package of efficient algorithms for the prediction of RNA secondary struc-

tures and their comparison is introduced. It is complemented by a novel

heuristic “inverse folding” algorithm that searches for sequences which fold

into a given secondary structure.

The mapping from sequences to secondary structures is then studied in a

series of computer experiments. Statistics of secondary structure elements of

folded random sequences are compiled and compared to random structures.

In addition, we derive a lower bound on the number of folded structures from

the mean number of base pairs. The frequency distribution of structures

is found to be highly nonuniform, with few common structures and many

rare ones, to a good approximation the distribution can be described by a

generalized form of Zipf’s law. Using the inverse folding algorithm sequences

folding into some given structure are shown to be randomly distributed in

sequence space.

As a consequence of the many to one mapping, common structures can be

found within a relatively small distance (less than 20% of the diameter of

sequence space) from any random sequence. Furthermore, the high number

of neutral mutations leads to extended networks of neighboring sequences

sharing the same structure. Neutral nets belonging to different structures

can be found very close to one another. These properties can coexist only

because of the high dimensionality of sequence space.

Although the RNA folding map induces rugged landscapes, the above prop-

erties make it ideally suited for evolutionary optimization. A structure with

the desired properties is never too far away, once an acceptable solution has



Sequence Space Shape Space

Figure 1: Schematic view of the RNA folding map. A relatively small ball in sequence

space already contains sequences folding into most common structures. Se-

quences folding into a particular structure can be found anywhere in sequence

space. Such sequences are connected by extended nets of structurally neutral

neighbors.

been found the population can spread along the neutral net to distant parts

of sequence space.



Kurzfassung

Die Faltung von RNA Molekülen wird in dieser Arbeit als eine Abbildung

betrachtet werden, die jeder Sequenz eine Sekundärstruktur zuordnet. Sie

stellt damit ein Beispiel für Genotyp Phänotyp Abbildungen im allgemeinen

dar.

RNA Sekundärstrukturen können als als planare Graphen oder als Bäume

dargestellt werden. Die Anzahl solcher Graphen und ihrer Strukturelemente

bei fester Kettenlänge läßt sich rekursiv berechnen, aus den Rekursionen

werden dann auch die asymptotischen Häufigkeiten hergeleitet. Dabei stellt

sich heraus das die Zahl der Sequenzen sehr viel schneller wächst als die Zahl

der Strukturen.

Im weiteren werden Algorithmen für die Vorhersage und den Vergleich von

RNA Sekundärstrukturen diskutiert. Diese Algorithmen wurden zusammen

mit einem neuartigen “inversen Faltungsalgorithmus” in einer Programm-

bibliothek implementiert. Bei der inversen Faltung werden in einer heurist-

ischen Suche Sequenzen konstruiert die in eine vorgegebene Struktur falten.

Die weitere Untersuchung der Sequenz Struktur Abbildung geschieht in einer

Reihe von Computerexperimenten. Eine Statistik der Sekundärstruktur-

elemente in gefalteten Strukturen wird erstellt und mit zufälligen Strukturen

verglichen. Betrachtet man die Häufigkeiten von Strukturen, findet man

eine sehr ungleichmäßige Verteilung die einige wenige sehr häufige dafür

viele extrem seltene Strukturen aufweist. Die Verteilung kann gut durch

eine allgemeine Form des aus der Textanalyse bekannten Zipf’schen Gesetzes

beschrieben werden. Mit Hilfe der inversen Faltung wird gezeigt, daß die

Urbilder einer Struktur im Seqenzraum gleichmäßig verteilt sind.

Als Folge dessen stellt sich heraus, daß typische Strukturen in relativ kleinem

Abstand von einer beliebigen Anfangssequenz gefunden werden können

(weniger als 20% des Durchmessers des Sequenzraums). Gleichzeitig, führt

die hohe Anzahl an neutralen Mutationen zu ausgedehnten Netzwerken be-

nachbarter Sequenzen mit gleicher Struktur. Zu verschiedenen Strukturen

gehörige neutral Netze sind im Sequenzraum nur durch wenige Punktmuta-

tionen getrennt. Nur durch die hohe Dimension des Sequenzraums sind die

letztgenannten Eigenschaften miteinander vereinbar.



Obwohl RNA Faltung zu rauhen Landschaften mit geringer Korrelation führt,

ist sie durch die obigen Eigenschaften für evolutionäre Optimierung ideal

geeignet. Eine Struktur mit den benötigten Eigenschaften läßt sich in einer

vergleichsweise kleinen Umgebung finden, und sobald eine akzeptable Lösung

gefunden ist kann sich die Population entlang der neutralen Netze ausdehnen

um weit entfernte Teile des Sequenzraums zu erkunden.

Sequenzraum Strukturraum

Figure 2: Schematische Darstellung der Abbildung von RNA Sequenzen auf Sekundär-

strukturen. Eine relativ kleine Umgebung im Sequenzraum enthält bereits fast

alle häufigen Strukturen. Sequenzen, die in eine vorgegebene Struktur fallen sind

über den gesamten Sequenzraum verteilt zu finden. Diese Sequenzen sind durch

ausgedehnte Netzwerke von neutralen Nachbarn miteinander verbunden.



Introduction

1. Introduction

1.1.General Context

In his famous book “The Origin of Species” (1859) Charles Darwin put for-

ward the first empirical theory of biological evolution in which he suggested

that the diversity and complexity of present day organisms can be explained

on the basis of just two key principles: inheritable variation and natural

selection. While his theory quickly became one of the most influential con-

tributions to natural science, it also remained most controversial for a long

time.

One severe problem in Darwin’s time was the ignorance of the laws and

mechanisms of variation. Although Gregor Mendel had already formulated

his laws of particulate inheritance their importance for evolution was not

recognized. More than a century later the molecular basis of life has become

clear. The sources of variation, in the form of mutation and recombina-

tion, are now understood and the knowledge of typical mutation rates allows

us to estimate the rate of evolutionary change in the absence of selection.

The concept of fitness, the basis of selection, however, has remained elusive.

Traditionally, fitness has often been defined as the number of surviving off-

springs. Such an a posteriori definition is clearly unsatisfactory and has led

to the well known criticism that Darwin’s “survival of the fittest” reduces to

the tautology “survival of the survivor”. At present, a prediction of fitness

values still remains impossible, even for the simplest systems.

In 1932 Sewall Wright [2] introduced the concept of a fitness landscape

(“adaptive landscape”) assigning a numerical fitness value to every possible

phenotype which he envisioned as a real valued vector of physical properties.

Evolution could then be viewed as a walk through this space of phenotypes

trying to optimize fitness. In fact, if such a mapping could be constructed

over the space of genotypes, the evolutionary process would be reduced to a

mathematically well defined optimization problem, such as Manfred Eigen’s
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quasi-species model [3, 4]. For this reason and because of the analogy to com-

binatorial optimization problems in computer science, this view of evolution

has recently become very popular [5, 6, 7, 8, 9].

Since fitness is evaluated at the phenotype level, while mutation works on the

genotype level, understanding of the genotype-phenotype mapping is crucial

to the study of realistic fitness landscapes. Conversely, this mapping alone

may yield sufficient information to predict generic features of the fitness

landscapes that are built upon it. This thesis, therefore, does not attempt to

propose a (necessarily artificial) model for fitness, but rather tries to study

a (hopefully realistic) genotype-phenotype mapping.

The notion of fitness landscapes is not accepted without critique. In partic-

ular, it assumes a static environment and neglects the interaction between

different species. Although the concept can be extended to allow for a vary-

ing environment [10] or even coevolving species [11], it remains best suited

for models without interaction such as self replicating biopolymers.

1.2.Why RNA?

RNA provides an ideal, currently the only, tractable system to study

genotype-phenotype relationships. Following Sol Spiegelman the phenotype

for an RNA molecule can be defined as its spatial structure. RNA, thus,

combines genotype and phenotype in the same molecule. Spiegelman’s serial

transfer experiments [12, 13, 14, 15, 16, 17, 18] have clearly shown that the

structure of the RNA is the essential quantity selected for.

Furthermore, since the work of Thomas Cech [19, 20, 21] RNA is known to

exhibit catalytic activity. While the activity of these so called “ribozymes”

is usually restricted to cleavage and splicing of RNA itself, recent evidence

suggests that RNA also plays a predominant role in ribosomal translation.

These discoveries have given much support to the idea that an “RNA World”

[22, 23] stood at the origin of life, in which RNA served both as carrier of

genetic information as well as catalytically active substance. While RNA

may not necessarily have been the first step in prebiotic evolution the idea
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that RNA preceded not only DNA but also the invention of the translational

system is widely accepted.

In spite of their, compared to proteins limited, repertoire of catalytic func-

tions ribozymes are also gaining importance for biotechnological applications.

The reason is that RNA is well suited for methods of “irrational design”.

Synthesis of random or partly randomized nucleotide sequences is nowadays

standard procedure, as is their in vitro amplification by polymerase chain re-

action (PCR). This allows selection experiments in which large (1013 − 1015

molecules) pools of random RNA sequences are screened for some desired

functions [24, 25, 26] or, in cases where the desired function can be encoded

in a selection constraint, elegant in vitro evolution experiments [27, 28] with

alternating cycles of selection and amplification by PCR under mutagenic

conditions.

Yet another important, if pragmatic, reason to study RNA sequence struc-

ture relationship is the availability of algorithms for structure prediction. In

spite of considerable efforts prediction of protein structures is, at the mo-

ment, both too unreliable and too costly for systematic studies. The same is

true for attempts to model the three-dimensional structure of RNA although

progress is being made in that direction [29, 30]. On the other hand efficient

algorithms for the prediction of RNA secondary structure have been available

for some time. While the accuracy of these algorithms may still be not quite

satisfactory it is sufficient for the kind of investigation presented here, as

our emphasis is not in the prediction of specific structures but the statistics

of the folding. In contrast to proteins where secondary structure describes

only local features, RNA secondary structure can be seen as a useful coarse

grained picture of the the full spatial structure.

1.3.Combinatory Maps and Sequence Space

In this work the folding of RNA is viewed as a mapping from sequence space

into the space of all possible structures a so-called shape space. The notion

of a shape space was used previously in theoretical immunology for the set

of all structures presented by all possible antigens [31, 32] The concept of
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sequence space was first used in coding theory [33]. Such a map is called a

combinatory map, a generalization of the landscape concept to non scalar

entities. A combinatory map is defined [34] as a quintuple (X , dX ;Y, dY ; f)

where X and Y are sets endowed with metrics dX and dY , respectively, and

f is a mapping X −→ Y. For Y = IR and dY(a, b) = |a − b| we have a

conventional landscape.

Free Energy

Melting Temperature

Dipole Moment

Kinetic Constants

FITNESS

SEQUENCE SPACE SHAPE SPACE PROPERTIES

d(x,y) D(f(x),f(y)) |p(f(x))-p(f(y))|

f
p

. . .

Figure 3: Scheme of RNA folding.

The canonic metric dX for sequence space is the so called Hamming distance,

given by the number of digits in which two aligned sequences differ. The

Hamming metric is therefore tantamount to the minimum number of point

mutations necessary to convert one sequence into another. A configuration

space like this can also be represented as an undirected graph Γ, such that the

distance between two points coincides with the minimum number of edges on

Γ that have to be traversed to connect the two vertices. For binary sequences

of length n the only possible choice for that graph is the n-dimensional hy-

percube. Thinking of sequence space as such a high-dimensional graph helps

to keep in mind some basic properties:

While the number of possible sequences grows exponentially as κn, where κ

is the number of letters in the alphabet, the maximal distance is only n.

The number of sequences in distance d is p(d) = (κ−1)
κn

(

n
d

)

and therefore

increases exponentially for d� n.

There are d! shortest paths leading to a sequence in distance d.

In contrast to this the shape space is highly irregular. Even the number

of nearest neighbors is variable. Note however, that the topology of the

sequence space will not stay as simple when more complicated mutation
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operators, such as insertions and deletions, are allowed. Although insertions

and deletions play an important role in biological evolution they are much

less frequent. For the sake of simplicity we will therefore only consider point

mutations for the remainder of this work.

1.4.Organization of this Work

In the next chapter we will give a characterization of shape space for RNA

secondary structures without reference to folding processes. Secondary struc-

tures will be defined and possible distance measures discussed. Furthermore,

we derive recursions and asymptotics for the number of structures and certain

structure properties.

Chapter 3 discusses the various algorithms used for RNA structure predic-

tion. Efficient implementations of the folding algorithms based on dynamic

programming are presented including a version for parallel computers with

distributed memory. Furthermore, we introduce a new heuristic inverse fold-

ing algorithm that allows to search for sequences with a predefined structure.

These algorithms provide the necessary tools for an exploration of sequence

structure relationships through computer experiments.

Chapter 4 describes computational results for the RNA mapping. The fre-

quency distribution of secondary structures is shown to be highly nonuniform

following a form of Zipf’s law with few very frequent and many rare struc-

tures. The more frequent structures are shown to be randomly distributed

over sequence space. Statistics for structure elements of folded random se-

quences are presented and compared to those of random structures as defined

in chapter 2. An analysis of correlation lengths shows that RNA folding leads

to rough landscapes similar to many combinatorial optimization problems.

A closer look, however, reveals optimization on the RNA landscape as being

easier than expected: Typical structures can be found on the average in a

distance of only about 20% of the diameter of sequence space. Moreover,

the sequence space contains large neutral networks, i.e. connected sets of

sequences that share the same structures. These nets can span the whole

sequence space. An optimization process, therefore, will not get stuck in

local optima too easily.
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The results are discussed in chapter 5.
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2.RNA Secondary Structures

Much like DNA, RNA can form stable double helices of complementary

strands. Since RNA usually occurs single stranded, formation of double he-

lical regions is accomplished by the molecule folding back onto itself to form

Watson-Crick (G≡C and A=U) base pairs or the slightly less stable G−U

pairs. This process is the major driving force for RNA structure formation.

Other, usually weaker, intermolecular forces and the interaction with the

aqueous solvent shape its spatial structure.
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Figure 4: Folding of an RNA sequence into its spatial structure. The process is parti-

tioned into two phases: in the first phase only the Watson-Crick-type base pairs

are formed (which constitute the major fraction of the free energy), and in the sec-

ond phase the actual spatial structure is built by folding the planar graph into a

three-dimensional object. The example shown here is phenylalanyl-transfer-RNA
(t-RNAphe) whose spatial structure is known from X-ray crystallography.

RNA folding can therefore be conveniently partitioned into two steps, the first

being the formation of base pairs yielding the so-called secondary structure

that can be represented as a planar graph, and secondly the folding of this
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graph into a 3D structure. In this work we will only be concerned with the

first step.

It may at first seem questionable whether secondary structure provides an

adequate level of description for an RNA molecule. One should, however,

keep in mind that when talking of an object’s structure we do not imagine

a list of coordinates for each of its constituents, but rather a number of

relationships between them, yielding enough information to understand the

objects crucial properties. Such a representation necessarily implies some

degree of coarse graining and different problems may require different levels

of resolution.

RNA secondary structures provide such a coarse graining of a folded RNA

molecule that is useful for several reasons.

• Conventional base pairing and base pair stacking cover the major part

of the free energy of folding.

• Secondary structures are used successfully in the interpretation of RNA

function and reactivity.

• Secondary structures are conserved in evolutionary phylogeny.

At the same time this representation is very convenient:

• Secondary structures are discrete and therefore easy to compare.

• They are easy to visualize since they’re planar graphs.

• Efficient methods exist for the computation of secondary structures.

In the following we will give a formal definition of secondary structures as

graphs. Note that our definition, somewhat arbitrarily, ranks pseudo-knots

as a tertiary interaction. Although pseudo-knots seem to be important for

biological function [35] their inclusion would complicate the mathematical

and computational treatment unduly.
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2.1.Secondary Structure Graphs

2.1.1.Definitions

Definition 1.1. [36] A secondary structure is a vertex-labeled graph on n

vertices with an adjacency matrix A fulfiling

(1) ai,i+1 = 1 for 1 ≤ i < n;

(2) For each i there is at most a single k 6= i− 1, i+ 1 such that aik = 1;

(3) If aij = akl = 1 and i < k < j then i < l < j.

We will call an edge (i, k), |i − k| 6= 1 a bond or base pair. A vertex i

connected only to i − 1 and i + 1 will be called unpaired. Condition (3)

assures that the structure contains no pseudo-knots.

A vertex i is said to be interior to the base pair (k, l) if k < i < l. If, in

addition, there is no base pair (p, q) such that p < i < q we will say that i

is immediately interior to the base pair (k, l). A base pair (p, q) is said to be

(immediately) interior if p and q are (immediately) interior to (k, l).

Figure 5: Example of a secondary structure graph.

Definition 1.2. A secondary structure consists of the following structure

elements

(1) A stack consists of subsequent base pairs (p−k, q+k), (p−k+1, q+k−
1), . . ., (p, q) such that neither (p−k−1, q+k+1) nor (p+1, q−1) is a

base pair. k+1 is the length of the stack, (p− k, q+ k) is the terminal
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base pair of the stack. Isolated single base pairs are considered as

stacks as well.

(2) A loop consists of all unpaired vertices which are immediately interior

to some base pair (p, q), the “closing” pair of the loop.

(3) An external vertex is an unpaired vertex which does not belong to a

loop. A collection of adjacent external vertices is called an external

element. If it contains the vertex 1 or n it is a free end, otherwise it

is called joint.

If a stack ends in a base pair (p, q) with no unpaired vertices immediately

interior to it we speak of a loop with size zero.

Lemma 1.3. Any secondary structure S can be uniquely decomposed into

stacks, loops, and external elements.

Proof. Each vertex which is contained in a base pair belongs to a unique

stack. Since an unpaired vertex is either external or immediately interior to

a unique base pair the decomposition is unique: Each loop is characterized

uniquely by it “closing” base pair.

Definition 1.4. A stack [(p, q), . . . , (p+k, q−k)] is called terminal if p−1 = 0

or q + 1 = n+ 1 or if the two vertices p− 1 and q + 1 are not interior to any

base pair. The sub-structure enclosed by the terminal base pair (p, q) of a

terminal stack will be called a component of S. We will say that a structure

on n vertices has a terminal base pair if (1, n) is a base pair.

Lemma 1.5. A secondary structure may be uniquely decomposed into com-

ponents and external vertices. Each loop is contained in a component.

The proof is trivial. Note that by definition the open structure has 0 com-

ponents.

Definition 1.6. The degree of a loop is given by 1 plus the number of

terminal base pairs of stacks which are interior to the closing bond of the

loop. A loop of degree 1 is called hairpin (loop), a loop of a degree larger than

2 is called multi-loop. A loop of degree 2 is called bulge if the closing pair

of the loop and the unique base pair immediately interior to it are adjacent;

otherwise a loop of degree 2 is termed interior loop.

– 10 –



RNA Secondary Structures

5

hairpin loop

G A
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3
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C G

A A

5

3

interior base pairs

closing base pair

multiple loop

Figure 6: Basic structure elements. Every secondary structure can be decomposed into

such basic elements.

It is often useful to lump loops of all degrees together into one class and to

consider, for example, the total number of loops

nL = nH + nB + nI + nM

which must be identical to the number of stacks, nL = nS.

– 11 –



RNA Secondary Structures

2.1.2.Representation of Secondary Structures

A particularly easy way to draw secondary structure graphs as defined above

was suggested by Ruth Nussinov. The bases of the sequence are placed

equidistant to on another on a circle and for each base pair a chord is drawn

between the two bonded bases. Since the structures are un-knotted by defi-

nition, no two chords will intersect.

A string representation S can by obtained by the following rules:

(1) If vertex i is unpaired then Si = ”.”

(2) If (p, q) is a base pair and p < q then Sp = ”(” and Sq = ”)”

These rules yield a sequence of matching brackets and dots (cf. 8C) called

bracket notation.

Paulien Hogeweg and Danielle Konings conceived a related graphical method

for the comparison of RNA secondary structures called mountain represen-

tation [37, 38, 39] by identifying ”(”, ”)”, and ”.”, with “up”, “down”, and

“horizontal”, respectively.

The bracket notation above implies an equivalent representation as trees. A

secondary structure S can be translated into a rooted ordered tree (linear

tree) Υ by representing a base pair (p, q) by a node x such that the sons

y1, . . . yk of x correspond to the base pairs (p1, q1) . . . (pk, qk) immediately

interior to (p, q) [40]. For each unpaired vertex z a half-node (leaf) is added

to the node representing the closing pair of the loop containing z. An ad-

ditional node is added as the root of the tree that is the father of all nodes

representing external digits and terminal base pairs. This assures that sec-

ondary structures with free end are not represented by a forest. For details

see table 1, an example is given in figure 7. Other coarse grained tree rep-

resentations where already suggested by Zuker and Sankoff [41] and Bruce

Shapiro [42].

The latter representation makes explicit that the folding process can be

viewed as a map between linear and nonlinear combinatorial structures: se-

quences and trees.

Waterman’s definition of secondary structures implies that each branch of

the corresponding tree representation Υ has least one terminal half-vertex,

or equivalently, each matching pair of brackets contains at least one ◦. In
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5’

5’

A B

Figure 7: A secondary structure graph (A) is equivalent to an ordered rooted tree (B).

An internal node (black) of the tree corresponds to a base pair, a leaf node (white)

corresponds to one unpaired nucleotide, and the root node (black square) is a

virtual parent to the external elements. Contiguous base pair stacks translate

into “ropes” of internal nodes and loops appear as bushes of leaves.

biological applications the number of unpaired positions is at least 3, implying

at least 3 unpaired positions within each pair of matching brackets. From

the combinatorial point of view it makes perfect sense to consider the general

problem with a minimum number m ≥ 0 of unpaired vertices in each hairpin

loop. In fact, for m = 0 one recovers three well known Motzkin families [43,

44].

A secondary structure tree Υ can be rewritten as homeomorphically irre-

ducible trees (HITs) which will be denoted by H, by merging internal nodes

corresponding to the same stack or to consecutive unpaired bases into on
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Table 1. Interconversion of secondary structures and trees.

A secondary structure graph (SSG) is converted into a tree graph (TG) by the

following procedure:

(1) Assign to each unpaired base a leaf node, and to each base pair (two SSG-nodes)

one internal TG-node.

(2) Each internal TG-node corresponding to a base pair (k,l) is father to all nodes

corresponding to bases or pairs immediately interior to (k,l). The virtual node

representing the root of the tree is father to all nodes corresponding to external

bases and terminal base pairs.

(3) Order siblings according to their corresponding position in the sequence and

connect each node to its parent.

A TG is converted into a SSG by the following procedure:

(1) Replace each internal TG-node by a connected pair of SSG-nodes (base pair).

The TG-edges are inherited by the left SSG-node of the pair.

(2) For any TG-node with a left sibling replace the edge to its parent with an edge

to its left sibling.

(3) An SSG-node that is base paired has three edges (two from the backbone,

and one from the pairing), otherwise it has two. 5’- and 3’-ends have one less.

Complete the SSG by inserting all missing edges into a node as connections to the

corresponding parent in the TG, proceeding from deep to shallow levels.

node. The apparently simpler tree structure of the HIT is compensated by

the assignment of weights (w) to the internal nodes and leaves. A weight

reflects the number of nodes or leaves in the full tree Υ which are lumped

into a single node or leaf in the HIT representation. The transformation

from the full tree to the HIT retains complete information on the structure.

Secondary structure graph, full tree, HIT, and the linear representations (like

the mountain representation M) are equivalent.

– 14 –



RNA Secondary Structures

S4

S6

S7
S8

S9

S10
S11

S12 S13

M1

B1

H3

I2 H7

S1

S2

S5

H2

I1

H6

C1 C2

H4

H5

S3

H1 B2

M2

C3

C4

A B

C

D E

..((((((((((.(((((...)))))(((....((((.......))))))).((((....)))).......)))))))).))))))))))-

.....((....))....((((..(((((((((..((((...)))).((((........)))))))))))))..))))(((((.((.....)).)))))

Figure 8: Representations of secondary structures. The notation A is common in biology.

Structure elements are indicated as follows: H hairpin loops, I interior loops, B

bulges, M multi-loops, S stacks. The structure consists of four components,

indicated as C1 through C4.

B is the corresponding full tree notation Υ, and C is the corresponding linear

bracket representation.

D is a coarse grained representation Σ or T obtained from B by contracting

each stack to a single vertex and omitting the half-vertices (leafs) representing

the unpaired positions. E is the homeomorphically irreducible tree H obtained

from D.

2.1.3.Coarse Graining of Secondary Structures

For some applications it is useful to work with even more simplified repre-

sentations. Various coarse grained representations have been proposed. A

coarse grained tree T , the loop structure, is obtained by denoting a stack by a

single vertex and omitting the unpaired bases. Representing an entire stack

instead of a base pair by a single vertex means in terms of the full tree rep-

resentation Υ that each vertex of degree 2 not carrying a leaf (half-vertex),

except for the root, is merged with its son and then the leafs are removed (cf.

fig. 8D). The number of vertices in T equals the number of stacks in S, the
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number of components of S coincides with the number of sons of the root in

T .

The representation Σ proposed by Shapiro [42] is obtained by additionally

labeling each vertex with the type of the loop in which the corresponding

stem ends: hairpin loop (H), bulge (B), interior loop (I), multi-loop (M). The

virtual root is labeled (R). Furthermore, stacks are represented by vertices

of degree 2, labeled (S), which are inserted as fathers of the corresponding

loops. The nodes may be assigned weights giving the size of the loop or

stack, respectively. If the weights are omitted Σ is equivalent to T .

A slightly more accurate representation of a secondary structure, H′, is ob-

tained from the HITs by simply omitting the weights. A gradual coarse

graining can be obtained by removing vertices with weights smaller than

some threshold.

A strongly coarse grained representation, the branching structure, H is the

homeomorphically irreducible tree obtained form T by removing all vertices

of degree 2 (except for the root) and all leafs in T . Again the number of

components of S equals the number of sons of the root.

M

m

Υ −→ Σ
↘

m T −→ H
↗

H −→ H′

m

S
Figure 9: Relation of various representations of secondary structures. ⇐⇒ denote equiv-

alent representations, −→ means a coarse graining.
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Definition 1.7. Let S be an arbitrary secondary structure. For all S let us

denote by Ω(S) the unique secondary structure which is obtained from S by

the following procedure:

1) For each hairpin, open its stack and add the corresponding bases to

the hairpin loop.

2) If a bulge or interior loop follows, then add its digits also to the hairpin

and continue by opening its stack.

3) If a multi-loop or a joint follows, then add the now unpaired digits to

the multi-loop and stop.

Waterman (1978) used the above procedure to define the order ω(S) of a

secondary structure as the smallest number of repetitions of Ω necessary to

obtain the open structure. Of course, the open structure has order ω = 0

and any structure without a multi-loop has order ω = 1. Waterman’s degree

ω, defined below, coincides with the height of H (cf. fig. 8E).

2.2.Comparison of Secondary Structures

An important prerequisite for our study is a suitable distance measure on the

space of possible secondary structures. Several possibilities exist to define

such a metric. One of the simplest possibilities is the base pair distance.

It is given by the number of base pairs (i, j) present in only one of the

two structures being compared or, in other words, the minimum number of

base pairs that have to be opened or closed to convert one structure into

the other. This measure is best suited to compare different structures on

the same sequence. Since opening and closing of single base pairs can be

thought of as the elementary steps in re-folding an RNA molecule, the base

pair distance measures the likeliness of such a re-folding. On the other hand

structures that seem very similar to the eye, can have a large base pair

distance for instance if the size of a hairpin differs by one base.

Another frequently used method uses conventional string alignment on the

dot and bracket encoding of secondary structures [37, 38]. In most cases such

alignment distances yield good results, however, the two matching brackets

encoding a base pair are treated as independent, yielding sometimes un-

intuitive results.
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Our preferred method are therefore tree edit distances. This technique is well

known in computer science [45], it’s application to RNA secondary structure

was first proposed by Bruce Shapiro [46]. As usual the task is to find a

sequence of editing steps such as to transform a tree T1 into a tree T2 with

minimal cost. The allowed edit operations here are deletion, insertion and

(sometimes) relabelling of a node and the cost of an editing sequence is given

by the sum of the costs of the individual editing operations taken from a cost

table. An important advantage of this distance measure is that it can be

used for all kinds of tree representations and, therefore, for all levels of coarse

graining of secondary structures. One need only define an appropriate cost

table for the edit operations. Computation of tree edit distances can again

be done by a dynamic programming algorithm. It is, however somewhat

more complicated than simple string editing which is, in fact, a special case

of tree editing for tree consisting solely of leaves. The time complexity of

the algorithm generally is O(|T1| · |T2| · L1 · L2) where |T | is the number of

nodes and L is the depth of the tree T . Since the depth of a typical tree

increases as the log of its size, tree editing is slower than sequence alignment

by O(log2(n)). Note that the typical size of secondary structure tree is

proportional to but considerably smaller than the sequence length.

Note that all distances defined above induce a metric on the shape space of

secondary structures, as do all “edit distances” as long as the cost matrix is

positive and symmetric.

2.3.Enumeration of Secondary Structure Graphs

2.3.1.The Basic Recursion

A secondary structure on n+ 1 digits may be obtained from a structure on

n digits either by adding a free end at the right hand end or by inserting

a base pair (1, k + 2). In the second case the substructure enclosed by this

pair is an arbitrary structure on k digits, and the remaining part of length
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n−k−1 is also an arbitrary valid secondary structure. Therefore, we obtain

the following recursion formula for the number Sn of secondary structures:

Sn+1 = Sn +

n−1
∑

k=m

SkSn−k−1, n ≥ m+ 1

S0 = S1 = . . . = Sm+1 = 1

(1)

Equ.(1) has first been derived by Waterman [36]; m denotes the minimum

number of unpaired digits in a hairpin loop. Note that our definition of Sn

differs from Waterman’s for n < m: he used Sn = 0.

The above recursion can be used to develop an algorithm for generating

random secondary structures with a uniform distribution

Prob{S} = 1/Sn (2)

in the shape space of all secondary structures over a given chain length. To

construct random structures recursively just note that SkSn−k−1/Sn+1 gives

the probability that a random structure of length n+ 1 consists of a random

structure S′ of length k enclosed by a base pair appended to a second random

structure S of length n− k − 1.

2.4.Recursions

2.4.1. Structures with Certain Properties

Let Jn(b) denote the number of structures on n vertices with exactly b com-

ponents. The derivation of the recursion relations parallels the argument

leading to equ.(1):

Jn+1(b) = Jn(b) +

n−1
∑

k=m

SkJn−k−1(b− 1), b > 0, n ≥ m+ 1

Jn(b) = 0, b > 0, n ≤ m+ 1, Jn(0) = 1, n ≥ 0

(3)

because adding an unpaired digits to a structure on n digits does not change

the number of components, while introducing an additional bracket makes
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the bracketed part of length k a single component and does not affect the

remainder of the sequence.

Let Hn(b) denote the number of structures with exactly b base pairs (bonds)

on n vertices. The recursion

Hn+1(b) = Hn(b) +
n−1
∑

k=m

b−1
∑

`=0

Hk(`)Hn−k−1(b− `− 1), b > 0, n ≥ m+ 1

Hn(b) = 0, b > 0, n ≤ m+ 1, Hn(0) = 1, n ≥ 0
(4)

is also immediate. One just has to observe that an additional sum over

the number of unpaired digits in the newly bracketed part of the struc-

ture has to be introduced. This recursion has also been considered in

[47]. Recently Schmitt and Waterman [48] obtained the closed expression

Hn(b) = 1
b

(

n−b
b+1

)(

n−b−1
b−1

)

for the special case m = 1.

Analogously we obtain for the number En(b) of structures with b external

digits

En+1(b) = En(b− 1) +
n−1
∑

k=m

SkEn−k−1(b) b ≥ 0, n ≥ m+ 1

En(n) = 1, En(b) = 0 b 6= n, n ≤ m+ 1, En(−1) = 0

(5)

It is a bit more tricky to obtain a recursion for number Nn(b) of sequences

with a given number of stacks. To this end we introduce an auxiliary variable

Zn(b) denoting the number of secondary structures with exactly b stacks given

that its 3′ and 5′ ends are paired. We obtain then

Nn+1(b) = Nn(b) +
n−1
∑

k=m

b
∑

`=0

Zk+2(`)Nn−k−1(b− `), b > 0, n ≥ m+ 1

Nn(0) = 1, Nn(b) = 0, b > 0, n ≤ m+ 1
(6)

For the auxiliary variably we find

Zn(b) = Zn−2(b) +Nn−2(b− 1) − Zn−2(b− 1), Z0(b) = Z1(b) = 0 (7)

by enclosing structures on n− 2 digits by a base pair.
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Let An(b) denote the number of structures with exactly b hairpins. Since the

number of hairpins is unchanged by enclosing a substructure which already

contains a base pair in an additional base pair we get

An+1(b) = An +

n−1
∑

k=m

[

b
∑

`=1

Ak(`)An−k−1(b− `) + An−k−1(b− 1)

]

n ≥ m+ 1

An(b) = δ0,b n ≤ m+ 1

(8)

2.4.2. Structure Elements

The total number Un of unpaired bases in the set of all structures can be

obtained as follows: By adding an unpaired base to each structure on n

digits we have the Un unpaired digits present in them plus the Sn newly

added ones. By introducing the base pair (1, k+ 2) we have Sk times all the

unpaired digits in the remainder of the sequence plus all the unpaired digits

in the newly bracket part of length k times the the number of structures

which can be formed from the remainder of the structure. Summing over k

we find

Un+1 = (Un + Sn) +

n−1
∑

k=m

[SkUn−k−1 + Sn−k−1Uk], n ≥ m+ 1

Un = n, n ≤ m+ 1

(9)

Denote the total number of base pairs by Pn. It is clear that 2Pn+Un = nSn.

For sake of completeness we state the recursion for Pn:

Pn+1 = Pn +

n−1
∑

k=m

{SkPn−k−1 + Sn−k−1(Pk + Sk)}

Pn = 0, n ≤ m+ 1

(10)

By an analogous reasoning we find for the total number In of components in

the set of all secondary structures on n vertices.

In+1 = In +

n−1
∑

k=m

Sk[In−k−1 + Sn−k−1]

In = 0 n ≤ m+ 1

(11)
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The number Nn+1 of stacks in the set of structures on n+1 digits consists of

all stacks on n digits plus all stacks in the tail times the number of structures

with the newly introduced base pair plus all stacks within the newly formed

base pair times the number of structures in the tail. The newly formed

base pair introduces an additional stack for all Sk − Sk−2 structures in its

interior which do not have a terminal base pair. (For the Sk−2 structures

with terminal base pair a stack is elongated.) Therefore

Nn+1 = Nn +
n−1
∑

k=m

{

SkNn−k−1 + Sn−k−1(Nk + Sk)
}

−
n−1
∑

k=m+2

Sk−2Sn−k−1 n ≥ m+ 1

Nn = 0, n ≤ m+ 1

(12)

Let Qn(b) denote the number of loops with b unpaired digits in the set of

all secondary structures. For n+ 1 vertices we retain all loops from the set

of loops on n digits by adding a vertex to the 3′ end; additional we find all

loops in the tail-substructure for each possible structure interior to the new

base pair. The third contributions consists of all loops interior to the new

base pair times all possible structures in the tail. A loop with b unpaired

vertices remains unchanged and additionally each structure with exactly b

external vertices within the new base pair gives rise to an additional loop

with b unpaired digit.

Qn+1(b) = Qn(b) +

n−1
∑

k=m

{

Qn−k−1(b)Sk + Sn−k−1[Qk(b) +Ek(b)]
}

n ≥ m+ 1, b > 0

Qn(b) = 0, n ≤ m+ 1

(13)

For loops without unpaired digits the recursion is slightly different since

structures without external digits within the new base pair do not provide a

loop if they consist of a single component, i.e. if they end in base pair. There
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are Sk−2 such structures on k vertices.

Qn+1(0) = Qn(0) +

n−1
∑

k=m

{

Qn−k−1(0)Sk + Sn−k−1[Qk(0) + Ek(0)]
}

−
n−1
∑

k=m+2

Sn−k−1Sk−2 n ≥ m+ 1

Qn(0) = 0, n ≤ m+ 1

(14)

Note that only multi-loops can have size zero.

Let Wn(b) denote the number of stacks with exactly b base pairs in the set

of secondary structures. For each structure in the bracketed part there are

Wn−k−1(b) stacks of suitable size while for each structure in the tail there

only Wk(b)−W−
k (b)+W+

k (b) such stacks; W−
k (b) denotes all stacks of correct

length which are elongated by the new bracket and W+
k (b) denotes all stacks

which are too short by one base pair and are elongated by the new pair.

Clearly, W−
k (b) is just the number of structures on k digits with a terminal

stack of length b, while W+
k (b) is the number of structures with a terminal

stack of length b− 1. We have

W−
k (b) =







Sk−2b − Sk−2b−2 k > m+ 2b+ 1
1 k = m+ 2b,m+ 2b+ 1
0 k < m+ 2b

(15)

and W+
k (b) = W−

k (b− 1) for these auxiliary variables.

Wn+1(b) =

= Wn(b) +
n−1
∑

k=m

{

Wn−k−1(b)Sk + Sn−k−1[Wk(b) −W−
k (b) +W+

k (b)]
}

= Wn(b) +

n−1
∑

k=m

[

Wn−k−1(b)Sk − Sn−k−1Wk(b)
]

+

+

n−1
∑

k=m+2b+2

Sk−2b−2Sn−k−1 − 2

n−1
∑

k=m+2b

Sk−2bSn−k−1+

+

n−1
∑

k=m+2b−2

Sk−2b+2Sn−k−1

Wn(b) = 0 for n ≤ m+ 1
(16)
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Let Ln(d) denote the number of loops of degree d in the set of all secondary

structures. By Yn and Bn, respectively., we will denote the number of interior

loops and bulges. Let us start with bulges and interior loops: Let X∗
n denote

the number of structures that yield a bulge if included into an extra pair of

brackets, and let X∗∗
n denote the number of structures that yield an interior

loop if included into an extra bracket, i.e. the number of structures having

a free end on both sides. Clearly X∗∗
n = Jn−2(1), as structures with zero

components would yield a hairpin while structures with more components

would yield a multi-loop. In order to calculate X∗
n we observe that a bulge is

formed by a new bracket if the structure enclosed has only a single component

and ends neither in a base pair nor in free ends on both sides. As there are

Sn−2 structures resulting in a stack elongation if n ≥ m + 2 (and none

otherwise) we have

X∗
n = Jn(1) − Jn−2(1) − Sn−2 n ≥ m+ 2 (17)

The recursions for loops of degree 2 are now straight forward:

Bn+1 = Bn +

n−1
∑

k=m

{

SkBn−k−1 + Sn−k−1[Bk +X∗
k ]

}

Yn+1 = Yn +

n−1
∑

k=m

{

SkYn−k−1 + Sn−k−1[Yk + Jk−2(1)]
}

Ln+1(2) = Ln(2) +
n−1
∑

k=m

{

SkLn−k−1(2) + Sn−k−1[Lk(2) + Jk(1)]
}

−
n−1
∑

k=m+2

Sn−k−1Sk−2

Bn = Yn = Ln(2) = 0 n ≤ m+ 1

(18)

Hairpins are generated either by stack-elongation of a structure with a single

hairpin or by enclosing the open structure into the additional bracket. Thus

Ln+1(1) = Ln(1) +
n−1
∑

k=m

{

SkLn−k−1(1) + Sn−k−1[Lk(1) + 1]
}

n ≥ m+ 1

Ln(1) = 0 n ≤ m+ 1
(19)
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For multi-loops finally we obtain the recursion

Ln+1(d) = Ln(d) +
n−1
∑

k=m

{

SkLn−k−1(d) + Sn−k−1[Lk(d) + Jk(d− 1)]
}

for d ≥ 2, n ≥ m+ 1

Ln(d) = 0 for n ≤ m+ 1

(20)

Summing over all loop degrees d we recover the recursion for the total number

of stacks, since for each stack there is exactly one loop.

The total number of external digits, En, can be obtained directly as sum of

the numbers En(b). For sake of completeness we mention that it fulfills the

recursion

En+1 = En + Sn +
n−1
∑

k=m

SkEn−k−1 n ≥ m+ 1

En = n n ≤ m+ 1

(21)

2.4.3. Secondary Structures of a Given Order

Let Dn(c, ω) be the number of secondary structures with c components and

order ω. Furthermore let D∗
n(ω) be the number of structures which yield a

structure of order ω when enclosed by an additional base pair. It is clear

that the following recursion holds

Dn+1(c, ω) = Dn(c, ω) +

n−1
∑

k=m

{

D∗
k(ω)

ω−1
∑

`=0

Dn−k−1(c− 1, `)

+Dn−k−1(c− 1, ω)

ω−1
∑

`=0

D∗
k(`)+

D∗
k(ω)Dn−k−1(c− 1, ω)

}

Dn(0, 0) = 1, Dn(0, d) = Dn(c, 0) = 0 n ≤ m+ 1

(22)

since a structure with a base pair (1, k+ 2) has order d and c components iff

either the bracketed part has order ω and the tail has a order at most ω and

c− 1 components or the bracketed part has a degree smaller than ω and the
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tail has c − 1 components and order ω. It remain to calculate D∗
n(ω). By

inspection we find for n > m

D∗
n(0) = 0

D∗
n(1) = 1 +Dn(1, 1)

D∗
n(ω) = Dn(1, ω) +

∞
∑

`=2

Dk(`, ω − 1), ω ≥ 2

(23)

while for n ≤ m we have D∗
n(ω) = 0. There is no structure of order 0 with a

bracket in it; order one is obtained by either bracketing the open structure

or by bracketing a structure with a single component and order 1. If the

bracketed part has only a single components its order is preserved by adding

a terminal bracket. If it consists of more than one components, the addition

of the multi-loop increases the order by one.

Summing over the number of components we obtain the number of Structures

with given order D̃n(ω). Let us further introduce the number of structure

of order at most one, D′
n(1). It is easy to derive the following system of

recursions from the above ones:

D̃n+1(ω) = D̃n(ω) +
n−1
∑

k=m

{

D∗
k(ω)

ω−1
∑

`=0

D̃n−k−1(`) + D̃n−k−1(d)
ω

∑

`=0

D∗
k(`)

}

D∗
k(ω) = D̃k(ω − 1) +Dk(1, ω) −Dk(1, ω − 1) n ≥ m+ 2

Dn+1(1, ω) = Dn(1, ω) +

n−1
∑

k=m

D∗
k(ω)

D̃n(0) = 1, D̃n(ω) = 0 for ω ≥ 1, n ≤ m+ 1
(24)

For the number of structures with a degree at most one we find

D′
n+1 = D′

n +

n−1
∑

k=m

D∗
k(1)D′

n−k−1

D∗
n+1(1) =

n
∑

k=m

D∗
k(1)

(25)
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2.4.4. Secondary Structures with Minimum Stack Length

Let Ψn(l) be the number of structures with minimal stack length l, and let

Ψ∗
n(l) be the number of structures on n digits which have only stacks of

length at least l if an additional terminal base pair is attached. Furthermore

let Ψ∗∗
n (l) be the number of structures on n digits with all stacks of length

at least l for which (1, n) is not a base pair.

These three numbers fulfil for l > 1 the coupled recursions

Ψn+1(l) = Ψn(l) +
n−1
∑

k=m+2l−2

Ψ∗
k(l)Ψn−k−1(l)

Ψ∗
n(l) =

(n−m)/2
∑

p=l−1

Ψ∗∗
n−2p(l)

Ψ∗∗
n (l) = Ψn(l) − Ψ∗

n−2(l)

Ψn(l) = Ψ∗∗
n+1(l) = 1 n < m+ 2l,

Ψ∗
n(l) = 0 m+ 2l − 2

(26)

The first recursion is obvious. A structure which has only stacks of length

at least l after addition of the terminal base pair must have a terminal stack

of length p ≥ l − 1. The remaining part of the structure must have stacks

of length at least l without a terminal base pair. Of course there is no such

structure if n − 2p < m. For the numbers Ψ∗∗
n (l) we obtain the explicit

recursion:

Ψ∗∗
n+1(l) = Ψn(l) +

n−2
∑

k=m+2l−2

Ψ∗
k(l)Ψn−k−1(l)

Ψ∗∗
n = 1 n < m+ 2l

(27)

because structures without a terminal base pair and stacks of length at least

l are obtained by adding a new base pair to structures which including this

base pair have stacks of sufficient length (first factor in the sum) provided the

structures in the remaining part of the structure have also sufficient stack

length. Of course there may not by a terminal base pair by construction.

Comparing the sum in (27) and in the recursion for Ψn(l) yields the final

result. We have of course Ψn(1) = Sn for all n and Ψn(l+ 1) < Ψn(l) for all

l and sufficiently large n.
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Remark. It is possible of course to obtain recursions of the above type for

the number of structure elements or the number of structures with particular

properties also for l > 1. If Ξn is the counting series of interest one has to

replace SkΞn−k−1 by Ψ∗
kΞn−k−1 and ΞkSn−k−1 by Ξ∗

kΨn−k−1, where Ξ∗

counts the objects of interest subject to the restriction that the secondary

structure has a terminal stack of length at least l.

2.5.Asymptotics

Notation 5.1. The symbols ∼ and O have their usual meaning:

f(x) = O(x) means f(x) is bounded as x→ 0.

f(n) ∼ g(n) means f(n)/g(n) → 1 as n→ ∞.

The symbol o, however, does not have its standard meaning in this chapter

(cf. theorem 5.5). If not explicitly stated, asymptotic formulas assume n →
∞.

2.5.1.Asymptotics from Generating Functions

We will use the following simplified version of Darboux’ theorem (cf. [49, p.

205])

Theorem 5.2. Let y(x) =
∑∞

n=0 ynx
n be of the form

y(x) = β(x) +
∑

k

gk(x)(1 − x

α
)ωk (28)

where β, gk are analytic on a circle larger than the circle of convergence of

y(x), ωk real but not a non-negative integer. Suppose y has only a single

singularity at x = α Denote by ω the smallest exponent ωk and by g(x) the

corresponding analytic factor. Then

yn ∼ g(α)

Γ(−ω)
n−1−ω

(

1

α

)n

(29)
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Theorem 5.3. [50, Theorem 5]. Assume that yn ≥ 0, for n sufficiently

larger yn > 0, and y(x) =
∑∞

n=0 ynx
n satisfies F (x, y) ≡ 0. Suppose there

are real numbers α > 0, β > y0 such that

(1) for some δ > 0, F (x, y) is analytic whenever |x| < α+δ and |y| < β+δ;

(2) F (α, β) = 0, Fy(α, β) = 0;

(3) Fx(α, β) 6= 0, Fyy(α, β) 6= 0;

(4) (α, β) is the only solution in the interior of the complex rectangle

|x| < α and |y| < β.

Then

yn ∼
√

αFx(α, β)

2πFyy(α, β)
n−3/2

(

1

α

)n

(30)

Remark 5.4. By comparison of theorem 5.2 and 5.3 we find immediately

g(α) = −
√

2αFx(α, β)

Fyy(α, β)
with β = β(α) (31)

Theorem 5.5. Let Φ(x, y) be analytic for |x| < α + δ and |y| < β(α) + δ,

δ > 0. Suppose y is of the form

y(x) = β(x) + (1 − x

α
)1/2g(x). (32)

Let z(x) =
∑∞

n=0 znx
n be a generating function of the form z = Φ(x, y).

Then

lim
n→∞

zn

yn
= Φy(α, β(α)) (33)

Proof. We will use the short hand o for any analytic function o(x) such that

o(α) = 0.

Φ(x, y) =

∞
∑

k=0

ak(x)yk =

=

∞
∑

k=0

ak(x)
{

β(x)k +
[

kβ(x)k−1g(x) + o
]

(1 − x/α)1/2
}

=

= Φ(x, β(x)) + [Φy(x, β(x))g(x) + o]
(

1 − x

α

)1/2

(34)

Darboux’ theorem shows that

zn ∼ g(α)Φy(α, β)

Γ(−1
2
)

· n−3/2

(

1

α

)n

(35)
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Theorem 5.6. Let Φ(x, y) be analytic as in the previous theorem. Suppose

y is of the form

y(x) = β(x) + (1 − x

α
)1/2g(x) (36)

Let z(x) =
∑∞

n=0 znx
n be a generating function of the form

z(x) =
1

αβ − xy
Φ(x, y) (37)

Then
zk

yk
=

2Φ(α, β)

αg2(α)
· n (38)

Proof. Consider first

1

αβ − xy
=

1

αβ − xβ(x) − xg(x)(1 − x/α)1/2
=

=
αβ − xβ(x) + xg(x)(1 − x/α)1/2

[αβ − xβ(x)]2 − x2g2(x)(1 − x/α)
=

=
o+ xg(x)(1− x/α)1/2

O(1 − x
α )2 − x2g2(x)(1 − x/α)

=

= η(x) − 1

xg(x)
[1 + o](1 − x/α)−1/2

(38)

where η(x) is analytic on circle larger than the circle of convergence of y(x).

Multiplying this expression by a Taylor expansion of Φ(x, y) yields

1

αβ − xy
Φ(x, y) = ηΦ −

∞
∑

k=0

ak(x)β(x)k 1

xg(x)
(1 − x/α)−1/2[1 − o]

= ηΦ − Φ(x, y)

xg(x)
[1 − o](1 − x

α
)−1/2

(39)

Applying Darboux’ theorem and using that Γ( 1
2 ) = −1

2Γ(−1
2 ) completes the

proof.

Corollary 5.7. Let y as in the previous theorem and let u, v be of the same

form as z above. Suppose there is an analytic function Φ(x, y) such that

u = Φ(x, y)v. Then

lim
n→∞

un

vn
= Φ(α, β) (40)
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2.5.2.The Number of Secondary Structures

The series Sn has been extensively studied in [36]. Consider the series Ψn of

secondary structures with a prescribed minimum stack length l and minimum

size m for hairpin loops. Denote by

ψ(x) =
∞
∑

n=0

Ψnx
n, φ(x) =

∞
∑

n=0

Ψ∗
nx

n, θ(x) =
∞
∑

n=0

Ψ∗∗
n xn (41)

the generating functions. We introduce furthermore the notation

tm(x) =
m−1
∑

k=0

xk τm(x) =
m−1
∑

k=1

kxk = x
d

dt
tm(x) (42)

Theorem 5.8. The generating function ψ, φ and θ fulfil the coupled func-

tional equations
ψ = 1 + xψ + x2φψ

φ =
x2(l−1)

1 − x2

(

θ − tm(x)
)

θ = ψ − x2φ

(43)

Proof. The first and third line are obvious. The second line yields

φ =

∞
∑

n=0

xn

(n−m)/2
∑

p=l−1

Ψ∗∗
n−2p =

=
∞
∑

n=0

n/2
∑

p=0

x2pΨ∗∗
n−2px

n−2p −
l−2
∑

p=0

x2p
∞
∑

n=0

Ψ∗∗
n−2px

n−2p−

−
n/2
∑

p> n−m
2

x2p
∞
∑

n=0

Ψ∗∗
n−2px

n−2p +
l−2
∑

p> n−m
2

x2p
∞
∑

n=0

Ψ∗∗
n−2px

n−2p

=
1

1 − x2
θ −

l−2
∑

p=0

x2pθ − tm(x) +
l−2
∑

p=0

x2ptm(x) =

=
x2(l−1)

1 − x2

(

θ − tm(x)
)

(44)

Corollary 5.9. The generating function ψ fulfils the functional equation

F (x, ψ) = x2lψ2−
[

(1−x)(1−x2+x2l)+x2ltm(x)
]

ψ+(1−x2+x2l) = 0 (45)
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Corollary 5.10. For l = 1 we recover the generating function s(x) =
∑∞

n=0 Skx
k for the number of secondary structures. It fulfils the functional

equation

F (x, y) = 1 +
(

2x−
m+1
∑

k=0

xk
)

y + x2 · y2 = 0 (46)

Corollary 5.11.

Ψn ∼ −g(α)

2
√
π
n−3/2

(

1

α

)n

(47)

where g(α) is to be taken from equ. (31) using

β =
1

αl

√

1 − α2 + α2l, (48)

and α is the smallest positive solution of

2xl
√

1 − x2 + x2l −
[

(1 − x)(1 − x2 + x2l) + x2ltm(x)
]

= 0 (49)

Proof. From (43) some simple algebra yield the functional equation (45).

From F (α, β) − βFy(α, β) = 0 one obtains immediately (48) and (49) for

the zeros necessary for the application of theorem 5.3. The latter proves

equ.(47).

Corollary 5.12. For l = 1 the above equations simplify to β = 1/α and

m+1
∑

k=0

αk − 4α = 0 (50)

Numerical values are given in table 10.

Throughout the remainder of this chapter we will assume l = 1 if l is not

mentioned explicitly, while α and β will denote the solutions of equations

(49) and (48) respectively.
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Table 2. Coefficients for the asymptotics of Ψ
(l,m)
n .

l m = 0 1 2 3 5 ∞
α

1 0.3333 0.3820 0.4142 0.4369 0.4658 0.5000
2 0.4836 0.5081 0.5266 0.5409 0.5610 0.5958
3 0.5672 0.5828 0.5952 0.6053 0.6204 0.6537
4 0.6227 0.6336 0.6428 0.6504 0.6623 0.6938
5 0.6629 0.6712 0.6783 0.6843 0.6941 0.7237

10 0.7704 0.7737 0.7766 0.7793 0.7840 0.8066
20 0.8713 0.8518 0.8530 0.8540 0.8559 0.8713

100 0.9520 0.9521 0.9522 0.9523 0.9525 0.9571
∞ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

−g(α)/(2
√
π)

1 1.4658 1.1043 0.8766 0.7131 0.4848 0.0000
2 2.7155 2.1614 1.7742 1.4848 1.0769 0.0000
3 3.9640 3.2711 2.7558 2.3561 1.7741 0.0000
4 5.2305 4.4238 3.7990 3.3003 2.5537 0.0000
5 6.5194 5.6142 4.8923 4.3033 3.4009 0.0000

10 13.309 12.026 10.921 9.962 8.382 0.0000
20 28.365 26.557 24.913 23.414 20.787 0.0000

100 189.31 185.30 181.41 177.63 170.40 0.0000

2.5.3.Average Number of Structure Elements

Denote by Ξn the number of structural elements. From the biological point of

view it is very interesting to know the average number of structural elements

in a single structure, i.e. the asymptotic behavior of Ξn/Sn. It is clear that

the counting series for the total number of structure elements, including the

total number of base pairs and unpaired digits is bounded from above by

nSn.

Lemma 5.13.

tm(α) =
3α− 1

α2
τm(α) =

3α− 1

α(1 − α)
−m

(1 − 2α)2

α2(1 − α)

g2(α) =
(1 − 2α)(2 +m− 2mα)

(1 − α)α3

(51)
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Theorem 5.14. For the number of components holds

lim
n→∞

In
Sn

= 2β(1 − α) − β = 2/α− 3 (52)

Proof. Let i(x) =
∑∞

k=0 Ikx
k be the generating function for the number of

components. The recursion can be brought to the form

In+1 = In +

n−1
∑

k=0

SkIn−k−1 +

n−1
∑

k=0

SkSn−k−1 −
m−1
∑

k=0

[In−k−1 + Sn−k−1] (53)

Multiplying by xn+1 and summing over n yields

i(x) = xi(x) + x2s(x)i(x) + x2s2(x) − x2tm(x)[s(x) + i(x)] (54)

We find by using twice the functional equation for s(x)

i(x) =
x2s2(x) − s(x)x2tm(x)

1 − x− x2s(x) + tm(x)

= s(x) · x2s(x)
[

s(x) − tm(x)]

= s2(x)(1 − x) − s(x)

(55)

Application of theorem 5.5 immediately yields the desired result.

Remark 5.15. This result holds for arbitrary minimal stack length l as well.

Theorem 5.16. For the number of external digits holds

lim
n→∞

En

Sn
= 2αβ = 2 (56)

Proof. The functional equation for the generating function reads e(x) =

x · s2(x). Theorem 5.5 completes the proof.
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Theorem 5.17 For the number of unpaired digits holds

Un

Sn
∼ 2α+m(1 − 2α)

2 +m(1 − 2α)
· n (57)

Proof. Let u(x) =
∑∞

n=0 Unx
n be the generating function of the number

of unpaired digits. From recursion (9) we find immediately the functional

equation

u = xu+ xs+ 2x2us− x2utm(x) − x2sτm(x) (58)

Using the functional equation for s, some algebra yields

u(x) =
1

1 − x2s2
· s2x(1 − xτm) (59)

Application of theorem 5.6 completes the proof.

Remark 5.18. Let p(x) be the generating function of the number of base

pairs. Since Un + 2Pn = nSn we have u(x) + 2p(x) = xs′(x).

Theorem 5.19. For the number of stacks or loops holds

Nn

Sn
∼ (1 − α)2(1 + α)

2 +m− 2mα
· n (60)

Proof. Let ν(x) =
∑∞

n=0Nnx
n be the generating function of the number of

stacks. Observe that

n−1
∑

k=m+p

Sk−pSn−k−1 =

n−p−1
∑

k=m

SkSn−p−k−1 (61)

and therefore gives rise to a term xp+2[s2 − stm(x)] = xp[(1− x)s− 1] in the

functional equation for the generating function. Thus recursion (6) translates

to

ν = xν + 2x2sν − x2νtm(x) + (1 − x2)[s · (1 − x) − 1] (62)

or, after some simple algebra,

ν =
1

1 − x2s2
s(1 − x2)[s(1− x) − 1] (63)

The proof is completed by theorem 5.6.
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2.5.4.The Number of Structures with Certain Properties

Theorem 5.20. For the number of structures with b base pairs holds

Hn(b) ∼ 1

(b+ 1)!b!
n2b (64)

Proof. From recursion (4) one finds the functional equation

hb = xhb + x2
b−1
∑

k=0

hb−k−1hk − x2tm(x)hb−1 b > 0

= xhb + x2
b

∑

k=1

hkhb−k−1 + xm+2hb−1

(65)

and h0(x) = 1/(1 − x). With the ansatz

hb(x) = ηb(x) ·
1

1 − x

(

x

1 − x

)2b

(66)

one checks finds that ηb(x) are polynomials fulfilling

ηb(x) =
b

∑

k=1

ηk(x)ηb− k − 1(x) + xmηb−1 (67)

Theorem 5.2 assures now that

Hn(b) ∼ ηb(1)

Γ(2b+ 1)
· n2b. (68)

Since η0(1) = 1, equ.(67) becomes the well known recursion for the Catalan

numbers

ηb(1) = Cb =
1

b+ 1

(

2b

b

)

. (69)
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Theorem 5.21 For the number of structures with exactly b stacks holds

Nn(b) ∼ Cb

2b(3b)!
· n3b (70)

Proof. Let νb(x) =
∑∞

n=0Nn(b)xn be the generating function for the num-

ber of structures with exactly b stacks and denote by ζb(x) the generating

function for the auxiliary variable Zn(b). It is straight forward to derive the

functional equations

ζb =
x2

(1 − x)(1 + x)
[νn−1 − ηb−1]

νb =
x2

(1 − x)

b
∑

l=1

ζl − νb−l

(71)

One easily checks that these generating functions are of the form

νb(x) = µb(x)
1

(x+ 1)b

1

(x− 1)3b+1

ζb(x) = ξb(x)
1

(x+ 1)b

1

(x− 1)3b+1

(72)

where µb(x) and ξb(x) are polynomials. Theorem 5.2 thus yields

Nn(b) ∼ 1

2b

µb(1)

Γ(3b+ 1)
· n3b (73)

where µb(1) and ξb(1) fulfil the recursions

ξb(1) = µb−1(1) µn(1) =

b
∑

l=1

ξl(1)µb−l(1) =

b−1
∑

l=0

µl(1)µb−l−1(1) (74)

Again, the coefficients µb(1) coincide with the Catalan numbers.

Theorem 5.22. For the number of structures with b hairpins holds

An(b) ∼ 4

2(3+m)bb!(b− 1)!
n2(b−1)2n (75)
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Proof. Let ab(x) denote the generating function
∑

An(b)xn. From recursion

(8) we obtain with some simple algebra

ab = xab + x2
b

∑

i=1

aiab−i + x2tmab−1 b > 0 (76)

and a0(x) = 1/(1 − x). Collecting all terms containing ab(x) yields

ab(1 − 2x) = xm+2ab−1 + x2
b−1
∑

i=1

aiab−i (77)

With the ansatz

ab(x) =

(

xm+2

1 − x

)b
1

(1 − 2x)2b−1
ηb(x) (78)

we find the following recursion for the polynomials ηb(x):

ηb(x) = (1 − 2x)(1 − x)ηb−1 + x2
b−1
∑

i=1

ηi(x)ηb−1 η1(x) = 1 (79)

Theorem 5.2 now implies that the relevant singularity occurs at x = 1/2

leaving us with the recursion

ηb( 1
2 ) =

1

4

b−1
∑

i=1

ηi( 1
2 )ηb−i( 1

2 ) (80)

It is easy to check that this is solved by

ηb( 1
2 ) =

1

22(b−1)
Cb−1 (81)

From theorem 5.2 we find now that

An(b) ∼ Cb−1

22(b−1)2b(m+1)Γ(2b+ 1)
n2(b−1)2n (82)

Some simple algebra completes the proof.
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Theorem 5.23. For the number of structures with b components holds

lim
n→∞

Jn(b)/Sn =
α2

(1 − α)3
b

(

1 − 2α

1 − α

)b−1

(83)

Proof. Let jb(x) =
∑∞

n=0 Jn(b)xn be the generating function for the number

of secondary structures with exactly b components. Its is straight forward to

derive

jb(x) =
x2

1 − x
(s− tm(x))

b · j0(x) b ≥ 1 (84)

and from Jn(0) = 1 we obtain j0(x) = 1/(1 − x). From theorem 5.5 we find

that

lim
n→∞

Jn(b)/Sn =
1

1 − α

(

α2

1 − α

)b

· b (β − tm(α))
b−1

(85)

Theorem 5.24. For the number of structures with b external digits holds

lim
n→∞

En(b)/Sn =
1

4
(b+ 1)

(

1

2

)b

(86)

Proof. Let eb(x) be the generating function of the number of secondary

structures with exactly b external digits. Recursion (21) yields the functional

equation

eb − δ0b = xeb−1 + x2seb − x2ebtm(x) (87)

Substituting the functional equation for s and some algebra finally yields

e0 = s/(1 + xs) and eb = xs
1+xs

eb−1. Therefore,

eb =

(

xs

1 + xs

)b

· s

1 + xs
(88)

Application of theorem 5.5 and observing αβ = 1 yields the desired expres-

sion.
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Theorem 5.25 For any finite order ω there is a positive constant ε such that

lim
n→∞

D̃n(ω − 1)eεn

D̃n(ω)
= 0 (89)

Proof. We will need the generating functions

∆ω =
∞
∑

n=0

D̃n(ω)xn ∆∗
ω =

∞
∑

n=0

D∗
n(ω)xn ∆′

ω =
∞
∑

n=0

Dn(1, ω)xn (90)

Recursion (24) yields the following system of coupled functional equations

for the above generating functions

∆ω = x∆ω + x2∆∗
ω

ω−1
∑

i=0

∆i + x2∆ω

ω
∑

i=0

∆∗
i

∆∗
ω = ∆ω−1 + ∆′

ω − ∆′
ω−1 ω ≥ 2

∆′
ω = x∆′

ω + x2∆∗
ω

1

1 − x

(91)

For ω = 0 we have ∆0 = 1/(1 − x) and for ω = 1 we find explicitly

∆∗
1(x) =

1 − x

1 − 2x
xm

∆1(x) =
xm+2

1 − x
· 1

1 − 2x− xm+2

(92)

Eliminating ∆′
ω we find for ω ≥ 2

∆∗
ω =

(1 − x)2

1 − 2x
∆ω−1 −

x2

1 − 2x
∆∗

ω−1

∆ω =
x2∆∗

ω

∑ω−1
i=0 ∆i

1 − x− x2
∑ω

i=0 ∆∗
i

(93)

Unfortunately these expressions become to clumsy to be of much practical

use.

Denote fω(x) = 1 − x − x2
∑ω

i=0 ∆∗
i and let λ be the unique solution of

1 − 2x− xm+2 in the interval [0, 1/2[. Obviously fω(x) is strictly monotone

decreasing and has at least one zero in (0, α∗), where α∗ denotes the position

of the singularity with the smallest x value among the function ∆i(x), i < ω.

Therefore, ∆ω(x) has a singularity αω < α∗. By induction, therefore, αω <

αω−1 for all ω, since explicitly we have α1 = λ and the first singularity in

∆∗
ω occurs at x = αω−1. By theorem 5.2 we have ∆n(ω) ∼ c1n

c2αn
ω. The

inequality 1/αω > 1/αω−1 completes the proof.
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Numerical results for the constants obtained for calculating ∆ω(x) explicitly

by using Mathematica and numerically solving for the smallest zero of the

denominator in (93,2) are tabulated in table 10. The case m = 1, ω = 1 has

been calculated by Waterman [36, 51].

Table 3. Secondary structures with order ω. The base of the exponential

part of the asymptotic is given.

αω

ω m = 0 m = 1 m = 3

0 1 1 1
1 0.41421256 0.4533977 0.4863890
2 0.37597060 0.4221456 0.4680050
3 0.35978154 0.4076474 0.4577424

2.5.5.The Distribution of Structure Elements

Theorem 5.26. For the number of loops with b unpaired digits holds

lim
n→∞

Qn(b)

Nn
=

α2

(1 − α2)(1 − 2α)
×

[

1

2α · 2b
− Θ(m− b)αb − (1 − 2α)δb0

] (94)

Proof. Let qb(x) =
∑∞

k=0Qn(b)xn denote the generating function for the

number of loops with b unpaired digits. From recursion (13) we find imme-

diately

qb = xqb + 2x2sqb + x2seb − x2qbtm − Θ(m− b)xb

q0 = xq0 + 2x2sq0 + x2se0 − x2qbtm − Θ(m) − x2[s(1 − x) − 1]
(95)

where Θ(n) denote the Heaviside function, Θ(n) = 1 for n > 0 and Θ(n) = 0

for n ≤ 0. Some simple algebra confirms

qb =
1

1 − x2s2
x2s2[eb − Θ(m− b)xb] b > 0

q0 =
1

1 − x2s2
x2s[seb − s(1 − x) + 1 − Θ(m− 0)]

(96)

Corollary 5.7 now proves the assertion.
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Theorem 5.27. The asymptotic distribution of stack length is exponential:

lim
n→∞

Wn(b)

Nn
=

1 − α2

α2
α2b (97)

Proof. Let wb(x) =
∑∞

k=0Wn(b)xn denote the generating function for the

number of stacks of length b. From recursion (16) we find

wb = xwb + 2x2swb − x2wbtm + (x2b+2 − 2x2b + x2b−2)[(1 − x)s− 1] (98)

Some simple algebra assure that

wb =
1

1 − x2s2
x2b−2s(1 − x2)2[(1 − x)s− 1] = x2b−2(1 − x2) · ν(x) (99)

Theorem 5.6 completes the proof.

2.5.6. Loop Types

Theorem 5.28. The distribution of loop degrees fulfils

lim
n→∞

Ln(d)

Nn
=

α2

(1 − α2)(1 − 2α)
×

×





1

1 − 2α

(

1 − 2α

1 − α

)d

−







3α−1
α2 d = 1

(1 − 2α) d = 2
0 d > 2





(100)

Proof. Let `d(x) =
∑∞

n=0 Ln(d)xn be the generating function for the number

of loops with degree d. For hairpins one finds from recursion (18)

`1 = x`1 + 2x2`1s− x2`1tm(x) +
xm+2

1 − x
s (101)

Similar functional equations can be obtained for loops of higher degree from

recursions (19) and (20). They can be brought to the form

`1 =
1

1 − x2s2
xm+2

1 − x
s2

`2 =
1

1 − x2s2
[

x2s2[j1(x) − (1 − x)] + x2s
]

`d =
1

1 − x2s2
x2s2jd−1(x)

(102)

Using the explicit expressions for jd and theorem 5.6, some tedious algebra

finally yield equ.(100).
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Remark 5.29.The average loop degree d̄ can be most easily calculated from

the following balance equation which holds for all secondary structures

∑

loops λ

deg(λ) = 2#[stacks] − #[components] (103)

From equ.(52) and equ.(60) we find immediately that the average loop degree

fulfils

lim
n→∞

d̄n = 2 (104)

Theorem 5.30. The ratio of bulges and true interior loops fulfils

lim
n→∞

Bn

Yn
=

2

α
(1 − α) (105)

Proof. Denote by b(x) and y(x) the generating function for the number

of bulges and interior loops respectively. By construction they fulfil b(x) +

y(x) = `2(x). It is thus sufficient to calculate y(x) from recursion (18). We

find

y(x) =
1

1 − x2s2
s2x4j1(x) (106)

and thus

b(x) = `2(x) − y(x) =
1

1 − x2s2
x2s

[

s(1 − x2)j1 − (1 − x)s+ 1
]

(107)

Corollary 5.7 completes the proof.

2.6.Secondary Structures of a Sequence

Up to now we have neglected the fact that secondary structures are built on

sequences. Not all secondary structures can be formed by a given biological

sequence, since not all combinations of nucleotides form base pairs. The

results of the previous sections will be generalized to this situation in the

following.

Definition 6.1. Let A be some finite alphabet of size κ, let Π be a symmetric

Boolean κ×κ-matrix and let Σ = [σ1 . . . σN ] be a string of length N over A.
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A secondary structure is compatible with the sequence Σ if for all base pairs

(p, q) holds Πσp,σq
= 1.

Following [47, 36] the number of secondary structures S compatible with

some string can be enumerated as follows: Denote by Sp,q the number of

structures compatible with the substring [σp . . . σq]. Then

Sl,n+1 = Sl,n +

n−m
∑

k=l

Sl,k−1Sk+1,nΠσk,σn+1
(108)

For a random sequence, the expected number S̄n of compatible structures is

then [41]

S̄n+1 = S̄n + p
n−m
∑

k=1

S̄k−1S̄n−k = S̄n + p
n−1
∑

k=m

S̄kS̄n−k−1 (109)

where

p =
1

κ2

κ
∑

i,j=1

Πij (110)

is called the stickiness [52].

Remark 6.2 A secondary structure compatible with a given sequence with

maximal number of base pairs can be determined by a dynamic programming

algorithm [53]. This observation was the starting point for the construction

of reliable energy-directed folding algorithms (see next chapter).

Analogously one can derive recursions of the number of structure elements

compatible with a string Σ. All recursions in this chapter are sums of linear

terms of the form An and quadratic terms of the type

n−1
∑

k=m

BkCn−k−1 =
n−m
∑

k=1

Ck−1Bn−k (111)

The corresponding recursions for structures compatible with a string can

then be found by the rule

An −→ Al,n

n−m
∑

k=1

Ck−1Bn−k −→
n−m
∑

k=l

Cl,k−1Bk+1,nΠσk,σn+1

(112)
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For expected numbers for random sequences the above rules simplify to

An −→ An

n−1
∑

k=m

BkCn−k−1 −→ p

n−1
∑

k=m

BkCn−k−1

(113)

As an example we calculate the expected proportion of unpaired digits in a

secondary structure compatible with a random sequence with stickiness p.

Application of the above rules to equ.(9) immediately yields

Un+1 = (Un + Sn) + p
n−1
∑

k=m

[SkUn−k−1 + Sn−k−1Uk], n ≥ m+ 1

Un = n, n ≤ m+ 1

(114)

From equ.(109) and equ.(114) we obtain the generating functions

1 = s[1 − x− px2s+ px2tm] (115)

u = xu+ xs+ p[2x2us− x2utm − x2sτm] (116)

For α and β we find from the functional equation for s

αβ = 1/
√
p

1√
p
− (2 +

1√
p
)α+

√
pα2tm(α) = 0

(117)

Theorem 5.3 allows to calculate the asymptotic for S̄n(p), yielding the fol-

lowing generalization of lemma 5.13

Lemma 6.3

tm(α) =
(1 + 2

√
p)α− 1

pα2

τm(α) =
(1 + 2

√
p)α2 − α−m

(

1 − (1 +
√
p)α)

)2

pα2(1 − α)

g2(α) =
(1 − α−√

pα)(2 +m(1 − α−√
pα))

√
p3(1 − α)α3

(118)
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Table 4. Asymptotics of some structure elements as a function of stickiness

p 1 0.5 0.375 0.25
GC AUGC GCXK

α 0.4369 0.5092 0.5391 0.5809
Un/nSn 0.5265 0.5897 0.6147 0.6487
Pn/nSn 0.2368 0.2051 0.1926 0.1756
Nn/nSn 0.1915 0.1786 0.1717 0.1608
In/Sn 1.5776 1.7266 1.7918 1.8855
Ln(1)/Nn 0.2769 0.3062 0.3183 0.3352
Ln(2)/Nn 0.5082 0.4692 0.4537 0.4325
Bn/Yn 2.5776 1.9280 1.7096 1.4428
StackLength 1.2363 1.1487 1.1220 1.0924
LoopSize 2.7493 3.3018 3.5801 4.0342
En/Sn 2 2.828 3.266 4

Equation (116) thus simplifies to

u =
s2x (1 − p τmx)

1 − ps2x2
(119)

and theorem 5.6 implies that

lim
n→∞

Un

nSn
=

1

αg2(α)p

[

1√
pα

−√
pτm(α)

]

=
2α+m(1 − α−√

pα)

2 +m(1 − α−√
pα)

(120)

The asymptotics of the most important other series are given below with-

out proofs. Numerical values for the most common values of stickiness are

given in table 4. The value p = 1
2 corresponds to a binary alphabet of com-

plementary bases, while p = 1
4 corresponds to a four letter alphabet with

two pairs of complementary bases as in the (such as the biophysical AUGC

with Watson-Crick pairing rules). Since biological RNA structures frequently

contain G-U pairs as well, they are best modeled by a value of p = 3
8
.

Number of Loop and stacks:

ν =
s (1 − s(1 − x)) (px2 − 1)

1 − ps2x2

lim
n→∞

Nn

Sn
=

(1 − α)(1 − α2p)

2 +m(1 − α− α
√
p)

(121)
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Number of components:

i = s2(1 − x) − s

lim
n→∞

In
Sn

= 2β(1 − α) − 1
(122)

Loops with degree 2, i.e., interior loops and bulges:

l2 =
psx2

[

(1 − x)2 − s(1 − x)3 + psx2(s− tm)
]

(1 − x)2(1 − ps2x2)

lim
n→∞

Ln(2)

Nn
=

(2 − α)α3p

(1 − α)2(1 − α2p)

lim
n→∞

Bn

Yn
= 2/α− 2

(123)

Hairpins:

l1 =
ps2x2 (1 − (1 − x)tm)

(1 − x) (1 − ps2x2)

lim
n→∞

Ln(1)

Nn
=

1 − α− α
√
p

1 − α− α2 p+ α3 p

(124)
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3.RNA Secondary Structure Prediction

3.1.Overview

Several methods exist for the prediction of RNA secondary structures. They

can be divided into two broad classes: Folding by phylogenetic comparison

and energy directed (i.e. kinetic or thermodynamic) folding.

3.1.1.Comparative Structure Analysis

Given a large enough number of sequences with identical secondary structure,

that structure can be deduced by examining covariances of nucleotides in

these sequences. This is the principle used for structure prediction through

phylogenetic comparison of homologous sequences [54].

The underlying assumption is that structure is more conserved during evolu-

tion than sequence, since it is the structure that determines function. In fact

the success of the method in the prediction of, for instance, the secondary

structures of the 16S ribosomal RNAs [55] provides an excellent justification

for this assumption.

Basically these methods just look for compensatory mutations such as an A

changing to C in position i of the aligned sequences simultaneously with a

change from U to G in position j, indicating a base pair (i, j). The well known

clover-leaf structure of tRNAs was found in this manner by just looking at

a few sequences. Since no assumption about pairing rules are necessary,

non-canonical pairs and tertiary interactions [56] can be detected as well.

Phylogenetic comparison can generate the most reliable secondary structure

models to date, provided the set of sequences is sufficiently large, and exhibits

the right amount of variation. The sequences should be dissimilar enough

to show many covariations while still yielding a good alignment. Such data

sets exist in particular for transfer and ribosomal RNAs, the structures thus
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determined are therefore frequently used for comparison of other folding algo-

rithms. It should be kept in mind, however, that phylogenetically determined

structures usually are incomplete, that is, they do not show all base pairs

of the actual structures. This will happen in particular when parts of the

sequence are conserved (i.e. the function is sequence dependent) or parts of

the structure are variable (because non-functional).

3.1.2.Energy Directed Folding

Most methods for prediction of RNA secondary structure work on the basis

of the same energy model that will be presented in the next section. They

can be further divided into methods that try to find the structure of minimal

energy (or the equilibrium ensemble) and “kinetic” algorithms. It is by no

means clear that the biological relevant structure of RNA molecules is the

structure of minimal energy, instead the structure might be trapped in some

local minimum during the folding process. Kinetic algorithms therefore try to

mimic the folding process in order to derive the biologically active structure.

The first kinetical algorithm was proposed by Martinez [57] in 1984, mainly

as an attempt to create a faster algorithm. As do many other algorithms it

starts by compiling a list of possible helices. His idea was that the helix with

largest equilibrium constant (that is the lowest energy) would form first. All

helices not compatible with this helix are then deleted from the list. The

process is repeated until no helix is left whose incorporation would lower the

energy of the structure. Such an algorithm will indeed execute in only O(n2)

steps. The procedure implies that a helix that has once formed never opens

again, so there is no re-folding. Furthermore, folding in vivo already starts

during transcription, so that helices near the 5′ end of the sequence should

be formed first. Recently interest in this kind of algorithm was renewed [58,

59] because, as in all stem oriented methods, pseudo knots can be easily

included. The prediction of pseudo knots, however, remains a problem, since

not enough experimental values are available to assign reliable energy values

to them.

Currently the only kinetic algorithms allowing for re-folding of the sequence

are nondeterministic. The folding of the molecule is typically simulated by
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Monte Carlo methods [60]. Such an algorithm can also be modified to mimic

5′ → 3′ folding of RNA during transcription[61]. In principle these methods

can produce the Boltzmann weighted equilibrium ensemble of structures.

They are, however, too time consuming to be usable for sequences much

longer than tRNAs.

Manfred Tacker in our group has recently implemented a kinetic folding

algorithm [62, 63] similar to Martinez’. However, only helices more stable

than some threshold are kinetically determined the rest of the structure is

then “filled” up using the minimum free energy algorithm to be described

later. A variant for 5′ → 3′ is available as well. Comparison of the results of

his algorithm with phylogentically determined structures for eight 16S rRNAs

showed no significant improvement over the minimum free energy algorithm.

Early algorithms for the calculation of minimum free energy structures, used

a list of possible helices and found the optimal structure by enumeration

[64] of all possible combinations. By only considering helices of a minimal

size, the number of possible combinations can be made small enough for

enumeration to be feasible. However, as has been shown in the previous

chapter the number structures to consider will always rise exponentially, so

that such algorithms can only be practical only for small sequences up to

about 200 nucleotides. As it is easy to accommodate pseudo knots and more

complicated energy rules, they may be still useful to test new models on small

examples. They have been little used since it became clear that minimum

free energy structures can be calculated much faster by the kind of dynamic

programming algorithms that will be described later.

3.2.The Energy Model

The crucial ingredient for any reliable structure prediction algorithm is a

reliable energy model. Luckily, the currently accepted model for RNA sec-

ondary structure has a mathematically simple form that allows for an elegant

solution of the minimum free energy problem. The energy of structure can be

written as a sum of independent contributions for each loop of the structure

E(S) =
∑

loops L in S

e(L) + e(Lext), (125)
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where Lext is the contribution of the “exterior” loop containing the free

ends. Note that here stacked pairs are treated as minimal loops of degree 2.

Empirical energy parameters for calculation of the e(L) have been derived

mostly from melting experiments on small oligonucleotides using a nearest-

neighbor model. The assumption here is that the energy of some loop only

depends only on the size and type of the loop, the pairs closing the loop

and the bases directly adjacent to these pairs. The first compilation of such

parameters was done by Salser [65]. The parameters most widely in use

today are taken from Freier et al. [66, 67], they were measured at 37◦C in

1 M NaCl.

In particular the energy model contains the following contributions:

Stacked pairs contribute the major part of the energy stabilizing a struc-

ture. Surprisingly the parallel stacking of base pairs is more important than

the hydrogen bonding of the complementary bases. By now all 21 possible

combinations of AU GC and GU pairs have been measured in several oligonu-

cleotide sequences with an accuracy of a few percent. The parameters involv-

ing GU mismatches were measured more recently in Douglas Turner’s group

[68] and brought the first notable violation of the nearest-neighbor model:

while all other combinations could be fitted reasonably well to the model,

the energy of the 5′GU3′

3′UG5′ stacked pair seems to vary form +1.5kcal/mol to

−1.0kcal/mol depending on its context.

Dangling ends: unpaired bases adjacent to a helix may also lower the en-

ergy of the structure through parallel stacking. In the case of free ends the

bases dangling on the 5′ and 3′ ends of the helix are evaluated separately,

unpaired nucleotides in multi-loops are treated in the same way. For interior

and hairpin loops the so called terminal mismatch energy depends on the

last pair of the helix and both neighboring unpaired bases. While stacking of

an unpaired base at the 3′ end can be as stabilizing as some stacked pairs, 5′

dangling ends usually contribute little stability. Terminal mismatch energies

are often similar as the sum of the two corresponding dangling ends. Typi-

cally, terminal mismatch energies are not assigned to hairpins of size three.

Few measurements are available for the stacking of unpaired nucleotides on

GU pairs so that they have to be estimated from the data for GC and AU

pairs.
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Loop energies are destabilizing and modeled as purely entropic. Few ex-

perimental data are available for loops, most of these for hairpins. The

parameters for loop energies are therefore particularly unreliable. Data in

the newer compilation by Jaeger et al. [69] differ widely from the values given

previously [66]. Energies depend only on the size and type (hairpin, interior

or bulge) of the the loop. Hairpins must have a minimal size of 3, values for

large loops are extrapolated logarithmically. Asymmetric interior loops are

furthermore penalized [70] using an empirical formula depending on the dif-

ference |u1 − u2| of unpaired bases on each side of the loop. For bulge loops

of size 1 a stacking energy for the stacking of the closing and the interior

pair is usually added, while larger loops are assumed to prohibit stacking.

Finally, a set of eight hairpin loops of size 4 are given a bonus energy of

2kcal/mol. These tetraloops have been found to be especially frequent in

rRNA structures determined from phylogenetic analysis. Melting experi-

ments on several tetraloops were performed recently [71] showing a strong

sequence dependence that is not yet well reflected in the energy parameters.

No measured parameters are available for multi-loops, their contribution

(apart from dangling ends within the loop) is usually approximated by the

linear ansatz

∆G = a+ bu+ cm (126)

where u is the size of the loop and m is the number of base pairs interior to

the loop, i.e. its degree−1. Good results have been achieved using a = 4.6,

b = 0.4 and c = 0.1 kcal/mol. While a logarithmic size dependency of loop

energies would be more realistic, the linear ansatz allows faster prediction

algorithms. Since all energies are measured relative to the unfolded chain

free ends do not contribute to the energy.

Numerical values for the energy parameters used in the rest of this work can

be found in the appendix.
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3.3.Dynamic Programming Folding Algorithms

3.3.1.Calculation of Minimum Free Energy Structures

The additive form of the energy model in equ. (125) allows for an elegant

solution of the minimum free energy problem through dynamic programming,

similar to sequence alignment. This similarity was first realized and exploited

by Waterman [36, 72], the first dynamic programming solution was proposed

by Nussinov [53, 73] originally for the “maximum matching” problem of

finding the structure with the maximum number of base pairs. The algorithm

to be described here is a variant of Zuker and Stiegler’s [74, 41].

The algorithm essentially works by calculating optimal structures for all sub-

sequences of the sequence I to be folded, proceeding from smaller to larger

fragments. Let Cij be the the minimum energy possible on the substructure

Iij given that i and j pair. Since the energy of some substructure Sij with i

and j paired is given by the energy of the loop closed by (i, j) plus the energy

of any loops directly interior to it,

Cij = min
loops L

closed by i,j











E(L) +
∑

interior pairs
(p,q)∈L

Cpq











(127)

and Cii = ∞. The unconstrained minimum energy Fij is then given by

Fij = min
{

Cij , (di;i+1,j + Ci+1,j), (Ci,j−1 + di,j−1;j),

(di;i+1,j−1 + Ci+1,j−1 + di+1,j−1;j), min
i≤h<j

(Fih + Fh+1,j)
} (128)

where the d terms are the contributions from dangling ends and Fii = 0. If

loops up to a maximal degree of k are considered, evaluation of equ. (128)

for every i and j takes time proportional to n2k, it will therefore only be

used for loops of degree ≤ 2. The linear ansatz for the energy of multi loops

in equ. (126) allows those contributions to be evaluated in O(n3) steps. To

do this we define another array FM
ij that holds the minimal energy on the

subsequence Iij given that i and j are part of a multi loop. Let (i, j) be the

– 53 –



RNA Secondary Structure Prediction

closing base pair of a multi loop, then neglecting dangling ends Cij will be

given by

Cij = min
i<h<j

{

FM
i+1,h + FM

h+1,j

}

+ a. (129)

Dangling ends lead to three further terms the equation corresponding to

stacking of the unpaired base on the 5′, 3′ or both sides of the pair (i, j),

such as di,j;i+1+FM
i+2,h+FM

h+1,j for the case of a 3′ dangle. The FM
ij can again

be calculated recursively in analogy to equ. (128) with the initial condition

FN
ii = ∞:

FM
ij = min

{

Cij + c, (di;i+1,j + Ci+1,j + c), (Ci,j−1 + di,j−1;j + c),

(di;i+1,j−1 + Ci+1,j−1 + di+1,j−1;j + c), FM
i+1,j + b, FM

i,j−1 + b,

min
i<h<j−1

(FM
ih + FM

h+1,j)
}

(130)

Table 5. Pseudo Code of the minimum free energy folding algorithm.

for(d=1...n)
for(i=1...n-d)

j=i+d
C[i,j] = MIN(

Hairpin(i,j),
MIN( i<p<q<j : Interior(i,j;p,q)+C[p,q] ),
MIN( i<k<j : FM[i+1,k]+FM[k+1,j-1]+a ) )

F[i,j] = MIN( C[i,j], MIN(i<k<j : F[i,k]+F[k+1,j]))
FM[i,j]= MIN( C[i,j]+c, FM[i+1,j]+b, FM[i,j-1]+b,

MIN( i<k<j : FM[i,k]+FM[k+1,j] ) )
free_energy = F[1,n]

Remark. F[i,j] denotes the minimum energy for the subsequence consisting of bases

i through j. C[i,j] is the energy given that i and j. pair. The array FM is introduced

for handling multi-loops. The functions Interior(i,j;p,q) and Hairpin(i,j) denote the

energy contribution of a loop closed by the base pairs given as argument. We have assumed

that multi-loops have energy contribution F=a+b*U+c*I, where I is the number of interior

base pairs and U is the number of unpaired digits of the loop. The time complexity here

is O(n4). It is reduced to O(n3) by restricting the size of interior loops to some constant,

say 30. Dangling ends have been neglected for simplicity.
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Evaluation of equ. (127) still gives an O(n4) algorithm. Large loops are,

however, very destabilizing and therefore rare. As seen in equation 94 their

frequency decreases exponentially even for random structures. It is therefore

reasonable to restrict the search to interior loops with a maximal loop size,

cutting the execution time of that part down to O(n2). A maximum loop size

of 30 has usually proved sufficient. A compact pseudo-code for the algorithm

is given in table 6.

The algorithm outlined so far only calculates minimum energies, not struc-

tures. Although it is easy to record for every minimum in the equations

above the structural motif that yielded the minimum, storage is often the

more stringent constraint on the algorithm than execution time. Typical

implementations will therefore first calculate all entries in the F , C and

FM arrays starting with the smallest subsequences and then construct the

structure in a second pass proceeding from the exterior loop to the smallest

substructures. This technique, typical for dynamic programming, is called

backtracking. Since only those entries in the arrays belonging to the mini-

mum energy solution have to be recalculated, the structure can be obtained

in less than O(n2) steps and negligible time.

3.3.2.Calculation of the Partition Function

The algorithm described above yields only a single structure with minimal

free energy. This is unsatisfactory for two reasons: An RNA molecule will

in reality not always stay in its minimal energy configuration, but change

between many structures of similar energy, possibly in a way related to the

molecules function. Secondly, if several structures have energies very close

to the minimum, choosing one of them becomes arbitrary because of the

inaccuracies of the energy model. To overcome this problem Michael Zuker

[75] devised a modification of the minimum free energy algorithm that can

efficiently generate all structures within a prescribed increment of the mini-

mum. An even more elegant solution was presented a few years ago by John

McCaskill [76] who noticed that the partition function Q of all secondary

structures can be calculated by dynamic programming as well. The free

energy of the ensemble can be obtained as F = −kT lnQ. While the mini-

mum free energy described before is a free energy only insofar as it contains
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those entropy terms inherent in the energy parameters, the free energy of

the ensemble additionally includes the entropy stemming from the different

structures of the sequence.

Calculation of the partition function resembles closely the minimum free

energy algorithm presented before. Generally the partition function is given

by

Q =
∑

all structures S

e
−

∆G(S)

kT . (131)

Using the additive form of the energy model (equ. 125) we get

Q =
∑

all structures
S

∏

loops
L∈S

e−E(L)/kT . (132)

This allows us again to set up a recursion in close analogy to equ (127) for

the partition function Qb
ij of a subsequence Iij given that i and j pair.

Qb
ij =

∑

loops L> closed by (i,j)

e−E(L)/kT
∏

interior pairs
(p,q)∈L

Qb
pq, (133)

from which the partition function can be obtained as

Qij = 1 +
∑

h,l

i<h<l≤j

Qi,h−1Q
b
hl. (134)

Construction of the algorithm then proceeds as outlined before for the min-

imum free energy algorithm, using sums instead of minima and products

instead of sums. Care must be taken, however, never to count a contribution

twice. The algorithm therefore needs more storage than the minimum free

energy variant. For details see the pseudo-code in table 6. Also, inclusion of

dangling ends is slightly more complicated, so that no implementation using

these is available at the moment.

Clearly such an algorithm does not predict a secondary structure, instead
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Table 6. Pseudo code for the calculation of the partition function.

for(d=1...n)
for(i=1...n-d)

j=i+d
QB[i,j] = EHairpin(i,j) +

SUM( i<p<q<j : EInterior(i,j;p,q)*QB[p,q] ) +
SUM( i<k<j : QM[i+1,k-1]*QM1[k,j-1]*Ea )

QM[i,j] =
SUM( i<k<j : (Eb^(k-i)+QM[i,k-1])*QM1[k,j] )

QM1[i,j]= SUM( i<k<=j : QB[i,k]*Eb^(j-k)*Ec )
Q1[i,j = SUM( i<l<=j : QB[i,l] )
Q[i,j] = 1 + SUM( i<k<=j : Q[i,k-1]*Q1[k,j] )

partition_function = Q[1,n]

Remark. Here Ex:=exp(−x/kT ) denotes the Boltzmann weights corresponding to the

energy contribution x. Q[i,j] denotes the partition function Qij of the subsequence i

through j. The array QM contains the partition function Qb
ij of the subsequence subject to

the fact that i and j form a base pair. QM and QM1 are used for handling the multi-loop

contributions, Q1 is an auxiliary array to reduce the time complexity to O(n3). x^y means

xy .

one can calculate the probability Pkl for the formation of a base pair (k, l):

Pkl =
Q1,k−1Q

b
klQl+1,n

Q
+

∑

i,j

i<k<l<j

PijQ
b
klEInterior(i, j; k, l)

Qb
ij

+

eaec
∑

i,j

i<k<l<j

Pij

Qb
kl

[

eb(k−i−1)Qm
l+1,j−1 +Qm

i+1,k−1e
b(j−l−1)+

+Qm
i+1,k−1Q

m
l+1,j−1

]

(135)

Though the number steps necessary for the calculation of the Pkl can be

reduced to O(n3) with the introduction of two auxiliary arrays, the back-

tracking is here as expensive as the calculation of the Q. In similar ways

one could calculate the probabilities of other structural motifs such as cer-

tain loop types as well. The heat capacity can be helpful to predict melting

temperatures, since structural re-arrangements are accompanied by peaks in

the heat capacity.
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Heat capacity of RNA secondary structures

Another possible use of the partition function is the calculation of heat ca-

pacities, which can be obtained from the well known formula

Cp = −T ∂
2G

∂T 2
, and ∆G = −kT lnQ. (136)
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Figure 10: Heat Capacity of the tRNA-phe from yeast in the range −50◦C to 120◦C.

For the numerical calculation of the heat capacity we have to evaluate the

partition function at different temperatures and then perform a numerical

differentiation. To obtain a smooth function the numerical differentiation is

performed in the following way: We fit the function F (x) by the least square
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parabola y = cx2 + bx+a through the 2m+1 equally spaced points x0−mh,
x0 − (m − 1)h, . . ., x0, . . ., x0 + mh. The second derivative of F is then

approximated by F ′′(x0) = 2c. Explicitly, we obtain

F ′′(x0) =

m
∑

k=−m

30
(

3k2 −m(m+ 1)
)

m(4m2 − 1)(m+ 1)(2m+ 3)
F (x0 + kh). (137)

As an example we show the heat capacity of tRNAphe from yeast (fig. 10).

The peak at about −10◦C marks the transition to the usual clover-leaf struc-

ture. The slight bump at about 40◦C corresponds to the melting of the stem

closing the multi loop, while the three hairpins melt only above 60◦C.

3.4. Inverse Folding

While the problem of predicting RNA secondary structures has been studied

extensively for a long time, we are not aware of other work on the inverse

problem of finding sequences that will fold into a preselected structure, al-

though the equivalent problem for protein folding has recently received some

attention [77]. Such an algorithm could have several uses: Later on we will

use it to investigate the distribution of sequences with the same structure in

sequence space. Similarly it can be used to estimate the frequency of a given

structure. Biotechnological applications can be envisioned as well. Inverse

folding may allow to predict novel sequences that are functionally equivalent

but unrelated to natural occurring RNAs.

Since the mapping from RNA sequences to structures is a many to one map-

ping there may be an astronomical number of sequences with a common

structure. For that reason alone, it is hard to imagine a deterministic algo-

rithm for the inverse folding problem. The algorithm proposed here is there-

fore heuristic and treats the task essentially as an optimization problem. It

is based on minimum free energy folding but could in principle accommodate

other methods as well. Such a search algorithm should ideally have several

partly conflicting properties:

• The search should be successful often, even if the desired structure is rare.
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• It should find many structures in short time, especially for frequent struc-

tures.

• The algorithm should introduce no bias. I.e. the found sequences should

be as random as possible.

• The search should be local, to allow us to look for solutions in the vicinity

of some reference sequence.

Only compatible sequences are considered as candidates in the inverse folding

procedure. Clearly, a compatible sequence can but need not have the target

structure as its minimum free energy structure.

Our basic approach is to modify an initial sequence I0, such as to minimize a

cost function given by some distance f(I) = d(S(I), T ) between the structure

S(I) of the test sequence I and the target structure T , e.g. a structure

distance as described in chapter 2.

Such an procedure may be extremely slow, since it requires many evaluations

of the cost function and thereby many executions of the folding algorithm,

whose time complexity increases as n3 with sequence length n. One impor-

tant way to reduce the time for the computation lies in doing the search

recursively. Instead of running the optimization directly on the full length

sequence, we optimize small substructures first, proceeding to larger ones as

shown in the flow chart (figure 12). This is possible because substructures

contribute additively to the energy. If T is an optimal structure on the se-

quence S and contains the base pair (i, j) then the substructure Ti,j must

be optimal on the subsequence Si,j , given that i and j pair. Similarly each

component of T must be optimal and for every interior base pair (i, j) of

a multi loop Ti,j must be optimal on Ii,j given that i, j are part of a multi

loop. It is likely then, but by no means necessary, that the converse also

holds: A structure that is optimal for a subsequence will also appear with

enhanced probability as a substructure of the full sequence. This approach

reduces the probability of getting stuck in a local minimum, and more impor-

tantly, it reduces the number of foldings of full length sequences, effectively

trading foldings of long sequences against (maybe a few more) foldings of

much shorter sequences. A full length sequence will not be folded before all

necessary conditions deriving form the optimality of substructures are met.
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Figure 11: Flow chart of the inverse folding algorithm.

For the actual optimization (denoted by ’FindStructure’ in figure 11) we

use the simplest possibility, an adaptive walk. In general, an adaptive walk

will try a random mutation, and accept it if the cost function decreases. A

mutation, here, consists in exchanging one base at positions that are un-

paired in the target structure T , or in exchanging two bases, while retaining

compatibility, if their corresponding positions pair in T . If no advantageous
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mutation can be found, the procedure stops, and we may start again with a

new initial string I0.

To calculate the cost function of some (sub)sequence I, its minimum free en-

ergy structure S(I) is obtained from the fold algorithm (if appropriate under

the condition that its 5′ and 3′ end pair) and compared to the corresponding

piece of the target structure. As long as some kind of structure distance,

such as the tree edit distances described previously, is chosen as cost func-

tion, the performance of the algorithm turns out to be nearly unaffected.

Our implementation therefore uses the simplest possibility, a base pair dis-

tance that simply counts the number of pairs not in common between the

two structures.

A different sort of cost function can be obtained form just the energies. Let

Emin(I) be the energy of the minimum free energy folding of the test sequence

I and E(I, T ) the energy of the sequence I on the desired structure T , then

E(I, T )−Emin(I) ≥ 0 where the equality holds only if T is a minimum free

energy structure of I. Compared to structure distances this cost function

can be improved in very small increments. Using such a cost function will

therefore increase the probability of finding a solution but slow down the

process for relatively frequent structures since so many steps are necessary

to reach that solution.

Since the calculation of E(I, T ) needs only O(n) steps it can easily be cal-

culated in addition to a structure distance. We have therefore implemented

a combination of these two cost functions, with the structure distance as

primary and the “energy distance” as secondary cost function. An adaptive

walk is performed with the structure distance as cost function, however, at

every mutational step the energy distance is recorded as well. If no mutation

with better structure distance can be found the mutation that yields the

strongest decrease in energy distance, while leaving the structure distance

unchanged is accepted. In effect we perform an adaptive walk relative to the

primary cost function and a gradient walk relative to the second.

Even so, the number of successful adaptive walks decreases with sequence

length n, restricting the usefulness of the algorithm to sequences not longer

than a few hundred bases (see figure 12). This is of course to be expected

since the size of the search space and the number of minimum free energy
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Figure 12: Mean percentage of successful inverse folds (yield) as a function of sequence

length n. The algorithm is most useful for n
<∼ 100, otherwise it gets stuck in

local optima more often. However, values for different target structures vary

widely. Data are shown for AUGC ◦ and GC sequences �.

structures both increase exponentially with n. However, for long sequences

it would make more sense to search for sequences that fold into a structure

sufficiently similar to the target. In other words a more coarse grained notion

of structure should be used.

The efficiency of the algorithm can be further increased by dividing the po-

sitions that can be mutated into three groups. Changing positions in the

test sequence I that are do not pair correctly gives the best chances of for

an improvement, these mutations will therefore be tried first. The second

group contains positions adjacent to these. Since only positions adjacent to
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Figure 13: Performance of the inverse folding algorithms as time per sequence found.

100 structures were used at each length. Measurements were done on an Intel

i860 processor. Full line: T=4·10−6n3.5.

a pair give a sequence dependent contribution to the energy of the structure

(through stacking energies, terminal mismatches or dangling ends), muta-

tions in other positions will neither destabilize a wrong structural motif in

the test sequences structure nor stabilize a motif of the target structure not

present in the current structure (i.e. the energy distance can only increase).

This third group of positions can therefore be neglected without a great risk

of missing a possible solution. Other heuristics, such as a preference for GC

pairs over AU pairs have been avoided, since they would bias the generated

sequences.
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In the present form the algorithm is usable for sequences up to a length of

about a few hundred. As can be seen in figure 13 the computational cost

increases more slowly than might be expected. However, the times needed

per solution vary widely for different targets, so that the averages shown

in the figure may be misleading. This reflects differences in the frequencies

of the structures, that will be examined more closely in the next chapter.

Clearly the algorithm has little chance of finding a sequence that occurs only

once in the sequence space for length 50, while a frequent structure of length

say 1000 may still be found in reasonable time.

Sequences generated by the inverse folding algorithm will often show many

suboptimal structures with only slightly larger energies. In view of the un-

certainties in the energy model this is often unsatisfactory. A variation of

the inverse folding problem, therefore, searches for sequences that maxi-

mize the probability of folding into the target structure. Using the parti-

tion function algorithm E(I, T ) − F (I) can serve as cost function, where

F (I) = −kT lnQ(I) is the free energy of the Boltzmann ensemble for the se-

quence I. It is, however, not straight forward to do this search in a recursive

manner as described above, since the optimization of substructures should

only proceed up to a suitable threshold. At the moment, our implementation

only does a simple adaptive walk and is thus suitable only for sequences up

to about tRNA length. By using the distance of two pair probability matri-

ces sequences with some desired equilibrium ensemble of structures could be

generated as well.

3.5. Implementation of the Algorithms

3.5.1.The Vienna RNA Package

Implementations of the algorithms described above are available within the

Vienna RNA Package. The package provides both stand-alone programs

for folding and comparing of secondary structures as well as a library to

link with other C programs. It can be obtained via anonymous ftp from

ftp.itc.univie.ac.at.
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Folding algorithms

Both folding algorithms have been integrated into a single interactive pro-

gram including postscript output of the minimum energy structure and the

base pairing probability matrix.

The minimum free energy algorithm uses integer arithmetic only to pro-

vide good performance even on machines without sophisticated floating point

units. Assuming 32 bit integers it requires 6n2 bytes of memory to fold a

sequence of length n. The three triangular matrices F, C and FM are stored in

columns, while the calculation proceeds row-wise. Through the use of three

linear auxiliary arrays it then possible to access only consecutive positions

in memory in the computationally most costly parts of the program.

The five triangular matrices needed to calculate the partition function use

single precision (32 bit) floating point numbers so that about 10n2 bytes are

needed. In order to overcome overflows for longer sequences we re-scale the

partition function of a subsequence of length ` by a factor Q̃`/n, where Q̃ is

an estimate of the partition function. If a minimum free energy has already

been calculated Q̃ = exp (1.04Emin/kT ) gives a good estimate, otherwise we

use:

Q̃ = exp

(−184.3 + 7.27(T − 37.)

RT
n

)

, (138)

where T is the temperature in ◦C and the Boltzmann factor RT is given

in Kcal/Mol. Unless the stability of large parts of the sequence deviates

very strongly from the rest the algorithm can fold sequences some thousand

nucleotides long. For the minimum energy algorithm maximal length of the

sequence is limited only by the available memory.

The performance of the algorithms reported here is compared with Zuker’s

more recent program mfold 2.0 [78] (available via anonymous ftp from nr-

cbsa.bio.nrc.ca) which computes suboptimal structures together with the

minimum free energy structure in table 7. The computation of the minimum

free energy structure and partition function including the entire matrix of

base pairing probabilities is considerably faster with the present package (al-

though we do not provide information on individual suboptimal structures).

On an IBM-RS6000/560 with 256 Mbyte of memory folding of the entire 4220

nucleotides long genome of the bacteriophage Qβ took 9.5 hours. An sample

session of the RNAfold program is shown in figure 14.
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Table 7. Performance of implementations of folding algorithms. CPU time

is measured on a SUN SPARC 2 Workstation with 32M RAM.

Data are for random sequences.

n CPU time per folding [s]
RNAfold 1.0 mfold 2.0

MFE MFE+PF
100 2.0 6.2 24.5
200 10.9 34.7 129.6
300 32.2 97.4 354.4
500 96.6 312.4 1258.3
690 228.1 743.9 3105.1

Because of the simplifications in the energy model and the uncertainties in

the energy parameters predictions are not always as accurate as one would

like. It is, therefore, desirable to include additional structural information

from phylogenetic or chemical data.

Input string (upper or lower case); @ to quit
.........1.........2.........3.........4.........5.........6.........7........

CACUACUCCAAGGACCGUAUCUUUCUCAGUGCGACAGUAA
.((.......<<..........||............))..
length = 40
CACUACUCCAAGGACCGUAUCUUUCUCAGUGCGACAGUAA
.((((((..(((((.....)))))...))).....)))..
minimum free energy = 0.83

a)

CACUACUCCAAGGACCGUAUCUUUCUCAGUGCGACAGUAA
((((.....(((((.....)))))...)))).........
minimum free energy = -1.52

b)

Figure 15: a) Example Session of RNAfold -C. The constraints are provided as a string

consisting of dots for bases without constraint, matching pairs of round brackets

for base pairs to be enforced, the symbols ’<’ and ’>’ for bases that are paired up-

stream and downstream, respectively, and the pipe symbol ’|’ denoting a paired

base with unknown pairing partner. b) shows minimum free energy structure

without constraints for comparison.
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tram> RNAfold -T 42 -p1
Input string (upper or lower case); @ to quit
.........1.........2.........3.........4.........5.........6.........7........
UUGGAGUACACAACCUGUACACUCUUUC
length = 28

UUGGAGUACACAACCUGUACACUCUUUC
..(((((..(((...)))..)))))...
minimum free energy = -3.71
..((((([[(,,...)))..)))))...
free energy of ensemble = -4.39
frequency of mfe structure in ensemble 0.337231
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Figure 14: Interactive example run of RNAfold for a random sequence. When the base

pairing probability matrix is calculated the symbols . , | { } ( ) are used

for bases that are essentially unpaired, weakly paired, strongly paired without

preferred direction, weakly upstream (downstream) paired, and strongly up-

stream (downstream) paired, respectively. Apart from the console output the

two postscript files rna.ps and dot.ps are created. The lower left part of dot.ps

shows the minimum energy structure, while the upper right shows the pair prob-

abilities. The area of the squares is proportional to the binding probability.

Our minimum free energy algorithm allows to include a variety of constraints

into the secondary structure prediction by assigning bonus energies to struc-

tures honoring the constraints. One may enforce certain base pairs or prevent

bases from pairing. Additionally, our algorithm can deal with bases that have

to pair with an unknown pairing partner. A sample session is described in
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figure 15.

Inverse folding

The inverse folding algorithm described before is implemented in the RNAin-

verse program. Both searching for minimum free energy structures and

maximization of the structures frequency in the ensemble are supported.

The program can start the search with either a random sequence or one

specified by the user. If the initial sequence contains lowercase characters

the corresponding positions will not be modified during the optimization.

Output of the program contains both the found solutions and their distance

to the initial sequence.

Structure comparison

Structure distances as described in section 2.2 can be calculated using the

RNAdistance program. The program implements both tree-edit and align-

ment distances with two sets of edit costs. Calculation of tree-edit distances

follows the method of Shapiro and Zhang [46] but has been augmented with

a backtracking that yields the optimal sequence of edit steps. From this

one can construct two “aligned” trees containing “gap” nodes, analogous to

conventional aligned sequences.

Distances are calculated by first converting the structures in one of four pos-

sible tree representations (full structures, HITs, loop structures and weighted

loop structures), thereby offering four levels coarse graining. Output of the

RNAfold program can be piped directly into RNAdistance to compare the

structures of different sequences. A sample session is again shown in fig-

ure 17.

Other programs

Finally, our package contains programs to analyze distance matrices using

split decomposition [79] and tree reconstruction algorithms, as well to analyze

sets of sequences using statistical geometry [80]

3.5.2.Parallel Folding Algorithm

Since the computational cost of folding can be very high it is tempting to

try an implementation for parallel computers. In the following we present
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tram> RNAinverse -Fm -R -3
Input structure & start string (lower case letters for const positions)
@ to quit, and 0 for random start string
.........1.........2.........3.........4.........5.........6.........7.........
(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....
0
length = 76
CUAUACUACGAGGAUAAUCUGCCUUUUGCCAAAGAGGGUGGCAUUUCAUCAGCUCCGAAUGCUGAGGUAUAGCGAA 20
AGCUCUGAUAUCUCUACGAAUAGAUCCUUUAUAUCUCUUAAAGCGUGUCUGGAAGAUAACUCCAGCAGAGCUUGUG 25
UUCUCCUGUAGUCGACUUUAGGACUCGAGGCCGUAUUUGCCUCACGGAAAUGUUUACAAUGCAUUAGGAGGAGUGC 29

A

tram> RNAinverse -Fp -R 3
Input structure & start string (lower case letters for const positions)
@ to quit, and 0 for random start string

.........1.........2.........3.........4.........5.........6.........7.........
(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....
0
length = 76
GCUAGCGUUGGGCUUUUUUUCGCCCUGCCGCAAAACCCGCGGCUUCUCGCUACAUCUCUCGUAGCCGCUAGCAAAA 50
(0.844786)
GCGUUACAAGCGCAAUCCCCCGCGCAGCGUCAAAACCCGACGCCAACAGCUACAAAACCCGUAGCGUAACGCAAAA 55
(0.859519)
GCGCGCCAAGCGCAAAAAAAAGCGCAGCCGCAAAACACGCGGCAAAAAGCGGCAGAAAAAGCCGCGGCGCGCAAAA 49
(0.85046)

B

Figure 16: Sample session of RNAinverse. A: Minimum free energy. B: Partition func-

tion.

The secondary structure of tRNAphe is used as target. Data on the natural

tRNAphe sequence for comparison: the clover leaf structure occurs only with a

probability of 0.17 and with even smaller probabilities for the three sequences

found by RNAinverse -Fm (0.089, 0.033, and 0.033, respectively).

tram> RNAdistance -Dfh -B

Input structure; @ to quit
.........1.........2.........3.........4.........5.........6.........7 .........
((.(((((((.....))))))).))....((..((((.....)))).)).
.....((((..((((..........)))).)))).....(((....))).
f: 26
(-----(.(((--((((.....-----))))-))).))....((..((((.....)))).)).
-.....(-(((..((((..........)))).)))-)-....--.--(((....-)))-.---
h: 32
(----((U1)((U5-)P7)(U1)P2)(U4)((U2)((U5)P4)(U1)P2)(U1)R1)
((U5)((U2)((U10)P4)(U1)P4)(U5)-----((U4)P3)(U1)-------R1)

Figure 17: Interactive sample session of RNAdistance. For this example we calculated

the tree-edit distance of the full and HIT representation of two random sequences

folded by RNAfold.
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1
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Figure 18: Representation of memory usage by the parallel folding algorithm. The trian-

gle representing the triangular matrices F, C, and FM, respectively, is divided into

sectors with an equal number of diagonal elements, one for each processor. The

computation proceeds from the main diagonal towards the upper right corner.

The information needed by processor 2 in order to calculate the elements of the

dashed diagonal are highlighted. To compute its part of the dashed diagonal

processor 2 needs the horizontally and vertically striped parts of the arrays F

and FM, and the shaded part of the array C. The shaded part does not extend to

diagonal, because we have restricted the maximal size of interior loops.

a parallelized version of the minimum energy folding algorithm for message
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Figure 19: Performance of parallel algorithm for random sequences of length 50 ◦, 100

, 200 ♦, 400 4, 700 /, 1000 ∇. Efficiency is defined as speedup divided by the

number of processors. The dotted line is 1/n corresponding to no speedup at all.

passing systems. Since all subsequences of equal length can be computed

concurrently, it is advisable to compute the arrays F, C and FM in diagonal

order, dividing each sub-diagonal into P pieces. Figure 18 shows an example

for 4 processors. Our algorithm stores the arrays F and FM twice once in

columns and once in rows, while the C array is stored in diagonal order.

However, each processor holds only those values needed to evaluate its section

of the current sub-diagonal. Since the number of rows and columns that have

to be stored decreases while their length increases, the maximal memory

requirement occurs at d = n/2, where we need n2/(2P ) integers each for F
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and FM. Because we restrict the maximal loop size, the array C needs only

O(n) storage. After completing one sub-diagonal each processor has to either

send a row to or receive a column from its right neighbor, and it has to either

receive a row from or send a column to its left neighbor.

Since we do not store the entire matrices, we cannot do the usual backtracking

to retrieve the structure corresponding to the minimum energy. Instead,

we write for each index pair (i, j) two integers to a file, which identify the

term that actually produced the minimum. The backtracking can then be

done with O(n) readouts. All in all the algorithm therefore needs O(n)

communication and I/O steps, with each communication step transferring

O(n) integers, while the computational effort is O(n3). The communication

overhead therefore becomes negligible for sufficiently long sequences.

On an Intel Ipsc/860 the I/O overhead becomes negligible for sequences

longer than some 200 nucleotides. The efficiency of the parallelization as a

function of sequence length and number of processors can be seen in figure 19.

The partition function algorithm can in principle be parallelized analogously.
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4. The RNA Folding Map

4.1.Statistics of Structural Elements

In this section we present statistics of RNA secondary structures generated

by folding random sequences. Such statistics can serve as a reference to

compare structures of specific sequences with a random sample as well as to

compare different folding algorithms. To generate such a statistical reference

we folded samples of typically 105 random sequences from the AUGC, AU,

GC alphabets for lengths up to 1000. Results for the different alphabets

were then compared with each other and with random structures as defined

in chapter 2. The random structures used here are constrained to have a

minimum hairpin size of 3 and a minimum stack size of 2, i.e., there are no

isolated pairs. The structures are compatible with sequences with a sticki-

ness p = 1, 3
8 ,

1
2 corresponding to alphabets in which all bases can pair, the

biophysical AUGC and a binary (e.g. AU of GC) alphabet.

• Number of Base Pairs

The mean number of base pairs increases linearly with sequence length n

in all cases. As expected minimum free energy structures show somewhat

more pairs than random structures with the same stickiness, AU sequences

produce more pairs than AUGC because of the higher stickiness in spite of

the lower stability of AU pairs. Structures on the GC alphabet not only

show much more pairs but a remarkably narrow distribution.

• Number of Loops and Stacks

The number of loops must equal the number of stacks because every loop

must be closed by a stack. Even for short chain lengths the mean number

of loops and stacks scales linearly with n. Because loops are destabilizing

folded structures form significantly fewer loops than random structures. De-

pendence on the alphabet is weak. In particular AUGC and GC sequences

form nearly the same number of loops and stacks.

– 74 –



The RNA Folding Map

30 50 70 90
Number of Base Pairs

0.00

0.05

0.10

0.15

F
re

qu
en

cy

0 10 20 30
Number of Helices

0.0

0.1

0.2

0.3

F
re

qu
en

cy

0 5 10 15
Stack Length

0.0

0.2

0.4

0.6

0.8

F
re

qu
en

cy

Figure 20: Distribution of the number of base pairs (above), the number of stacks and
loops (lower left) and the Distribution of stack sizes (lower right) for chain length
n=200. Full lines denote random structures with stickiness p=1, dashed lines
stickiness p= 1

2 corresponding to binary alphabets dashed dotted lines stand for
stickiness p= 3

8 as in the AUGC alphabet. Data for folded random sequences
are shown with circles ◦ for the AUGC alphabet, squares for AU and
diamonds � for GC sequences.
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Figure 21: Distribution of loop sizes (upper left), loop degrees (upper right), components

(lower left) and external digits (lower right) for random structures with sticki-

ness p=1, 12 , 3
8 and folded random sequences form the AUGC, AU, and GC

alphabets.
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Figure 22: Mean values of the number of base pairs (above), the number of stacks and
loops (lower left) and of stack sizes (lower right) versus chain length. Data for
folded random sequences are shown as lines with symbols. Full lines, dashed
lines and dash dotted lines denote random structures with stickiness p=1, 1

2 , 3
8 .

As before circles ◦ stand for the AUGC alphabet, squares for AU and
diamonds � for GC sequences.
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Figure 23: Mean values for loop sizes (upper left), loop degrees (upper right), components

(lower left) and external digits (lower right) as a function of chain length. Data

for random and folded structures are marked as previously.
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• Stack Size

The mean stack size of random structures converges to a constant value at

very small chain lengths. For minimum free energy structures, especially

from the GC alphabet convergence is much slower. The most important

stabilizing contributions to a structure come from the stacking of base pairs.

Minimum free energy structures therefore exhibit longer stacks than random

structures. While the distribution is very similar for random structures of

different stickiness, folded structures need more pairs to stabilize a stack for

alphabets with weak pairs such as AU.

• Loop Size

The average mean loop size converges at moderate chain lengths to a constant

value. The distributions are similar for all alphabets as well as for random

structures. This may be because the destabilizing energy of loops increases

only logarithmically with size, so that loop sizes have a much smaller effect

on the energy than stack sizes. The slight step in the distributions at loop

size 15 is an artifact because a maximum size for interior loops of 15 was

used in the fold algorithm.

• Loop Degree

Since for every additional multi loop with degree n there must be n-1 ad-

ditional hairpins (with degree 1), the mean loop degree of a structure with

Nl loops and Nc components is 2 − Nl/Nc. We expect that Nl/Nc → 0 for

n → ∞ and therefore, the average loop degree to converge to 2 in all cases.

However convergence seems to be very slow. The distributions are similar

for folded structures, GC sequences produce slightly more multi loops than

other alphabets. All minimum energy structures show significantly fewer

multi loops than the random structures. Prediction of multi loops is, how-

ever, the weakest point in the folding algorithm.

• Number Components

Combinatorics for the number of components resemble that of loop degree.

Therefore they behave similar for random structures. In folded structures

additional components do not incur an energy cost. Their number of com-

ponents is, therefore, somewhat larger than the mean loop degree and larger

– 79 –



The RNA Folding Map

than in random structures. The difference between folded and random struc-

tures is again smallest for GC sequences. The mean converges to a constant

value for random structures and maybe for GC sequences. The asymptotic

behavior for AUGC and AU sequences is not clear.

• Number of External Digits

External digits resemble loop sizes for random sequences. In contrast to un-

paired bases in a loop external digits are not destabilizing. Folded structures,

therefore, show much more external digits. Remarkably, the distributions for

the AUGC and AU alphabet are nearly identical, while structures from GC

sequences are closer to random structures. The mean values converge very

fast to constant values for random and GC structures.

4.2.Frequencies of Structures

As shown in chapter 2 the number of possible secondary structures is much

smaller than the number of sequences for any sequence length n. As a crude

estimate for the number of minimum free energy structures one could use

the number of possible structures isolated base pairs and with at least three

unpaired bases in hairpin loops. As shown before we find approximately

Ψ(2,3)
n ≈ 1.4848 × n−3/2 (1.8488)n (139)

while the number of sequences in an alphabet of size κ is κn. Presumably, this

estimate is still much to high since many of these structures are unstable on

any sequence. From the statistics of base pairs shown in the previous section

one can also derive a lower limit to the number of free energy structures.

Lemma. Given an alphabet A of size κ with stickiness p, let #Σ be the

number of sequences of length n compatible with some structure S with b

base pairs. Then

#Σ = κn · pb. (140)

Proof. The sequence at the unpaired positions is arbitrary, however, for

each pair in S only a fraction p of possible sequences is compatible.
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From the data presented in the previous section we conclude that for large

chain length n there are on average γ[A]n base pairs in minimum free energy

structures.

Theorem. Suppose there are constants c and γ with 0 < c, γ < 1 such that

at least a fraction c of all sequences forms a minimum free energy structure

with at least γn base pairs. Then at least

c ·
(

p−γ
)n

(141)

different structures are minimum free energy structures for some sequence in

sequence space.

Proof. There must be at least cκn/#Σ(γn) different structures since from

the cκn sequences forming γn or more base pairs at most #Σ(γn) sequences

can be compatible with a single structure. Hence, there are at least cκn ·
κ−n · p−γn different structures.

Our numerical results confirm that such c and γ exist. Since the distribution

of the number of base pairs (see fig. 21) is approximately symmetric we find

that for c = 1/2 γ = γ[A] is the expected number of base pairs nBP.

Table 8. Parameters for the lower bound on the number of minimum free

energy structures

Alphabet γ = nBP/n p−γ

GC 0.403 1.32

AU 0.354 1.28

GCAU 0.290 1.33

– 81 –



The RNA Folding Map

The above estimate uses the maximum number of sequences that may fold

into a single structure, which can only be appropriate for the most stable

structures. On the other hand, equation (139) counts the number of syn-

tactically admissible structures irrespective of their stability. Since many

sequences must fold into identical structures, the question arises how these

relatively few structures are distributed over sequences. The large difference

between the upper and lower bound already suggests that relative frequencies

of different structures may vary widely.
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Figure 24: Frequency distribution of sequences folding into identical secondary structures

for the AUGC alphabet with chain length n=40 . The open structure occurs is

not included in the data, it occurs with a frequency of about 3%. The full line

is the function f(r)=0.001/(1+r/32)8.1.

To determine the frequency distribution of secondary structures one can

folded large pools of random sequences, sort the resulting structures by fre-

quency and plot the rank of each structure versus its frequency. Using the

secondary structures at full resolution this can be done only for very short
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( <∼ 40) sequences since for longer sequences one will not find any identical

structures in the sample.

For longer sequences we can only study the frequencies of more coarse grained

structures. Up to lengths of n ≈ 100 using the loop structures works well for

even longer sequences branching structures can be used.

The frequency distributions gathered for different lengths of sequences and

levels of coarse graining are remarkably similar, following roughly the gener-

alized form of Zipf’s law given by Mandelbrot [81, 82],

f(r) = a(1 + r/b)−c, (142)

where r is the rank (by frequency) of the structure S and f(r) is the fraction

of occurrences of S in the sample. Zipf’s law was originally derived from

the analysis of the frequency of words in literary texts [83] and has since

been found in a variety of contexts (e.g. [84]). The form given above can

be derived analytically for simple models of random text [85, 86]. Zipf’s law

suggests that most sequences fold into few very common structures while

most structures are extremely rare. Because of the asymptotic power law a

constant fraction (about 0.51/c) of structures will occur only once in a sample

regardless of sample size. In of its simplest definitions Zipf’s law states that

about half the objects being counted will occur only once. This corresponds

to c = 1 in the above form.

In the above parameterization of Zipf’s Law the exponent c describes the

distribution of rare sequences, the constant b is a rough measure for the

number of frequent structures, while a gives the frequency of the most com-

mon structures. Our data suggest that there are few frequent structures and

many very rare ones. The few thousand most common structures cover al-

ready more than 90% of the sequence space for AUGC sequences with chain

length n = 30 and 40.

The parameters b and c depend strongly on the chain length. Not unexpect-

edly, the number of the most frequent structures, b, increases exponentially

with chain length, see figure 27a. The parameter c describing the scaling of

the power law tail of the distribution decreases with chain length, indicating

that a larger fraction of sequences folds into rare structures for longer chains.

The data in figure 27b are consistent with c→ 1 for n→ ∞.
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Figure 25: Distribution of loop structure frequencies for the AUGC alphabet with chain

length n=100. The full line is a fit to equation (141).
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Figure 26: Distribution of branching structure frequencies for the AUGC alphabet with

chain length n=200. The full line is a fit to equation (141) f(r)=0.2/(1+x/16.8)4.
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Figure 27: Dependence of the parameters of the generalized Zipf’s law, equation (142),

on the chain length. Data are for loop structures from the AUGC alphabet.

4.3.Distribution of Structures in Sequence Space

A question related to the relative frequencies of structures is their special

distribution over sequence space. To study this question one needs a sample

of sequences folding into the same structure that can be generated using the

inverse fold algorithm.

Analyzing the pair distances of the resulting sequences shows that such se-

quences are distributed all over sequence space. Given that all structures

that fold into a given structure have to be at least compatible with that

structure, the resulting distribution can not be binomial as for true random

sequences but is nearly indistinguishable from the distribution expected for

random sequences compatible to the given structure. In the example shown

in figure 28 random structures compatible to tRNAphe structure without any

G-U pairs were used as starting point for the inverse algorithm. The result-

ing distribution of the solution sequences is nearly identical to that of the

start sequences.

A subset of 100 sequences with tRNAphe structure was also compared to a
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Figure 28: Distribution of 2621 tRNA analoga obtained from reverse folding ◦. The start

sequences did not contain GU pairs, and only very few GU pairs are found in the

rRNA analoga. For comparison the distance distribution functions for random

sequences (dotted line), random compatible sequences (dashed line), and random

compatible sequences without GU pairs are shown. This indicates that sequences

are randomly distributed (subject to the constraint of being compatible with the

structure).

random compatible sequences using statistical geometry [80, 87] and split

decomposition [79]. Both methods will detect clustered or hierarchically

related data. While statistical geometry compares sequences position-wise,

split decomposition analyses the matrix of pair distances. In both cases the

sample of inverse folded sequences was indistinguishable from the random

sample.

– 86 –



The RNA Folding Map

4.4.Correlation and Density Surfaces

A basic property of combinatory landscapes is ruggedness. A landscape is

rugged if it has lots of local optima, if adaptive (up-hill) walks are short,

and if the correlation between nearest neighbors is small. Adaptation and

optimization is harder on more rugged landscapes. While the notions of local

optima and adaptive walks do not have counter-parts in general combinatory

maps (their definition require the image set to be ordered), the definition of

pair-correlation can be generalized to mapping from one metric space into

another one [34]:

ρ(d) = 1 − 〈D2(f(x), f(y))〉d(x,y)=d

〈D2(f(x), f(y))〉random
(143)

The average in the enumerator runs over all pairs of configurations with fixed

Hamming distance d while the average in the denominator runs over all pairs

of configurations. Correlation functions often fall of exponentially, it is there-

fore convenient to define an empirical correlation length ` from ρ(`) = 1/e.

This correlation length, possibly scaled by the diameter of the configuration

space, forms a measure of ruggedness, which can be used to compare land-

scapes. A more detailed representation of a combinatory map is given by

the density surface. The structure density surface P (D|d) is the conditional

probability that two secondary structures have distance D in shape space

provided their underlying sequences have distance d in sequence space. Den-

sity surfaces contain more information then the autocorrelation functions.

For instance, the probability for finding a neutral neighbor, i.e., a sequence

in Hamming distance 1 which folds into the same structure is P (0, 1). In

fact, the autocorrelation function can be obtained from the density surface:

ρ(d) = 1 −
∑

D D2P (D|d)
∑

d

∑

D D2p(d)P (D|d) (144)

where p(d) is the probability for two randomly chosen sequences to have

distance d.

The structure density surface for AUGC sequences of length n=100 using

tree edit distances of full structures is shown in figure 29. The corresponding
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Figure 29: The structure density surface P (D|d) of natural AUGC-sequences of chain
length n=100. The density surface (upper part) is shown together with a contour
plot (lower part). In order to dispense from confusing details the contour lines
were smoothened. In this computation a sample of 1000 reference sequences was
used which amounts to a total sample size of 106 individual RNA foldings.
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correlation length `=7.6 is small compared to the sequnece length. Similar

calculations were performed in Pauline Hogeweg’s group [88] using alignment

distances. Yet, the qualitative features of the density surface were unchanged.

The shape of the SDS also changes very little with sequence length, except

for rescaling of the axis. Some basic properties of the folding map become

apparent in the density surface plot: For very small Hamming distances

(h=1, 2, 3) the most probable structures are identical or very similar to the

reference structure, there is nonetheless some probability that even a single

mutation substantially alters the structure; beyond a distance of h≈3 iden-

tical or even closely related structures are extremely unlikely; at a distance

of about 15% to 20% of the chain length the density becomes independent

of h, thus approaching essentially what is expected for a sample of randomly

drawn sequences (h≈ 0.75n). The latter indicates that the structures of a

reference sequence and of its mutants at distances of 20% or larger are effec-

tively uncorrelated, i.e memory of the reference structure is sufficiently lost

to allow the mutants at that distance to acquire the essential features of any

frequent minimum energy structure. A fairly small ball in sequence space

already shows the global characteristics of the entire folding map f .

4.5.Shape Space Covering

For any evolutionary optimization it is of prime importance how big a volume

in sequence space has to be searched in order to find a sequence with the de-

sired properties. We may therefore pose the question how close to some given

starting sequence a preselected secondary structure can be found. Stated dif-

ferently the question is what radius a ball in sequence space must have to

contain most common structures. This radius is called the shape space cov-

ering radius hc. A “common” structure here is one that is not ranked in the

power law tail of Zipf’s distribution. This is easily ensured by using struc-

tures produced by folding a random sequence in the computer experiments

below .

The fact that the SDS becomes independent of h at relatively small h is a first

indication that this distance might be much smaller than average distances

in sequence space.
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Figure 30: Distribution of Hamming distance between starting and solution sequence

from the inverse fold algorithm. Data for the AUGC alphabet are shown with

circles ◦, diamonds � are used for GC. 100 target structures derived by folding

random sequences were used, for each target structure the inverse fold algorithm

was called 200 times using different start sequences compatible with the target

structure. A total of 8227 and 7539 sequences were found in the AUGC and

GC case, respectively.

Some information can already be gotten from the performance of the inverse

fold algorithm shown in (figures 30, 31). At a chain length of 100 a successful

inverse fold on average finds a solution in a Hamming distance of about 7

from a starting sequence compatible with the target structure in the AUGC

alphabet.

Clearly compatibility to the target structure is a prerequisite for any solu-

tion sequence. For a target structure with b base pairs and an alphabet with

stickiness p we have to exchange on average (1 − p)b bases to obtain a com-

patible sequence, since (1−p) is the probability that a sequence cannot form

a particular pair and provided every base in the alphabet can form a pair

with at least one other base. AUGC sequences of length 100 form about
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Figure 31: Mean distance from random start sequence to solution and mean number of

base pairs b̄ as a function of sequence length n. 100 target structures from the

AUGC alphabet were used at each length. A Hamming distance of 5
8 b̄ is needed

on average to find a compatible sequence.

24.4 pairs on average, therefore on average 24.4 · 5/8=15.2 point mutations

are needed to go from a random starting sequence to a sequence compatible

with some target structure. Note that this is more than twice the distance

added by the inverse folding. For GC sequences of length 100 we typically

need 37.1 · 1/2 = 18.5 mutations to make a sequence compatible versus a

distance of 8 added by the inverse folding, for AU sequences the numbers

are 19.1 · 1/2=14.5 and 6 respectively.

To obtain a more reliable estimate for the shape space covering radius, we

designed the following computer experiment: A target sequence is chosen at

random and a reference structure is generated by folding another random

structure. A first trial sequence folding into the reference structure is then

generated by inverse folding starting from the target sequence. We then

– 91 –



The RNA Folding Map

0 10 20 30
Hamming Distance

0.00

0.05

0.10

0.15

F
re

qu
en

cy

Figure 32: Nearest distances from a target sequence at which a reference structure could

be found for 500 pairs of sequences and structures form the AUGC alphabet

with chain length n=100. For each pair the best result from 100 trials as described

in the text is shown. The dashed line is the corresponding distribution of base

pair frequencies with the x values scaled by 1−p=5/8. This distribution gives a

lower bound on the distance where the reference structure can be found while

the curve to the right provides an upper bound.

search for neighbors of the trial sequence that fold into the reference struc-

ture but lie closer to the target using point mutations on unpaired bases or

exchange of two bases against another possible pair for paired ones. If such a

sequence is found, it is accepted as the new trial sequence, and the procedure

is repeated until no further approach to the target is possible. The Hamming

distance of the endpoint of this adaptive walk to the target sequence recorded

and the procedure is repeated starting from the inverse fold. The distances

thus recorded are upper bounds to the minimal distance from the target in
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Table 9. Lower and upper bounds for shape space covering radius.

n AUGC GC AU

50 6.5 9.2 8.5 10.7 6.0 7.0
70 10.0 13.7 12.5 15.6 9.3 11.5

100 15.2 20.5 18.6 22.9 14.6 17.3

Remark. The upper bounds shown here are mean values from 200 pairs of structure and

target sequence for length 50, 500 pairs for length 100 AUGC sequences and 100 pairs

otherwise. The lower bounds are derived from the mean number of base pairs, see text.

which the reference structure can be found.

The resulting distribution of distances is shown in figure 32 for AUGC

sequences of length 100. Alphabet and chain length dependence of the mean

values are shown in table 9. Obviously, the covering radius is dominated by

the number of mutations necessary to find a compatible sequence. On the

other hand the upper bounds could still be sharpened if more trials could be

performed per structure sequence pair (i.e. if computers were faster).

In the AUGC alphabet, allowing G-U pairs, there on average 3 possible

mutations to make a sequence compatible with a particular base pair. This

means, if m mutations are needed to make some sequence compatible to a

reference structure, we can choose from about 3m compatible sequences in the

minimal distance m. For chain length 100 this yields typically 315.2 =1.8 ·107

compatible sequences. It seems likely that at least one of these would fold into

the reference structure, that is, the lower bound given above may actually be

sharp and the number of point mutations needed to find a given structure is

just the number of mutations needed to find a compatible sequence.

In any case the covering radius hc is much smaller than the diameter of the

sequence space. For AUGC sequences of chain length 100 a ball of radius

16 contains about 6 × 1025 sequences. Although this number is large, it is

nothing compared to the total number of sequences: 4100≈1.6 × 1060.

A related but different question is given two structures S1 and S2 what is

the minimum Hamming distance of two sequences that fold into the two

structures, respectively. An upper bound to this distance of closest approach

can be calculated in a variation of the experiment described above: We
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Figure 33: Distribution of upper bounds on the distance of closest approach for 350 pairs

of structures of length 100 from the AUGC alphabet.

construct a first sequence I1 folding into 1, then try to find a sequence I2
folding into S2 as near as possible to I1 as in the experiment before. We

then keep I2 fixed and try to minimize the distance by mutating I1 without

changing its structure. The process is then iterated until the distance cannot

be further decreased.

Since one can always find a sequence that is compatible to both S1 and S2

the lower bound for this distance is 1.

4.6.Neutral Networks

A characteristic feature of the RNA folding map is its high neutrality. In

the AUGC alphabet about every third point mutation will not change the

structure. This is an important distinction from combinatory landscapes

such as spin glasses, traveling salesman problem etc.
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Table 10. Mean values for the upper bound on the distance of closest ap-

proach as a function of alphabet and chain length.

n AUGC GC AU

50 2.1 5.6 2.6

70 3.4 9.3 4.6

100 5.6 13.0 7.8

Remark. Data are averaged over 300 pairs of structures for the AUGC alphabet, other-

wise 100 pairs were used.

As we have seen before the sequences folding into the same secondary struc-

ture S are randomly distributed in sequence space. Because of the high

probability for finding neutral neighbors these sequences are not isolated,

but form clusters in sequences space. Hence, the question arises how far such

sets of neutral sequences extend. This can be done in the following com-

puter experiment. Starting from a random initial sequence I0 we construct

a monotonously diverging “neutral path” by mutating our test sequence In,

accepting the mutated sequence In+1 if the mutation is neutral S(I) = S(I0)

and the Hamming distance does not decrease d(I(n+ 1), I0) ≥ d(In, I0). To

make sure the procedure will halt eventually, we allow at most 10 steps where

d(I(n+1), I0) = d(In, I0) in a row. As mutations we again allow the exchange

of a single unpaired base or the exchange two bases paired in the reference

structure.

The length L of a path is the Hamming distance between the reference se-

quence and the last sequence, and hence a lower bound on the diameter of

the connected “neutral network”. Clearly, a neutral path cannot be longer

than the chain length, L ≤ n. The length distribution of neutral paths in

the sequence space of RNA molecules of chain length n = 100 is shown in

figure 34 for the the natural AUGC and GC alphabet.

It is remarkable that more than 20% of the neutral paths in the sequence

space of natural AUGC sequences have the maximum length. They lead
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Figure 34: Lengths of Neutral Paths. Longest distances between the reference and the

end points of monotonously diverging neutral paths for the AUGC ◦ (right

scale) and GC � (left scale) alphabets.

through the entire sequence space to a sequence differing in all positions

from the reference but still sharing its structure. In shape spaces derived

from binary sequences almost no neutral path reaches the complementary

sequence. This is partly a consequence of the symmetry of the binomial

distribution: there are very few sequences in the error classes n−1, n−2,

etc., and it is unlikely that we find one among them which folds precisely

into the same structure as the reference sequence. Still the average length L
is much larger than the average distance of two randomly chosen sequences,

L � n/2.

The union of all neutral paths forms a dense neutral network in the exam-

ple considered here. This, of course, need not be the case in general: rare

structures may have short neutral paths confined to small disjoint regions in

sequence space. Nevertheless, neutral nets are not a peculiarity of the few

most frequent structures. As shown in figure 35 even the rarest structures
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Figure 35: Average length of neutral paths as a function of the frequency of the under-

lying structure for AUGC sequences of length n=30 and • n=40. The data

shown here are lower bounds on the average diameter of the neutral networks.

we were able to find give rise to networks that reach way beyond the av-

erage distance of random sequences. The data indicate, however, a sharp

(chain length dependent) transition at which the average diameter of neutral

networks begins to decrease with decreasing frequency of the underlying sec-

ondary structure. Such a situation is reminiscent of percolation problems in

physical systems. This percolation transition has recently been studied using

an abstract model based on random graphs in which a neutral net is con-

structed by randomly connecting neighboring points in sequence space such

obtain a given average number of neutral neighbors [89]. If the frequency

of neutral mutations is above 0.37 for unpaired bases and above 0.3 for pair

mutations the model suggests that the resulting neutral net will span the

whole sequence space. Furthermore two such neutral nets will come close
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to each other within a Hamming distance of 2. Note that the frequency of

neutral mutations (0.49 and 0.45 for unpaired bases and pair mutations) are

way above these thresholds.

From the existence of such neutral networks one can expect far reaching con-

sequences for evolutionary optimization where the fitness depends structure:

Given a suitable error frequency an evolving population should perform a

random walk along the neutral net, until it reaches a point where a better

secondary structure can be reached within a few mutations (i.e. a neutral

net with higher fitness comes sufficiently near). During the times where the

population diffuses on the neutral net, only the phenotype is conserved while

genotypic information is unstable. For even lower error frequencies the pop-

ulation should localize in sequence space at a point on the neutral net where

the number of neutral neighbors is especially large. Simulations to test these

predictions are currently under way.
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5.Conclusions

Among the most important steps in understanding evolutionary adaptation

is the construction of model fitness landscapes based on a proper abstraction

of the adapting entities. Since fitness is evaluated on the phenotype level the

crucial step lies in modeling the mapping from genotype to phenotype. This

work explored in detail the statistics of the simplest realistic and biologically

motivated genotype-phenotype mapping induced by RNA folding.

While sequences are linear strings, RNA secondary structures represent pla-

nar graphs or trees. In chapter 2 we studied the statistical features of RNA

secondary structures analytically from a combinatorial point of view. Re-

cursions and first order asymptotics could be derived for the frequencies of

more important structural motifs. Furthermore, this allowed us to introduce

random structures as a reference point for comparison with the results of

folding algorithms.

The sequence/structure relationships were then explored in a series of com-

puter experiments. To this end known algorithms for RNA structure predic-

tion and and for comparison of structures were implemented in an efficient

and easy to use library, together with a new “inverse folding” algorithm that

allows to find sequences folding into a predefined secondary structure.

The results of these numerical experiments can be summarized as follows:

(1) Sequences folding into one and the same structure are distributed ran-

domly in sequence space,

(2) The frequency distribution of structures is sharply peaked (there are

comparatively few common structures and many rare ones),

(3) Sequences folding into a predefined common structure are found within

(relatively) small neighbourhoods of any random sequence, and

(4) The shape space contains extended “neutral networks” joining sequences

with identical structures, often these networks span the entire diameter

of the sequence space.

These data show that optimization of structures by evolutionary trial and

error strategies is much simpler than often assumed. In fact, the combi-

natory map of RNA secondary structures is ideally suited for evolutionary
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adaptation. Exploration is easy because of vast neutral networks, and op-

timization is feasable since a sequence with desired secondary structure is

typically few mutations away from almost anywhere in sequence space. We

expect that populations that replicate with sufficiently high error rates will

readily spread along these networks and to distant regions in sequence space.

Other networks will pass by close enough to allow the transition to other

better structures, leading to sudden step-like increases in fitness. A reduced

mutation rate should cause the population to condense in the most favorable

part of the neutral network and to adapt locally in this region [7, 90].

It is worth noting that these properties hold only for the biophysical AUGC

alphabet. The binary GC alphabet exhibits a slightly larger covering radius,

a more rugged landscape as seen in the SDS and correlation length analysis

[34], and most importantly it exhibits much shorter neutral paths.

Our results are relevant for natural selection as well as for artificial selection

in biotechnology. We predict that there is no need to systematically search

huge portions of the sequence space, nor does one need specially designed ini-

tial conditions. These properties provide further support for the widespread

applicability of molecular evolution [91, 92, 4].
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